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Abstract: The problem of gas detection is relevant to many real-world applications, such
as leak detection in industrial settings and landfill monitoring. In this paper, we address
the problem of gas detection in large areas with a mobile robotic platform equipped with
a remote gas sensor. We propose an algorithm that leverages a novel method based on
convex relaxation for quickly solving sensor placement problems, and for generating an
efficient exploration plan for the robot. To demonstrate the applicability of our method
to real-world environments, we performed a large number of experimental trials, both
on randomly generated maps and on the map of a real environment. Our approach
proves to be highly efficient in terms of computational requirements and to provide
nearly-optimal solutions.
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1. Introduction

In a large number of situations, it is of utmost importance to assess whether a specific gas is present
in an area, and establish its concentration, distribution, and the location of the source. This includes the



Sensors 2015, 15 6846

inspection of pipelines and chemical plants to detect the presence of dangerous gas leaks, the longterm
monitoring of air pollution levels in big cities or of landfill sites to identify exploitable gas sources. It
is often the case that the gases of interest are dangerous for humans and, therefore, human involvement
should be minimized.

In the case of pollution monitoring in cities, the deployment of a network of stationary sensors has
often proven to be an effective solution [1]. Similar solutions have also been tried in more critical
environments, such as coal mines [2] and landfill sites [3]. However, whenever stationary solutions are
employed in large areas, two problems arise: the measurements are inherently sparse, so that there can
be no guarantee for the absence of the measured gases in the environment (e.g., in a chemical plant a
leak could go undetected), and it is very difficult to decide where to place the sensors in the first place,
especially if the environment is subject to changes in wind direction and speed, either caused by weather
conditions or moving objects.

Mobile robotic olfaction is a recent research direction which aims at overcoming the problems of
fixed sensor networks. It combines gas sensors, as used in the fixed networks, with the flexibility of
a mobile platform [4]. Different platforms have been successfully tested in recent years for mapping
the gas concentration and source localization, both in indoor and outdoor environments [5–7]. The
use of mobile platforms has become even more appealing since the introduction of sensors which are
capable of detecting gases remotely [8–10]. In particular, sensors based on tunable diode laser absorption
spectroscopy (TDLAS) [11,12] allow for ranged sensing up to considerable distances (if the field of view
is unobstructed), but are expensive and relatively bulky. Therefore, they are not suitable to be distributed
in large numbers in the environment, but they can be used on-board a mobile platform.

The use of ranged sensing devices on mobile platforms introduces new challenges due to the robot’s
limited autonomy. The largest restriction is posed by battery power and hence the limited duration of
monitoring activities. Thereto, it is required to explore the environment efficiently. Here, we focus on the
problem of gas detection in large environments, both outdoor and indoor. We elaborate on the problem
of verifying if a specific gas is present in the environment or not. More in particular, in this paper we
present a novel approach for quickly generating exploration strategies for a mobile robot equipped with
a sensor for remote gas detection. The resulting strategies are efficient, in the sense that they minimize
the overall time the robot will take to inspect the whole environment.

The contributions of this paper are two-fold. Our first contribution is to formalize the remote
gas sensing coverage problem for mobile robotics. Our second contribution is to present a two-step
approximate solution to the aforementioned problem which relies on a novel convex optimization-based
approximation. Here, we test our solution on large-scale scenarios, to demonstrate its applicability in
real-world situations.

The paper is organized as follows: After presenting an overview of relevant work (Section 2), we
define and formalize the gas detection coverage problem and how to obtain optimum solutions in
Sections 3 and 4. We then present two alternative approaches to decompose the problem, their advantages
and drawbacks (Section 5). A first experimental evaluation is detailed in Section 6, where the solution
quality and the scalability of the different approaches is discussed. To overcome the scalability issues
common to all previous approaches, we present in Section 7 a novel solution which uses re-weighted
convex relaxation. We then evaluate this novel solution in Section 8 and conclude in Section 9.
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2. Related Work

Stationary networks of gas sensors have been used over the years in different environments and in a
variety of applications, such as pollution monitoring [13] and the measurement of the concentration of
methane in the atmosphere [14]. The sensors commonly employed in such networks are in situ [15],
which means that they have to come in direct contact with the gas they need to sense. This is obviously
a strong limitation: the choice of their positioning is not trivial, new deployments could be necessary
whenever the environment changes and the sensors must be re-calibrated and maintained over time.
For specific gases, e.g., methane, other viable sensing technologies are available, such as infrared
thermography [16], whose results, however, are highly affected by weather conditions, by the nature
of the ground surface and by the distance between sensors and sources.

In recent years, many research groups have started to focus on mobile robot olfaction, a solution
for gas sensing which would implicitly guarantee more flexibility than sensor networks, as it combines
gas sensors with mobile platforms [17,18]. Mobile robots equipped with in situ gas sensors have been
successfully used for mapping gas distributions [19,20] and leak detection [9,10]. A limitation of current
approaches is that the robots generally move between pre-defined positions, or reactively follow gas
plumes [21]. Finding good sensing positions for a mobile robot is still an open problem and it is closely
related to the sensor placement problem for static networks.

In our work, we do not use in situ sensors, but we equip our robot with a TDLAS sensor, which
can provide remote measurements up to a well defined sensing range [20]. A sensing action, that
is, scanning an area of the environment with our sensor, is expensive, both in terms of time and of
battery consumption. Similar costs should be accounted for whenever the robot moves from one sensing
position to the next. Since here we are interested in detecting if a specific gas is at all present in a
known environment, we need to scan the whole environment. Therefore, if we want to find battery- and
time-efficient exploration strategies, we must take into account and minimize the costs associated both
to movement and to sensing.

Neglecting the cost associated to the movements of the robot, the problem we would need to solve
could be reduced to an Art Gallery Problem [22] or to a View Planning Problem [23]. The art gallery
problem is NP-hard (non-deterministic polynomial-time hard [24]) in its most common variants and
view planning is isomorphic to the Set Covering Problem [25], a well known NP-complete problem.
This family of problems has been extensively studied over the past decades [26,27], but the algorithms
proposed that solve the problems optimally are effective under restricted assumptions, such as not
considering occlusions in the field of view of the sensors [28], or work only when the number of
possible sensing configurations is relatively small [29,30]. There exist, however, efficient algorithms
for calculating approximated solutions [31] for problems with a large number of possible sensing
configurations. The solutions described above, however, present two major drawbacks in our context:
first, they are mostly concerned with camera placement problems, which means that they rarely consider
limited field of view; second, they inherently do not consider the cost of moving from one sensor position
to the next. On the other hand, assuming known sensing positions, we would still need to solve a (Metric)
Traveling Salesman Problem (TSP), that is, we should find the shortest tour that connects all the sensing
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positions. This is a well-known NP-hard problem, but it is possible to optimally solve very large TSP
instances, with thousands of locations [32].

Solving an art gallery problem first, and then calculating the shortest tour among the selected sensing
positions by solving a TSP is an approach which has proven to be effective in many applications [33–36].
However, all the algorithms proposed rely on simplifying assumptions on the field of view of the sensors
(e.g., 360 ◦ or unrestricted). More important still, the solution of an art gallery problem for a large number
of candidate sensing positions with overlapping fields of view remains computationally challenging. By
contrast, we use re-weighted convex relaxation to handle a high number of candidate sensing positions.

Our problem can also be related to planning for mobile robotics inspection, although in this case
sensing cost is usually neglected. For instance, in [37,38], the authors present an inspection strategy for
submerged ship hull with an autonomous underwater vehicle. They address the problem by developing
a probabilistic planner to maximize uncertainty reduction while providing coverage of the mesh surface.
In our case, we cannot ignore the cost of sensing actions and we aim at guaranteeing that the whole
environment is observed. The Generalized Covering Salesman Problem [39] can explicitly address this
last issue, as a solution of one of its instances is a tour which respects given covering constraints, but still
sensing costs are not taken into accounts. A similar problem is solved in [40], where an approach based
on mixed integer linear programming is used for finding a surveillance route for a mobile camera. The
optimal solution approach we present here is highly reminiscent of the work of Tamioka et al. [40] and
could be considered an extension of their algorithm: in our case, we can solve larger instances, while
also considering costs associated with sensing actions.

A combination of the View Planning Problem and the Metric TSP, the Traveling View Planning
Problem has been defined and analyzed in [41,42]. It refers to finding a sequence of sensing actions
while minimizing the overall cost. Here, the authors use an approximation method to find a bounded
suboptimal solution which considers both traveling time and sensing time with respect to the available
candidate sensing positions. However, it is not yet clear how to optimally select the candidate sensing
positions and the approach presented in these papers does not scale well (in terms of computation time)
when the size of the environment grows (in terms candidate sensing positions).

3. Problem Definition

In this article, we address the problem of detecting the presence of a specific gas in large environments,
both indoor and outdoor. We assume a static environment with no major changes in the average
concentration of the target gas due to wind or by other means. This assumption does not imply a major
limitation to the gas detection problem, since it is possible to repeat an inspection tour over and over
again, in case things are changing. However, these problems need to be addressed for subsequent tasks,
like gas source localization and gas distribution mapping as discussed in Section 9.

Furthermore, we assume that the gas, if present, can be detected near ground level. This assumption
applies to many real world applications: for instance, methane leaks in a landfill necessarily occur close
to the ground. We assume that the presence of the gas in question can be observed by means of a ranged
sensor, such as TDLAS. An example of such sensors is the Remote Methane Leak Detector, which can
measure the integral concentration of methane over a reflected laser beam (see Figure 1a). The sensor



Sensors 2015, 15 6849

emits light in the near-infrared (NIR) band and analyses the spectrum of the reflection. Each gas has a
unique absorption spectrum and the sensor is tuned to the target gas [43]. Hence, the TDLAS technology
is very selective and only responds to its target gas even in the presence of multiple airborne substances.
Thus, we can safely neglect the complex issue of dealing with gas mixtures. If the utilized sensor
is only partially selective, e.g., like the often used metal oxide (MOX) sensors, it would be required to
introduce an additional gas discrimination step. Different studies dealing with this particular issue are for
example [44–46].

(a) (b)

1200 ppm × m

Background
concentration:
200 ppm × m

Gas source
concentration:
1000 ppm × m

0 1 2 3 4 5 m

Figure 1. (a) the Remote Methane Leak Detector is a TDLAS sensor which can report
the integral concentration of methane along its laser beam (parts per million × meter);
(b) Gasbot, a robotic platform for gas detection. Gasbot is a research platform based
on a Husky A200. It is specially equipped with a methane sensitive remote sensor
(RMLD) mounted in conjunction with a laser scanner on a pan-tilt unit, a laser scanner
for self-localization and mapping, an anemometer and a thermal camera.

Note that methane is not the only gas that can be detected using this technology. Finally, we assume
that the ranged sensor is mounted on a mobile platform, such as the one in Figure 1b, so that its beam
can be directed towards the ground at a specific range from the robot and that the sensor can be rotated
around its vertical axis.

Given a map of the environment in which we need to assess the presence of a specific gas, we divide
it into a Cartesian grid, thus obtaining a set A of n cells of identical size: A = {a1, · · · , an}. The set of
all cells A is partitioned into subsets O and S, where O includes all the cells which contain an obstacle
and therefore (1) are not traversable by the robot; and (2) can stop the beam of the gas sensor. S includes
all the cells which do not contain obstacles and are therefore traversable by the robot. A solution to the
detection problem is an obstacle free closed path, or tour, within the map that the robot can traverse and
a set of sensing actions along the tour which enables the robot to sense every cell in S.

We limit the movement of the robot between a finite set of poses P . Each pj ∈ P is defined by
a two-tuple (aj, θj), where aj ∈ S and θj ∈ Θ. Θ is a finite set of allowed orientations, equally
spaced between [0, 2π). Note that the robot position within a cell corresponds to its center, regardless
of the orientation. Here, we assume that the movements of the robot are limited to forward motions and
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rotations. Thus, for Θ = {0, π
2
, π, 3

2
π}, the movements of the robot can be captured by a directed graph

like the one represented in Figure 2—backward motions and a higher cardinality of Θ could be obviously
represented in a similar graph. In our problem definition, we use time as measure of cost. Given the times
tr, representing the time necessary to rotate 2π/|Θ|, and tc, the cost associated to moving to the adjacent
cell, the movement time tmpi→pj from pi to pj can be easily calculated by finding the shortest path on the
movement graph, where each rotation edge has a weight of tr and every edge leading to a different cell
has a weight of tc. With this decomposition, and with a knowledge of the terrain in each cell, it would
be straightforward to express the cost of movement in terms of battery consumption.

Figure 2. The graph captures the allowed movements of the robot on a grid map when
Θ = {0, π

2
, π, 3

2
π} and only forward movements are allowed. Small circles indicate the

poses where the robot can stop (the internal arrow indicates the orientation of the robot) and
the directed edges its allowed movements. Note that in the figure the poses do not correspond
to the centers of the cells, but this is only for clarity reasons.

We can now define a candidate sensing configuration on the movement graph described above. A
candidate sensing configuration corresponds to a possible sensing action of the robot in a specific pose
p, that is, it represents the possibility of performing a sensing action over a well defined area. Formally:

Definition 1. A candidate sensing configuration ci is defined as a tuple (pi, φi, ri), where pi ∈ P is the
robot’s pose, φi is the central angle of a circular sector and ri its radius.

Hence, a candidate sensing configuration ci would allow the robot positioned in pi to scan a circular
sector of central angle φi and radius ri, as shown in Figure 3a. Because of obstructions, not all the cells
in the circular sector would be necessarily observable. Also, we need to define which portion of a cell
should be swept by the laser beam to consider the cell itself as observed. Let us define CP as the set
of all candidate configurations defined over a set of robot poses P . We can then define the visibility
function vP : CP 7→ 2Z2 , such that vP(c) denotes the set of cells ∈ S visible from c. In the remainder
of this paper, we define vP so that a cell k is considered visible to a sensing configuration ci if the line
segment connecting the centers of ci and k is in the circular sector of φi and ri, and does not intersect
any occupied cell, as shown in the example in Figure 3b.

The cost associated to perform a sensing action in a candidate sensing configuration c is tsc and it
depends on the central angle φ associated with c.
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Figure 3. (a) a candidate sensing configuration c allows the robot to scan a circular sector of
central angle φ and radius r; (b) vP(c) is the visibility function which defines which are the
cell that are observable from candidate sensing configuration c.

4. Finding an Optimal Solution

As defined above, given a discretized map of the environment, the sets of occupied and unoccupied
cells O and S (such that A = O ∪ S), the set of allowed poses P for the robot, the set of candidate
sensing configurations CP defined over P , the visibility function vP(c) and the cost functions tmpi→pj
(movement time from pi to pj , calculated as the shortest path on the movement graph) and tsc (sensing
time of candidate configuration c), a solution to the detection problem is an obstacle free tour defined as
an ordered, finite set of sensing configurations π = {c1, · · · , ck} such that

⋃
ci∈π vP(ci) = S. The cost

associated to a solution π is equal to the sum of the traveling costs (including the traveling cost to go
from the last sensing configuration back to the first one) and sensing costs:

cost(π) =
k−1∑
i=1

tmpi→pi+1
+ tmpk→p1 +

∑
ci∈π

tsci (1)

Given the set Π of all valid solutions to a given problem instance, an optimal solution πopt is the one
with minimum cost:

πopt = argmin
πi∈Π

cost(πi)

4.1. Problem Formulation

Practically, we can calculate optimal solutions for the problem defined above by casting it as an
optimization problem. Here, we use a formulation inspired by the work of Tomioka et al. [40]. More
specifically, we define flow variables and label variables over the movement graph of the robot. Let us
consider a problem instance with a set of candidate sensing configurations CP . Flow variables are binary
variables associated with all pairs of candidate sensing configurations CP . A solution π = {c1, · · · , ck}
to a problem instance represents a closed walk on the selected candidate sensing configurations. We
can then refer to the configurations in a solution π by means of their indexes 1, · · · , k and, as we are
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considering a tour, we can define the configuration of index k + 1 = 1, that is, ck+1 = c1 in π. Given a
solution π, flow variable fci,cj represents whether ci and cj are consecutively traversed in π:

∀ci ∈ CP ,∀cj ∈ CP , ci 6= cj fci,cj =

1 if ci = ch ∈ π, cj = ch+1 ∈ π.

0 otherwise.
(2)

Label variables lci,cj are non-negative, real variables. They are assigned to the shortest path on
the movement graph between any two candidate sensing configurations CP . As detailed in [40],
label variables enforce flow conservation constraints, that is, constraints which guarantee that a valid
solution to a problem instance is composed by closed walks in the movement graph. Given a solution
π = {c1, · · · , ck}, label variables are assigned in such a way that, given ci ∈ π, the label variable
assigned to the (shortest) path between the predecessor in π of ci has a lower value than the one assigned
to the (shortest) path between ci and its successor in π. This rule has a single exception in the special
configuration, or special vertex, which is unique for each solution π. All other label variables are set to
0. Formally:

∀ci ∈ CP


lch,ci < lci,cj if ci = cg ∈ π, ch = cg−1 ∈ π, cj = cg+1 ∈ π

lch,ci > lci,cj if ci = cg ∈ π, ch = cg−1 ∈ π, cj = cg+1 ∈ π, ci special vertex of π

lch,ci = lci,cj = 0 otherwise
(3)

Finally, special vertex variables vci are binary variables defined over every candidate sensing
configuration in CP , where vci = 1 if configuration ci is the unique special vertex in a given solution,
vci = 0 otherwise. An example of a solution π where the shortest paths between configurations are
annotated with label variables is shown in Figure 4.

l = 1

l = 2

l = 3

l = 4

Figure 4. An example of a solution to a problem instance. Configurations in the solution are
represented by thick circles and the shortest paths between them by thick lines. Each path
between two consecutive candidate sensing configurations in the solution is annotated with
a label variable l, and the marked configuration corresponds to the special vertex.

We can find an optimal solution to a problem instance by casting it as a mixed integer linear
programming problem, which we define as described in Equation (4). Given the set of candidate sensing
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configurations CP , flow and label variables are represented in matrices F and L, both of size |CP |× |CP |,
where F [i, j] and L[i, j] represent flow variable fci,cj and label variable lci,cj , respectively. Please note
that |A| denotes the cardinality of A. Special vertex vector S is a boolean vector of size |CP | with each
element corresponding to a configuration in CP .

minimize 1T
(
F ◦ Tm

)
1 + 1T

(
FTs

)
(4a)

subject to

(V F )1 � 1 (4b)

F1 = (1TF )T (4c)

F � L � uF (4d)

− uS �
((
L1− (1TL)T

)
− F1

)
� −S (4e)

1TS = 1 (4f)

The objective function (Equation (4a)) minimizes total cost, expressed as the sum of traveling cost and
sensing cost. In this function, matrix Tm of size |CP |×|CP | captures the traveling costs (Tm[i, j] = tmpi→pj )
and Ts is a column vector of size |CP | represents the sensing cost associated to each candidate sensing
configuration (Ts[i] = tsci).

The optimization problem is subject to the following constraints:

• Coverage constraints (Equation (4b)) require that each cell ai ∈ S is visible from at least one of
the candidate sensing configurations selected in the solution π. Given the problem definition, we
can calculate V as a binary matrix of size n× |CP |, where n is the number of cells in the problem.
In particular:

V [a, c] =

1 if a ∈ vP(c)

0 otherwise

• Flow conservation constraints (Equation (4c)) ensure that the solution will consist of one or more
closed paths among the selected candidate sensing configurations.
• Traveling route constraints (Equations (4d) and (4e)) ensure that each candidate sensing

configuration is visited only once in a solution, and, therefore, a solution consists of a single
closed path. u is an upper limit constant for label variables.
• Special vertex constraint (Equation (4f)) restricts the number of special vertices to one and only

one for each solution.

To reduce the size of the problem, without affecting the quality of the solution, it is possible to
identify and disregard all those candidate sensing configurations which would not, in any case, belong to
an optimal solution. For instance, all those sensing configurations ci that do not observe any other cells
vP(ci) = ∅ (for instance, the ones placed in the cells at the border of the map) can be safely disregarded.
Figure 5a is an example test map whose optimal solution is given in Figure 5b.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) a simple test map, where obstructed cells are represented in black and
traversable ones in white. Candidate sensing configurations are defined over poses in the cells
such that Θ = {0, π

2
, π, 3

2
π} and have identical φ and r (r = 2 cells, φ = π

2
). In this example

setup, the movement from one cell to the next requires 1 s, the rotation of π
2

requires 0.5 s,
and a sensing action takes 4 s; (b) the optimal solution, when traveling and sensing costs are
considered at the same time. Here, the curved arrows represent the minimum distance from
a sensing configuration to the next on the underlying graph. In this case, the total exploration
time is 52.5 s (16.5 s for traveling and 36 s for sensing). (c,d): Here, traveling time is
minimized first (see Section 5.1). (c) the minimum cost closed path from which all cells can
be observed is calculated; (d) and then the minimum set of sensing configurations is selected,
yielding an overall exploration time of 66.5 s. (e,f): Here, sensing time is minimized first
(see Section 5.2). (e) the set of minimum cost sensing configurations is selected from which
all cells are observable; (f) and then connecting them with the shortest closed path. This
approach yields to an overall exploration time of 55 s.
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Solving the mixed integer linear programming problem as described above yields an optimal solution
to a given problem instance, with respect to the total operation time of the robot (traveling and sensing
time). However, intuitively speaking, this corresponds to solving a combination of a Watchman Route
Problem (that is, the problem of computing the shortest route to guard a known area) and an Art Gallery
Problem (that is, selecting the minimum number of observation points to completely observe a known
area). Therefore, the combined problem is NP-hard and, as shown in Section 6, this approach becomes
practically unfeasible as the number of candidate sensing configurations grows.

5. Decomposing the Problem

Solving the problem so that the overall exploration time is minimized is of no practical applicability.
However, a viable solution would be to sacrifice optimality by solving the problem in a two-step
approach. This can be done in two different ways: (1) minimizing the overall traveling time (while
guaranteeing complete coverage) and then selecting the sensing configurations along the route for
minimum sensing time; or, (2) minimizing the sensing time, by selecting the sensing configurations
necessary to cover the map and then finding the shortest path to connect them. In this section, we
formally define such approaches.

5.1. Minimizing the Traveling Time

The core idea behind this decoupled approach is to find a minimum cost closed path for the robot
which connects adjacent candidate sensing configurations. This path is subject to the requirement that
all cells in S are visible by at least one candidate sensing configuration included in the path. This first
step roughly corresponds to solving a Watchman Route Problem. The second step of this approach
consists of selecting the minimum cost sensing configurations which would allow the coverage of the
whole environment among the ones included in the path.

Intuitively, this approach should yield good results whenever the time required for sensing actions is
significantly less than the one for movement. Figure 5c,d show an example of this two phase approach,
where first a tour is calculated, such that it connects contiguous candidate sensing configurations from
which the whole environment is observable (Figure 5c). Then, in the second phase, the algorithm selects
the set of minimum cost candidate sensing configurations on the path necessary to observe the whole
environment (Figure 5d). The robot will follow the tour as generated in the first phase, but will only stop
for sensing according on those sensing configurations selected in the second phase.

We use the mixed integer linear programming problem as defined by Tomioka et al. [40] to find a
traveling path that provides full coverage without considering sensing cost. In order to then select the
set of minimum cost candidate sensing configurations, we solve a sensor placement problem where the
only variables considered are the candidate sensing configurations included in the traveling route. The
formulation we use to solve the sensor placement problem is presented in the next section.
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5.2. Minimizing the Sensing Time

The core idea behind this approach is dual with respect to the one presented above and consists in first
selecting a set of minimum cost candidate sensing configurations from which all cells in S are visible,
and then solving a traveling salesman problem over them to find the shortest tour. This approach should
therefore yield to better solutions than the previous one whenever the time necessary to perform sensing
actions is much higher compared to the time required for the robot to move.

Figure 5e,f show how this approach would work compared to the ones described above: First the set
of minimum cost candidate sensing configurations is selected (Figure 5e), and then a shortest closed path
is calculated so that the robot will visit all the configurations (Figure 5f).

We find the set of minimum cost candidate sensing configurations by solving the following integer
linear programming problem:

minimize
C

CTTs (5a)

subject to

V C � 1 (5b)

C ∈ {0, 1} (5c)

where C is a column vector of cardinality |CP | whose elements are binary variables representing if a
given candidate sensing configuration is selected or not. Equation (5b) captures the necessary coverage
constraints. For calculating the minimum traveling route, we use the Repetitive Nearest-Neighbor
Algorithm [47] for calculating a Hamiltonian cycle.

6. Experimental Evaluation

We present an evaluation of the three approaches described above: the one in which traveling time
and sensing time are minimized at the same time (Section 4), and the decoupled ones, in which either
traveling time or sensing time are minimized first (Section 5). The evaluation is conducted in sets of
randomly generated maps of varying size, whose cells have a fixed side length of 1 m. Candidate sensing
configurations are defined over poses in the cells such that Θ = {0, π

2
, π, 3

2
π} and have identical φ and r

(r = 15 meters, φ = π
2
). Sensing and movement times are set based on our previous experience with our

mobile platform [20]: Each sensing action takes 4 s, movement from one cell to the adjacent towards
which the robot is oriented requires 1 s, while a rotation of the mobile platform of π

2
requires 0.5 s.

For the first part of the experimental evaluation, we prepared 6 sets of 10 randomly generated maps
and one truncated set. Each set contains maps of identical size, starting from small 4 × 4 cell maps, up
to 9 × 9 cell maps of which 10% cells contain an obstacle. For 3 × 3 cells there are only three unique
maps with a single occupied cell (approx. 10%), all other maps are just rotations. Thereto, the results
for 3 × 3 maps are averaged using the unique 3 maps only. Furthermore the maps are checked, whether
the observable area is a single connected component. This means, there are no enclosed spaces, which
cannot be reached by the robot.

The evaluation focuses on two aspects: solution quality (in terms of overall exploration time) and
time required to compute the solutions. However, finding the optimal solution for maps as small as



Sensors 2015, 15 6857

6 × 6 becomes already an unpractical task, as the computation of 12 h on an Intel i7 Quad Core 2.60 GHz
computer with 8 GB RAM was not enough to find the solution. The aggregated results for the comparison
of all three methods up to maps of size 5 × 5 are presented in Figure 6. Here, Opt indicates the optimal
solution, DT the decoupled approach in which traveling time is minimized first, and DS the decoupled
approach in which sensing time is minimized first. In particular, Figure 6a illustrates the aggregate
quality of the solutions provided by the two decoupled approaches and the optimal one. In this limited
set of examples, the disjoint approach where traveling time is minimized first shows better solution
quality whenever it is possible to discard high number of redundant sensing configurations along the
traveling route, whose field of view overlap. On the other hand, the disjoint approach where sensing
time is minimized first shows better solution quality whenever the traveling path along the sensing
configurations in the solution is small. When we consider the time necessary to compute a solution,
the disjoint approach where the sensing times are minimized first is the most efficient, while the optimal
solution becomes soon too expensive to be of any practical use (Figure 6b).
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Figure 6. Comparison of all approaches, optimal and disjoint (Opt, DT , DS), on three sets
of maps. Each set contains maps of varying size, from 3× 3 to 5× 5. The solid bars indicate
the average values over the 3 maps for 3 × 3 and 10 maps for the rest, and error bars show
the minimum and maximum values observed during the trial. (a) shows the solution quality;
and (b) shows the computation time taken by the all three approaches on a logarithmic scale.

We tested the decoupled approaches on the remaining 4 sets of maps (of size 6 × 6 to 9 × 9), and the
results are presented in Figure 7. Since we could not calculate the optimal solutions for those runs, we
directly compare the quality of the solutions found by the two disjoint approaches. In this second set of
tests, DT , in average, generates solutions of slightly better quality (Figure 7a), that is, solutions where
the overall exploration times are lower. On the other hand, the computation times for this decoupled
approach grow quickly as the size of the maps increase, as it is clearly shown in Figure 7b. It is very
important to note that 9 × 9 maps are still not large enough for representing real-world problems, and
that DT requires a time in the order of hours to solve such simple instances. On the other hand, DS

generates solutions for the same instances in less than two seconds, with a reasonable loss of quality (in
this set of experimental runs, between 0.69% and 13.81% to the DT ).
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Figure 7. Comparison of two disjoint approaches up to maps of size 9 × 9. Notations are
similar as in the previous figure, i.e., bars indicate the average values over the 3 maps for
3 × 3 and 10 maps for the rest, and error bars indicate the minimum and maximum values
observed during the trial. (a) shows the solution quality of two disjoint approaches (DT ,DS);
and (b) shows the average computation time on a logarithmic scale for both approaches.

We continued our tests focusing onDS up to maps of size 26× 26 when also this decoupled approach
begins to require computation times in the order of hours. The bottleneck of the computation lies in
finding a set of minimum cost candidate sensing configurations which can cover the whole map. This
is a Sensor Placement Problem (SPP), which has been studied extensively in the past decades [27]. In
the following, we propose a new convex relaxation method which allows us to drastically curtail the
computation times.

7. A New Re-Weighted Convex Relaxation for Solving Sensor Placement Problems

To solve the problem of finding the set of sensing configurations that covers the whole environment
at minimum cost (as we do in the decoupled approach described in Section 5.2) for instances with a
high number of variables, we propose an iterative convex relaxation method which introduces intense
sparsity, thus drastically reducing the number of variables to consider. The reduced problem can then be
cast into an integer linear programming problem as formulated in Equation (5).

We call this algorithm SPP with Re-weighted Convex Relaxation, or in short conv-SPP. The SPP
described in Equation (5) is NP-hard and corresponds to `0-minimization whose solutions are binary
variables, i.e., sensing configurations. The combinatorial search soon becomes impracticable as the
size of the problem grows. It is because `0-minimization penalizes non-zero elements identical and the
overall solution cost is based on the cardinality of the set. `1-minimization on the other hand is much
faster than `0-minimization, and therefore, can handle relatively high number of variables. However, it
penalizes each element proportional to the magnitude and thus the solution is no longer a binary vector
(see Figure 8).
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Figure 8. The concave loss function flog,ε(x) approximates better the `0 sparsity count f0(x)

than by the traditional convex `1 relaxation f1(x) [48].

Candès et al. [48] proposed a re-weighted (iterative) formulation of `1-minimization to handle large
instances of a discrete problem in continuous domains. The approach effectively uses a concave loss
function (flog,ε(x)), which is much closer to the penalty function of `0-minimization (see f0(x) in
Figure 8). The essential part of the approach is to solve an overall non-convex optimization problem
through iterations of convex optimization. To sparsify the solution vector along the curve flog,ε(x) in
Figure 8, a weight vector is introduced which evolves iteratively. The resultant vector is much sparsifer
than the result of simple `1-minimization with a linear penalty function. Afterwards, the reduced set of
non-zero elements forms a reduced search space in which the combinatorial problem in its integer linear
formulation (Equation (5)) can be solved in a feasible time.

Formally, our conv-SPP formulation, inspired by [48] is:

minimize
C

(W ◦ C)TTs (6a)

subject to

V C � 1 (6b)

0 � C � 1 (6c)

W is a weight vector of cardinality |CP |. At the beginning, all the elements of W are equal to 1, i.e.,
W = 1. In subsequent iterations, the weights are updated according to Equation (7).

W(i) =
ε

C(i) + ε
i = 1, ..., |W | (7)

The parameter ε is strictly positive and determines the rate of convergence. Smaller values of ε allow
for faster convergence (see Figure 9a) but at an increased risk of getting trapped in a local-minimum.

A local-minimum may occur whenever two or more variables have identical values and none of them
is converging to the maximum or minimum limit. This could happen, for example, when two or more
candidate sensing configurations have overlapping field of view and share a common subset of coverage.
In Figure 10, c1 and c2 are two sensing configurations facing each other. The set O contains elements
(cells) under the overlapping field of view, i.e. O ⊂ vP(c1) and O ⊂ vP(c2). If vP(c1)\O and vP(c2)\O
are partially observed by another selected sensing configuration(s) in the solution. The configurations c1

and c2 will hold half of the magnitude to minimize the overall solution cost in continuous domain, and
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any further iteration will not improve the situation, since the algorithm can not decide which of the two
sensing configurations it prefers. This problem has then to be resolved in the subsequent combinatorial
optimization step.
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Figure 9. (a) Smaller value of ε defines steeper penalty functions; (b) The exponential decay
of ε during the iterative procedure.

c1 c2

Figure 10. The sensing configurations c1 and c2 are trapped in a local minimum. The cells
under the overlapping field of view are indicated in gray. Assuming that the remaining visible
cells of both configurations, indicated in white under the coverage window, are partially
(50%) observed by another configuration(s) in the solution. The c1 and c2 are set to 0.5 in
the solution vector and any subsequent iteration does not improve the situation.

In our implementation we adapt the value of ε in each step i according to Equation (8), so that it sets
relatively high value at beginning to avoid a local minimum in early iterations to explore globally better
solution, and then deceases to exponential decay with each iteration to speed up the convergence (see
Figure 9b).

ε(i) =
( 1

e1 − 1

)1+
(

(i−1)×10−1
)

(8)

The procedure stops if no improvement in sparsity for the last n (n = 5 in our implementation)
iterations is observed, or if a predefined number of iterations (150 in our case) is reached. We use
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`0
τ sparsity measure with τ equals 10−2. In addition, we stop if the number of non-zero elements is

low enough so that the combinatorial search is feasible (the value was empirically set to 80). Finally,
the reduced vector of candidate sensing configurations in C is solved with the combinatorial method
according to Equation (5). The overall procedure is summarized in Algorithm 1.

Algorithm 1 conv-SPP
1: Set W = 1;
2: Solve Equation (6);
3: Update W as in Equation (7) and ε as in Equation (8);
4: Go back to step 2, if none of the stopping criteria is true;
5: Discard zero elements of C;
6: Solve Equation (5) with updated C;

In addition to the solution itself, our algorithm provides an interval in which the optimal solution for
the sensing time minimization lies. The upper bound for this interval is the found solution of Algorithm 1,
since the optimal solution is either equal to our solution or faster. The lower bound is obtained by
considering the continuous problem instead of the combinatorial one. Simple `1-minimization with linear
penalty function f1(x); which is the first iteration of step 2 in Algorithm 1, will provide a solution, which
is always less than or equal to the optimal solution of combinatorial search in terms of sensing time.

The limits can be used to assess the quality of the solution when the optimal solution is not available.
However, in practice, the optimal sensing time is very close to the upper bound of conv-SPP, as shown
in the following section (Section 8).

8. Evaluation of the New Method

We evaluated conv-SPP on sets of randomly generated grid maps of varying size, from 3 × 3 to
90 × 90 cells. In each map, 10% of the cells are occupied by obstacles, and we assume that cells have an
identical side length of 1 m. Each set is composed by 10 different maps of identical size, with the only
exception of the set of maps of size 3 × 3, where, considering all symmetries, only 3 unique instances
are possible.

In each test run, the candidate sensing configurations are defined such that Θ = {0, π
2
, π, 3

2
π}, and φ

and r are fixed. Therefore, the sensing time for each candidate sensing configuration is set to 1 and the
algorithm minimizes the number of sensing configurations. To evaluate the dependency of the algorithm
with respect to the sensing parameters, we consider two different sensing radii (r = {15, 30} meters)
and two central angles (φ = {π

2
, π}).

To solve the optimization problem, we used the Gurobi Solver [49], with CVX, a package for
specifying and solving convex programs [50,51] in Matlab. For these runs, we used a computer with
an Intel i7 Quad Core 2.60 GHz and 8 GB RAM.

We compared the optimal solutions of the sensor placement problem instances with the solutions
provided by conv-SPP on maps up to the size of 26 × 26 cells. Larger maps required computation times
in the order of hours to solve a single instance optimally.
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Figure 11. Comparison of the quality of the solutions obtained with conv-SPP and the
combinatorial method on randomly generated maps. Sensing parameters are fixed to
Θ = {0, π

2
, π, 3

2
π}, r = {15, 30}, and φ = {π, π/2}. The optimal solutions (thick black

lines) are close to the solutions provided by conv-SPP (thick green lines) with respect to the
number of sensing configurations selected. The lower bounds of the green intervals represent
the result of a single `1-minimization step.

The results for a single map randomly chosen from each set are shown in Figure 11. The thick
black lines represent the number of sensing configurations selected in the optimal solutions, while the
upper bounds of the green-colored intervals represent the number of sensing configurations selected
by conv-SPP. The lower bounds of the intervals represent the number of configurations after the first
iteration of the `1-minimization. The inset graphs show the results up to maps of size 26 × 26, for
which the optimal solutions are available. conv-SPP obtains results which are very close to the optimal
solutions in terms of the number of sensing configurations selected, as our method does not add more
than two sensing configurations for any instance. Figure 12 shows the average difference of solution
quality, which, for the available results, is always less than one sensing configuration.

Figure 13 shows the aggregated computation times for both approaches: The thick lines represent
the average computation times for each set of maps, while the colored intervals are bounded by the
minimum and maximum times it took to solve all the instances in one set. The inset graphs show the
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computation times on a logarithmic scale: As it can be seen, the time required to calculate the optimal
solution of the problem increases steeply with the size of the maps considered. It is worth noticing that
the calculation of the optimal solutions for maps up to 13× 13 cells takes less time than when conv-SPP
is employed. This is because the number of variables is small and the combinatorial method can find a
solution quickly. On the other hand, conv-SPP runs at least one iteration of convex relaxation and then
performs combinatorial optimization for the remaining variables. Therefore, the iterations of convex
relaxation simply require additional time. We stopped computing the optimal solutions for a set of maps
whenever at least one instance of the set required more than one hour to be solved optimally. By contrast,
our method could solve all the instances in less than 800 s.
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Figure 12. The solution quality gap between conv-SPP and combinatorial optimization.
(a) shows the average difference for all possible combinations of the sensing parameters
r = {15, 30} and φ = {π, π/2}; (b) shows the average difference divided by the number of
cells in the maps.

Within the same set of maps of identical size, different instances can require very different
computation times for computing the optimal solution. Conversely, this is not the case when using
conv-SPP. This is because few changes in the map layout can completely change the discrete
optimization problem, while, on the other hand, the continuous problem is much less affected, and in
conv-SPP the combinatorial solver is used only on a reduced set of variables. Hence, another advantage
of conv-SPP is that the computation time is largely independent of the particular problem instance within
a given problem size.

We also used the Freiburg University campus map [54] to demonstrate our algorithm on a real
map. We discretized the map into a Cartesian grid where each cell covers 1 m2. The map size
is 120 × 136 cells, 6113 of which are unoccupied (see Figure 14). For the sensing parameters
Θ = {0, π

2
, π, 3

2
π}, r = 15 m, and φ = π, our algorithm generated a solution of 68 sensing configurations

in 90.87 s with a lower bound of 53.03 configurations. This scenario is evaluated in based on real map
data (but without actual gas sources) to verify that our approach is able to efficiently cover a large real
environment. In our ongoing work, we are performing actual gas detection tasks using the described
algorithm on a robot in different environments (see Figure 15a for an example). Initial results are quite
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promising, as shown in Figure 15b. For more details on the experiments and the evaluation, we refer the
reader to our forthcoming publication [52].
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Figure 13. Computation times to calculate the optimal solutions and to solve the instances
with conv-SPP. The thick lines represent the average computation times for each set of
maps, while the colored intervals are bounded by the minimum and maximum times it
took to solve all the instances in one set. The inset graphs show the computation times
on a logarithmic scale.
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Figure 14. The exploration plan generated for the map of the Freiburg University campus
(obstacles are represented in gray). The positions of the sensing configurations are
represented with blue dots, blue arrows indicate their orientation and dashed-lines their field
of view. A closed path through the configurations is shown in red.

(a) (b)

Figure 15. (a) an indoor setting for the gas detection task; (b) graphical results: the gas
sources are indicated by red dots, the planned sensing configuration by truncated cones in
gray, and the small number associated to each configuration indicates the order in which they
are visited. The configurations plotted in red indicate the positive readings and the actual area
they cover.
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9. Conclusions

In this paper, we discussed the problem of gas detection in large environments with a mobile robot
equipped with a remote gas sensor. Generally speaking, given an environment where a specific gas may
be present in detectable concentrations, a solution to the problem would be a cost-effective exploration
plan for the robot so that it could ascertain whether this is the case or not. Here, we consider cost to be
directly proportional to the time required to complete the exploration plan.

We provided a formal definition of the problem and suggested several possible methods for solving
it. The main contribution of this paper is conv-SPP, an algorithm for quickly finding an exploration
plan which guarantees a complete coverage of the environment. Our algorithm leverages a novel method
based on convex relaxation that drastically reduces the number of variables and it is therefore effective
for solving large problem instances. Furthermore, conv-SPP offers guarantees on the quality of the
solution, as it is always possible to asses the theoretical maximum distance of the solution provided to
the optimal one. In practice, we show that in all the cases for which we could experimentally solve the
problems optimally, our algorithm always generated results very close to the optimal ones.

We performed extensive validation of our approach in simulation, both on randomly generated maps
of various sizes and on the map of the Freiburg University campus. We also compared our methods with
other approaches, both in terms of solution quality and of computational requirements. In our future
work, we want to test our algorithm in real world scenarios with a mobile platform. We also intend to
extend our problem definition to take further advantage of remote sensing and include non-traversable
but observable cells.

In this article, we are addressing the planning problem for gas detection only. For addressing this
problem a pregenerated plan, like the approach we presented here, is sufficient. Future work will
address how to deal with actual gas detections. Possible questions of interest include the problem
of gas source localization [17,53], which often requires an active strategy to follow the trail to the
source. Robot assisted gas tomography for gas distribution mapping with remote sensors [19,46]
requires the consideration of different sensing positions in order to meet constraints regarding the
overlap of the sensing fields and intersection angles that are necessary to reconstruct the gas distribution.
Optimizing the sensing geometry for tomographic measurements [55] will be one focus of our future
work. Extending the presented work to multi-robot scenarios, in which a fleet of robots cooperatively
monitors a target area [56–60] is another interesting direction for future work.
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47. Kizilateş, G.; Nuriyeva, F. On the Nearest Neighbor Algorithms for the Traveling Salesman
Problem. In Advances in Computational Science, Engineering and Information Technology;
Nagamalai, D.; Kumar, A.; Annamalai, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2013; Volume 225, pp. 111–118.

48. Candès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted `1 Minimization.
J. Fourier Anal. Appl. 2008, 14, 877–905.

49. Gurobi Optimizer, Version 5.6. Available online: http://www.gurobi.com (accessed on
10 December 2014).

50. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1.
Available online: http://cvxr.com/cvx (accessed on 10 December 2014).

51. Grant, M.C.; Boyd, S.P. Graph Implementations for Nonsmooth Convex Programs. In Recent
Advances in Learning and Control; Blondel, V., Boyd, S.P., Kimura, H., Eds.; Springer: London,
UK, 2008; Volume 371, pp. 95–110.

52. Arain, M.A.; Cirillo, M.; Hernandez Bennetts, V.; Schaffernicht, E.; Trincavelli, M.;
Lilienthal, A.J. Efficient Measurement Planning for Remote Gas Sensing with Mobile Robots.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26–30 May 2015;

53. Fukazawa, Y.; Ishida, H. Estimating Gas-Source Location in Outdoor Environment Using Mobile
Robot Equipped with Gas Sensors and Anemometer. In Proceedings of the IEEE Sensors
Conference, Christchurch, New Zealand, 25–28 October 2009; pp. 1721–1724.

54. OpenSLAM GMapping. Available online: https://www.openslam.org/gmapping.html (accessed on
10 December 2014).

55. Hartl, A.; Song, B.C.; Pundt, I. 2-D reconstruction of atmospheric concentration peaks from
horizontal long path DOAS tomographic measurements: parametrisation and geometry within a
discrete approach. Atmos. Chem. Phys. 2006, 6, 847–861.

56. Lochmatter, T. Bio-Inspired and Probabilistic Algorithms for Distributed Odor Source Localization
using Mobile Robots. PhD Thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland, February 2010.



Sensors 2015, 15 6871

57. Rocco, M.D.; Reggente, M.; Saffiotti, A. Gas Source Localization in Indoor Environments using
Multiple Inexpensive Robots and Stigmergy. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September
2011; pp. 5007–5014.

58. Li, F.; Meng, Q.H.; Bai, S.; Li, J.G.; Popescu, D. Probability-PSO Algorithm for Multi-robot
Based Odor Source Localization in Ventilated Indoor Environments. In Intelligent Robotics
and Applications; Xiong, C., Huang, Y., Xiong, Y., Liu, H., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 5314, pp. 1206–1215.

59. Zou, Y.; Luo, D. A Modified Ant Colony Algorithm Used for Multi-robot Odor Source
Localization. In Advanced Intelligent Computing Theories and Applications. With Aspects of
Artificial Intelligence; Huang, D.S., Wunsch II, D.C., Levine, D.S., Jo, K.H., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; Volume 5227, pp. 502–509.

60. Liu, Z.; Lu, T.F. Multiple Robots Plume-Tracing in Open Space Obstructed Environments. In
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin,
China, 19–23 December 2009; pp. 2433–2439.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Problem Definition
	Finding an Optimal Solution
	Problem Formulation

	Decomposing the Problem
	Minimizing the Traveling Time
	Minimizing the Sensing Time

	Experimental Evaluation
	A New Re-Weighted Convex Relaxation for Solving Sensor Placement Problems
	Evaluation of the New Method
	Conclusions

