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Abstract: Scanning radar is of notable importance for ground surveillance, terrain mapping
and disaster rescue. However, the angular resolution of a scanning radar image is poor
compared to the achievable range resolution. This paper presents a deconvolution algorithm
for angular super-resolution in scanning radar based on Bayesian theory, which states that
the angular super-resolution can be realized by solving the corresponding deconvolution
problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the
noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent
component and a Poisson signal-dependent component. In addition, the Laplace distribution
is used to represent the prior information about the targets under the assumption that the radar
image of interest can be represented by the dominant scatters in the scene. Experimental
results demonstrate that the proposed deconvolution algorithm has higher precision for
angular super-resolution compared with the conventional algorithms, such as the Tikhonov
regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm.
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1. Introduction

Due to the superiorities of microwave remote sensing over optical remote sensing, such as all-weather
and all-timing imaging and long operating distance, microwave remote sensing has been widely used
in many civilian and military fields [1–5]. The most popular microwave remote sensing system
is radar, which achieves two-dimensional high resolution imaging via signal processing. The high
range resolution can be obtained by transmitting wide-bandwidth waveforms and using the maximum
autocorrelation or global optimization method [6]. As for the azimuth direction, the angular resolution
can be obtained by Doppler beam sharpening or the synthetic aperture radar technique. However,
these techniques are not suitable for forward-looking imaging in airborne radar and fixed ground-based
radar, because the direction of the Doppler resolution and the range resolution are the same in the
forward-looking area of the radar, which leads to the failure to use the frequency information [7]. One
option to achieve high azimuth resolution in the forward-looking area of the radar platform is to separate
the transmitting station and receiving station. This forms the bistatic SAR, which has many advantages
in comparison with its monostatic counterpart [8]. However, there are several problems associated
with bistatic SAR, including interferences from the geometry configuration and the complexity of
the hardware.

Scanning radar imaging belongs to real aperture imaging, working as a noncoherent sensor. The
high range resolution of scanning radar can be obtained using pulse compression. The upper limit of
the angular resolution is determined by the effective wavelength and the size of the antenna, which is
restricted by the radar system. Improvement in the angular resolution of the scanning radar image can be
accomplished by increasing the physical size of the antenna. Increasing the size of the radar antenna is
costly, because the forward-looking scanning radar is often mounted on an airborne platform, where there
may be insufficient space to accommodate a large-sized antenna [9]. Hence, the angular resolution of
the forward-looking scanning radar is usually poor when compared with the achievable range resolution.

Under the Born hypothesis [10], the echo in the azimuth can be modeled as the convolution of the
transmitted signal with the reflectivity of the observed scene. Therefore, the deconvolution method can
enhance the angular resolution of the scanning radar image in theory [11,12]. The data recorded at the
output of the radar system are a low-pass-filtered version of the original scene due to the finite size of the
antenna. The portions lost by the antenna are the high frequency spectral components [13]. Convolution
in the Fourier domains corresponds to multiplication, while deconvolution is Fourier division [14]. The
challenge is that the multipliers are often small for high frequencies, and division is unstable due to noise
presented in the reflectivity data. This phenomenon also occurs in communication systems.

Deconvolution aims at removing the system noise and other non-idealities of the image processing
and is inherently an ill-posed problem [15]. Basically, there are two main categories of deconvolution
techniques: set-theoretic estimation methods [16–18] and Bayesian approaches. One of the popular
attempts at employing a set-theoretic framework for deconvolution problem is the regularization
method. Recently, the application of regularization deconvolution can be found in [19–23] for microwave
imaging. One of the popular regularization methods is Tikhonov regularization [24]. The main
motivation behind the regularization methods lies in replacing the original deconvolution problem with
a nearby well-conditioned problem. A scheme that uses the singular value decomposition (SVD) has
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been reported in [25]. However, this method in the space domain is sensitive to the noise and loses
performance in terms of super-resolution. Recently, the authors of [3] presented a truncated singular
value decomposition (TSVD) algorithm to enhance the spatial resolution of radiometer data. The main
idea of TSVD is to choose a truncation parameter so that all of the noise-dominated SVD coefficients are
discarded, which makes application of TSVD for angular super-resolution in scanning radar challenging.

Another direction for the deconvolution problem that is receiving greater popularity is the use of
Bayesian theory. Following the pioneering work [26,27], the Bayesian deconvolution algorithms have
been studied extensively in radar imaging. In [28], the authors applied the Bayesian deconvolution
algorithm for ISARimaging, resulting in better resolution, even under strong noise. It is also studied
for ISAR imaging with sparse aperture in [29]. A Bayesian inversion approach to estimate Titan’s lake
features has also been presented in [30]. An important advantage of Bayesian deconvolution algorithms
over the regularization deconvolution algorithms is, as proposedlater, Bayesian deconvolution algorithms
can use the statistic characteristic of prior information about the solution, which is often ignored by
the regularization methods. On the other hand, the Bayesian methods are model-based and can handle
observation noise and missing data [31].

This paper presents a deconvolution algorithm for angular super-resolution in scanning radar
using the Bayesian theory. To use the Bayesian theory for solving the deconvolution problem,
we first convert the deconvolution problem into an equivalent MAP estimation task that not only
incorporates the prior information of the targets in the spirit of [28,29], but also considers the mixture
noise in the echo data. In the proposed algorithm, we assume that the noise is composed of two
mutually independent parts, a Gaussian signal-independent component and a Poisson signal-dependent
component [32–34]. The application of the Poisson distribution can be found in [35] for optical imagery,
in [36] for position emission tomography and in [37] for single positron emission computer tomography.
However, no work about the Poisson distribution has been studied for angular super-resolution in
scanning radar imaging. The Poisson component models the signal-dependent part of the errors, which is
essentially due to the working mode of the scanning radar, while the Gaussian component represents the
signal-independent parts of the errors, such as the thermal and electric noise. This forms the key feature
of our approach to model noise in the proposed algorithm. On the other hand, the most crucial point
of applying Bayesian methods is the choice of the form of the prior distribution. Inspired by Bayesian
compressed sensing [38], the Laplace distribution is applied to represent the statistical characteristics
of prior information about the targets. This leads to the objective function of the MAP estimation
problem consisting of the so-called data term, which is nonlinear, plus a convex non-differentiable
regularizer (the negative log-prior). We solve the MAP estimation problem in the framework of convex
optimization by using an approximation method. Experimental results with synthetic data indicate
that the proposed deconvolution algorithm for angular super-resolution has higher precision compared
with conventional deconvolution algorithms (Richardson–Lucy deconvolution algorithm, Tikhonov
regularization algorithm and Wiener filter).

The rest of the paper is organized as follows. Section 2 presents the signal model of scanning radar
and mathematically formulates the angular super-resolution problem as an equivalent deconvolution
problem. Section 3 presents the Bayesian inversion approach for solving the deconvolution
problem, including the likelihood function and prior information about the targets. In Section 4,
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experimental results with synthetic data indicate that the proposed deconvolution algorithm for angular
super-resolution in scanning radar has higher precision compared to the conventional deconvolution
algorithms. Finally, conclusions are drawn in Section 5.

2. Angular Super-Resolution Model

In this section, we mainly describe the angular super-resolution model with emphasis on the echo
formulation and then derive the mathematical formulation of angular super-resolution in forward-looking
scanning radar. The construction of forward model consists of two steps: (1) formulating the signal
model of forward-looking scanning radar; and (2) converting the problem of angular super-resolution
into an equivalent deconvolution task.

Suppose that scanning radar works in forward-looking mode. The forward model of forward-looking
scanning radar is illustrated at the top of Figure 1. The radar platform is moving along axis X

corresponding to the range direction at altitude H with constant velocity V ; the antenna beam scans
the scene along the axis X corresponding to the azimuth direction with constant angular velocityω and
then receives the echo data from the observed scene. Firstly, conventional range compression and range
cell migration are applied to the echo data with the current approaches [39].
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Figure 1. Diagram of forward-looking scanning radar used for angular super-resolution:
(a) geometry model for scanning radar imaging; (b) noise; (c) data acquisition for scanning
radar; (d) echo data after range com- pression and range cell migration; (e) deconvolution
method; (f) angular super-resolution result.

Under the Born hypothesis [19,40], the data after range compression and range cell migration gR (τ, t)

can be modeled as the convolution of the antenna beam h (τ, t) with the reflectivity coefficients of the
observed scene f (t), which is:

gR (τ, t) =

+∞∫

−∞

h (τ, t− t′) f (t′)dt′ + n (τ, t) (1)
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where τ is the fast time, t is the slow time and n is the noise.
In the case of the observation of a certain scene F , the reflectivity coefficients of the scatters in the

observed scene can be represented as a 2D matrix:

F =




f (x1, y1) , f (x1, y2) . . . f (x1, yA)

f (x2, y1) , f (x2, y2) . . . f (x2, yA)
...

... . . . ...

f (xR, y1) , f (xR, y2) . . . f (xR, yA)




where f (xp, yq), (p = 1, 2, · · · ,R, q = 1, 2, · · · ,A) are the discrete equivalent backscattering
coefficients at the p-th position of the range along the axis X at the q-th position along the azimuth
of the observation scene, R is the number of discretization cells of the observed scene along the X axis
and A is the number of discretization cells of the observed scene along the Y axis. Each row of matrix
F represents the backscatter coefficients index set in each range cell.

To denote the reflectivity coefficient of the observed scene, the 2D reflectivity coefficient matrix F
should be reshaped to a column vector by stacking the rows of F :

f = [f (x1, y1) , f (x1, y2) · · · f (x1, yA) , f (x2, y1) · · · f (x2, yA) , · · · , f (xR, y1) · · · f (xR, yA)]T (2)

where f is a RA × 1 target vector and RA is the total number of targets after the discretization of
the scene.

The 2D discrete time radar signal can be denoted as:

ge (τr, ta) =
RA∑

i=1

f (i)× rect
(
τr − 2R(ta,xp,yq)

c

Tr

)
× exp

(
−j 4πfc

c
R (ta, xp, yq)

)

r = 1, 2, · · ·R; a = 1, 2, · · ·A
(3)

where τr represents the r-th sample in fast time, ta is the a-th sample in slow time, f(i) is the i-th element
in Equation (2), rect(·) is a rectangular function, Tr denotes the pulse duration, fc is the carrier frequency,
c is the speed of light, R is the number of range samples and A is the number of azimuth samples.

The R (ta, xp, yq) is the range history between the antenna and a point target at (xp, yq) when the
azimuth time is ta. The equation for R (ta, xp, yq) is shown in Equation (4)

R( ta, xp, yq) =

√
R2

0 + (V ta)
2 − 2R0V ta cos θ cosϕ (4)

in which R0 is the range when the antenna beam center is across the target at (xp, yq), V is the platform
velocity, θ denotes the angle between the direction of the antenna and flight direction and ϕ represents
the incident angle of the beam, which is usually smaller than 10◦. The geometry relationship is illustrated
in Figure 2.

At the time when the antenna beam center crosses the target at (xp, yq), cubic and higher order terms
of the Taylor expansion for Equation (4) can be ignored in the azimuth phase history of the targets [39].
In this case, Equation (4) can be simplified to:

R (ta, xp, yq) = R0 − (V cos θ cosϕ) ta +
V 2sin2θsin2ϕ

2R0

t2a + o (ta) (5)
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Figure 2. The geometry relationship of scanning radar.

Since the product of the velocity V and azimuth time ta is much smaller than R0, Equation (5) can be
rewritten as:

R (ta, xp, yq) ≈ R0 − (V cos θ cosϕ) ta (6)

which leads to the range migration trajectory presented as a straight line in Figure 1c.
Substituting Equation (6) into Equation (3) and applying the range compression to the data

ge (τr, ta) yields:

gc (τr, ta) =
RA∑

i=1

f (i)×δ
(
τr −

2R (ta, xp, yq)

c

)
× A (ta)× exp

(
−j 4πfc

c
R (ta, xp, yq)

)
(7)

where δ (·) is the impulse function and A (ta) is the antenna pattern.
After range cell migration correction to the data gc (τr, ta), we have:

g (τr, ta) =
RA∑
i=1

f (i)H (τr, ta, xp, yq) + n (τr, ta) (8)

where:

H (τr, ta, xp, yq) = δ

[
B

(
τr −

2R0

c

)]
× A (ta)× exp

{
−j 4πfc

c
R (ta, xp, yq)

}
(9)

and B is the signal bandwidth; the corresponding data g (τr, ta) are shown in Figure 1d, and n (τr, ta)

denotes noise.
In Figure 1d, the amplitude of the received signal at the receiving output is proportional to the

antenna pattern. If the two targets are close enough, the response of the two targets are proportional
to two replicas of the antenna pattern, overlapped and added to get a composite response. Clearly, the
space limitation at which targets are resolved is determined by the beam width of the antenna pattern.
The resulting low-resolution signal is shown in Figure 1d. This phenomenon brings great difficulty in
realizing the angular super-resolution imaging.
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When we take the noise into account, Equation (8) can be written in matrix form as:

g = H⊗ f + n (10)

where g and n are of dimension RA × 1, H is a RA × RA matrix and ⊗ indicates the convolution
operator. In Equation (10):

g = [g (τ1, t1) , · · · , g (τ1, tA) , · · · g (τR, t1) , · · · , g (τR, tA)]T (11)

It can be shown in [1] that the convolution relationship holds between the expected value of
|g (τr, ta)|2 and |f(xp, yq)|2 with the two-way antenna power pattern |A (ta)|2. That is:

E
{
|g (τr, ta)|2

}
= |A (ta)|2 ⊗ E

{
|f (xp, yq)|2

}
(12)

where E{·} denotes the expected value operator. Therefore, the matrix H in Equation (10) is written
as follows:

H =




H1 HR HR−1 · · · H2

H2 H1 HR · · · H3

H3 H2 H1 · · · ...
...

HR HR−1 HR−2 · · · H1




(13)

Each element of matrix H is the module operation result of H (τr, ta, xp, yq). Therefore, the matrix
H can be written as:

H =




H (τ1, t1, x1, y1) · · · H (τ1, t1, x1, yA) · · · H (τ2, t1, x1, y1) · · · H (τ2, t1, x1, yA)

...
... · · ·

...
...

H (τ1, tA, x1, y1) · · · H (τ1, tA, x1, yA) · · · H (τ2, tA, x1, y1) . . . H (τ2, tA, x1, yA)

...
. . .

...
...

...
. . .

...

H (τR, t1, xR, y1) · · · H (τR, t1, xR, yA) · · · H (τ1, t1, x1, y1) · · · H (τ1, t1, x1, yA)

...
... · · ·

...
...

H (τR, tA, xR, y1) · · · H (τR, tA, xR, yA) · · · H (τ1, tA, x1, y1) · · · H (τ1, tA, x1, yA)




RA×RA

(14)

At this point, the goal of angular super-resolution imaging in forward-looking scanning radar is to
infer, as accurately as possible, f from the samples g. This task is called the deconvolution problem in
this paper.

A naive method would be simple division of data g by transferring the function in the Fourier domain.
Using the Fourier transform, Equation (10) can be written as:

G (w) = H (w)F (w) + N (w) (15)

where G(w),H(w),F(w) and N(w) are the Fourier transforms of g,H, f and n, respectively. The
conventional deconvolution methods are that to find a linear operator T(w), such that:

F̂ (w) =
G (w)

T (w)
= F (w) +

N (w)

H (w)
(16)
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where—denotes the matrix division operator. The challenge is that convolution in the Fourier
corresponds to multiplication, and deconvolution is Fourier division. For the radar system, the multipliers
are often small for high frequencies, and the inverse filter 1

T(w)
is large for T (w) very small. This results

in a large noise amplification and, thus, a poor angular resolution.
To address this challenge, we propose a Bayesian deconvolution method for angular super-resolution

imaging in scanning radar in the next section.

3. Bayesian Inversion Approach for Angular Super-Resolution

The data g recorded at the output of the radar system are a low-pass-filtered version of the original
data f . Thus, to recover the original scene from the recorded data g by the deconvolution approach, we
firstly need to compensate for the loss of high-frequency information beyond the passband range. For
this purpose, the obtained angular super-resolution model Equation (10) can be recast in the Bayesian
framework. In this framework, we can handle prior information about the original scene and the
likelihood function between the observation and the original scene.

Starting from Equation (10), we first transform the deconvolution problem into an equivalent MAP
estimation task, and the corresponding problem can be equivalently transformed into an unconstrained
optimization problem by adopting the negative logarithm of the posterior probability p (f |g). By
Equation (10), the MAP estimation task consists of finding a solution that satisfies the following criterion:

fMAP = arg max
f

p (f |g) = arg max
f

p (g|f) p (f)

= arg min
f
{− ln p (g|f)− ln p (f)}

(17)

where p (g|f) represents the likelihood function pertaining to the angular super-resolution model
Equation (10), which models all of the information coming from the data and their uncertainty, and
p (f) is the prior probability density function (pdf) that models the information coming from the other
source [41]. The prior term p(f) in Equation (17) is a function of f , which does not vary with the
observation model.

In Equation (17), the − ln p (g|f) measures the violation of the relation between f and its observation
g, and − ln p (f) corresponds to the prior information about the f , which does not vary with the
measurement in the framework of Bayesian theory. It is noted that Equation (17) looks similar to the
regularization method, because they are philosophically similar. The main idea behind these methods
is to find a solution to the deconvolution problem [42]. However, the implementation of Equation (17)
requires the knowledge of a likelihood pdf p (g|f) and the prior pdf p (f). The details on choosing these
functions are shown as follows.

3.1. Likelihood

The choosing of the likelihood function mainly depends on the application. In radar signal
processing [19,43], the likelihood function between the observation data and the original scene is
approximated as a zero mean Gaussian distribution. However, there are problems with this assumption
in angular super-resolution. The first is that such a continuous time process cannot exist, since it would
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have infinite power. For details about this reason, we refer the interested reader to [44]. In addition, the
treatment of the likelihood function by the Gaussian distribution involves interesting ideas in the field
of mathematical statistics [44]. In this paper, we assume that the noise is composed of two mutually
independent parts, a Poisson signal-dependent component np and a Gaussian signal-independent
component ng. The Poisson component np models the signal-dependent part of the errors, which is
essentially due to the working mode of the scanning radar, while the Gaussian component ng represents
the signal-independent parts of the errors, such as the thermal and electric noise.

In applications of angular super-resolution, where a high number of data are collected, the echo data
are inherently affected by signal-dependent noise. Notice that the Poisson distribution is not additive, and
its strength is dependent on the point scatterer intensity [45]. For these reasons, the Poisson distribution is
used to represent the likelihood function between the observation data and the observed scene in angular
super-resolution, i.e.,

p [g(k)|(Hf)(k)] =
[(Hf)(k)]g(k) exp [−(Hf)(k)]

(g(k))!
(18)

where (·) (k) represents the k-th element of the vector given by the expression inside the brackets.
Assuming that the values of g(k) are independent and identically distributed, the likelihood function

of the data g is also Poisson, i.e.,

p (g|Hf) =
RA∏

k=1

[(Hf)(k)]g(k) exp [−(Hf)(k)]

(g(k))!
(19)

3.2. Prior Law of the Targets

Since the echo formulation includes a convolution operation, some prior information about the
statistical characteristics of the true scene must be introduced to regularize the solution of the
deconvolution problem. In Bayesian theory, the prior information about the true scene is modeled as
random variables with an assigned probability distribution, which represents a function of the the original
scene and does not vary with the measurement.

The scanning radar image demonstrates the distribution and amplitude information of the point
scatterers. Therefore, the dominant point scatterers can capture most of the information about the scene,
and the weak scattering centers can be regarded as noise in the radar image. Note that the Laplace
distribution has heavy tails, which means that the probability of strong scatters is large. Therefore, the
statistical characteristics of strong scatters in the radar image can be modeled by an independent identical
Laplace distribution with the same deviation [28,29,46,47]. As mentioned above, we utilize the Laplace
distribution to represent the statistic characteristic of the dominant scatters in the scene. The law for f is
also Laplace, so that the joint probability of f can be written as:

p (f) =
RA∏

i=1

1√
2σ

exp

(
−
√

2 |f(i)|
σ

)
(20)

where σ denotes the deviation.
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Substituting Equations (19) and (20) into Equation (17), the final expression for the MAP estimation
task becomes:

fMAP = arg max
f

{
RA∏

k=1

[(Hf)(k)]g(k)

(g(k)) !
exp [−(Hf)(k)]

}
×
{

RA∏

i=1

1√
2σ

exp

(
−
√

2 |f(i)|
σ

)}
(21)

Maximizing Equation (21) is equivalent to minimizing:

E (f) = − ln p (g|Hf)− ln p (f)

=
RA∑

k=1

{(Hf)(k)− g(k) ln [(Hf)(k)]}+

√
2

σ
‖f‖1 (22)

with respect to f . The term ‖f‖1 =
RA∑
i=1

|f(i)| is the l1-norm of f Note that we drop the ln [(g(k))!]

term in the summation for the simplicity of notation, since this term has no effect on the corresponding
minimization problem. From the point of the convex optimization, problem Equation (22) is equivalent
to the MAP task Equation (21); solving Equation (22) for f yields the desired solution in Equation (17).

3.3. Solution of the Unconstrained Problem

The non-differentiability of the ‖f‖1 around the origin makes it impossible to solve Equation (22) by
means of gradient-based optimization techniques. Fortunately, this problem can be solved by introducing

a small positive parameter ε in the l1-norm (see [43,48]). Specifically, |f(i)| ≈
[
|f(i)|2 + ε

] 1
2 , where ε >

0 is a small constant. The role of ε is to ensure that the approximation is as rigid as possible; therefore,
the parameter ε should be set small. In this paper, we set the approximate parameter ε to be 10−8.
This modified l1-norm is a differentiable function, which enables us to solve the unconstrained problem
Equation (22) within the framework of convex optimization by using the gradient-based approach. The
first step in solving the unconstrained problem Equation (22) consists of replacing the l1-norm by its
differentiable approximation. After the smoothed approximation, the ‖f‖1 has the following form:

‖f‖1 ≈
RA∑

i=1

[(
|f(i)|2 + ε

) 1
2

]
(23)

Substituting Equation (23) into Equation (22), we express Equation (22) as follows:

E (f) ≈
RA∑

k=1

{(Hf) (k)− g (k) ln [(Hf) (k)]}+

√
2

σ

RA∑

i=1

(
|f (i)|2 + ε

)1
2 (24)

Since the objective function in the right-hand of Equation (24) is convex with respect to f , searching
for a minimum is equivalent to searching for a zero of the gradient of Equation (24). This leads to:

HT IRA −HT
( g

Hf

)
+

√
2

σ
Λ (f) f = 0 (25)

where the superscript T represents the transpose of a matrix, IRA stands for RA × 1 vector of ones

and Λ (f) = diag
{[
|f(i)|2+ε

]− 1
2

}
is a diagonal matrix whose i-th diagonal element is given by the
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expression inside the brackets. We further assume that HT IRA = IRA, where IRA stands for the column
vector consisting of RA ones. fMAP solves the problem Equation (25) if and only if the following
equivalent statements hold:

HT

(
g

HfMAP

)
− λΛ (fMAP ) fMAP = IRA (26)

where λ =
√
2
σ

is known as the regularization parameter, which controls the weight of the data term and
the prior information of the observed scene. The method for selecting this parameter in Equation (26) is
presented in the next section.

Solving Equation (26) above naturally calls for the fixed point iterative scheme; we can derive the
following iteration form,

fm+1 = fm

[
HT

(
g

Hfm

)
− λΛ (fm) fm

]
(27)

where fm and fm+1 represent the estimations of the true reflectivity coefficients of the observed scene f

in the m-th and (m+ 1)-th iterations, respectively. Assuming that at convergence, the ratio of fm+1/fm

is IRA. The greatest problem with multiplicative form Equation (27) is that the diagonal elements of
Λ (fm) correspond to the approximation processes in the iteration.

4. Simulation and Experimental Results

In this section, we present experimental results to illustrate the angular super-resolution performance
of the proposed deconvolution algorithm in forward-looking scanning radar. We compare the proposed
deconvolution method with Wiener filter method, the Richardson–Lucy (R-L) algorithm and the
Tikhonov regularization method.

4.1. Simulation

For experiments on synthetic data, we apply our method to a synthetic scene composed of six point
targets with different reflectivity magnitudes. The synthetic scene is shown in Figure 3. The targets are
of unequal amplitude, which means different scattering coefficients. Some related radar parameters are
set as follows: the pulse repetition frequency is 4000 Hz, and the antenna scanning speed is 30◦/s. The
bandwidth of the transmitted signal is 2 MHz, and the 3-dB width of the real beam is about 3◦. The
number of azimuth samples is 2666.

7

of the angular super-resolution results. They are defined as
follows:

SNR = 20log10

∥f∥2

∥fMAP − f∥2

, ReErr =
∥fMAP − f∥2

∥f∥2

,

ISNR = 20log10

∥g − f∥2

∥fMAP − f∥2

,

SSIM =
2ρ(fMAP ,f) · (2µfMAP · µf )(
µ2
fMAP

+ µ2
f

) (
σ2
fMAP

+ σ2
f

) .

where fMAP , f , and g corresponds to the obtained angular
super-resolution image, the original image, and the observed
image, respectively. The terms µ, σ, and ρ(f ,fMAP ), are the
mean, standard deviation of the vectors, the correlation coef-
ficient corresponds to the vector f and fMAP . The SSIM is a
quantitative measure between the super-resolution result and
the original scene. The value of SSIM is between −1 and 1,
and 1 means full identical with the original scene.
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Fig. 3. Location of targets in the simulate scene

In order to show the performance of the proposed deconvo-
lution algorithm for angular super-resolution under different
noise levels. Gaussian noise models the signal-independent
part of the errors such as thermal and electric noise, which
is stronger than the signal-dependent noise in scanning radar
imaging. Using the approximation N(σ2, σ2) = Poiss(σ2),
the Poisson noise can be approximated by Gaussian noise.
Then the Gaussian noise with different levels is added to model
the errors.

1) Parameter values: In most of the Bayesian deconvolu-
tion algorithms, the regularization parameter has to be chosen
so that it gives the best visual results. Both the data fidelity
and the prior are presented in (21), and their size depends on
the regularization parameter λ. Small values of regularization
parameter tend to amplify the noise, while large regularization
parameter over smooth the radar image. Most of the referenced
methods need to manually choose the regularizing parameter
λ to control the weight of the prior so that the result of
super-resolution gives the best visual quality. However, this
approach is time-consuming and relies too much on subjective
factors. To overcome this problem, a number of works on the
selection of regularization parameter such as L-curve method
[42], generalized cross-validation [43], unbiased predictive risk
estimator method [44] have been reported.

In order to determine the parameter λ in (26) , we choose
the regularization parameter λ by means of L-curve method,
which plots the squared norm of the prior solution X(λ) a-
gainst the squared norm of the corresponding residual solution

Y (λ). The corner of the regularization parameter curve is
identified and the corresponding parameter value λ is picked
out as the weight coefficient in the deconvolution process (26).
Specially, L-curve method is proposed in [42], which selects
the regularization parameter λ that maximizes the curvature
function

C (λ) =
X ′′ (λ) Y ′ (λ) − X ′ (λ) Y ′′ (λ)

[
X ′(λ)

2
+ Y ′(λ)

2
] 3

2

. (27)

where X (λ) = log (∥Hfλ − g∥2) and Y (λ) =
log (∥D |fλ|∥2) are the log-transform of the data fidelity
and the prior information, respectively, and the superscript (′)
represents the differentiation with respect to λ.

In the simulations, the parameter λ is selected using L-curve
method. This owns to the advantages that L-curve method
are able to treat perturbations consisting of corrected noise
and robustness no matter which deconvolution method is used.
The L-curve method is useful for direct solvers. However,
there are two parameters in the solution obtained using the
proposed deconvolution algorithm. This paper focuses on the
performance of the proposed deconvolution algorithm in terms
of angular super-resolution in scanning radar. The automatic
choice of the regularization parameter λ is beyond the scope of
this paper. To determine a good pair of parameters in (26),we
firstly use the iterative solver with a lot of iterations, and re-use
it for all the different choices of the regularization parameter
λ. Then, choose the good solution using L-curve. Fig.4 shows
the obtained λ under different noise levels, which is used in the
following simulations. The setting of the iteration number of
R-L algorithm is equal to the way for the proposed algorithm.

2) Angular super-resolution results: Fig.5-Fig.7 show the
angular super-resolution results under different noise levels.
The BSNR = 20log10

∥g∥2

∥n∥2
is used to measure the quality of

these echo data with different noise levels. The regularization
parameter λ is computed by using Eq.(27), and Fig.4 shows
the L-curve and the corresponding curvature as a function of
λ. The number of iterations in Fig.4 are 75, 110, and 150 ,
respectively.
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Fig. 4. The L-curve at the different noise levels, and the corner corresponds
to the point with the maximum curvature.

Figure 3. Location of targets in the simulated scene.
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To provide a quantitative evaluation for the following super-resolution simulations, relative error
(ReErr), improved signal-to-noise ratio (ISNR), structure similarity (SSIM) [49], and the signal-to-noise
ratio (SNR) are used to measure the quality of the angular super-resolution results. They are defined
as follows:

SNR = 20log10

‖f‖2
‖fMAP − f‖2

,ReErr =
‖fMAP − f‖2
‖f‖2

ISNR = 20log10

‖g − f‖2
‖fMAP − f‖2

SSIM =
2ρ(fMAP ,f) · (2µfMAP

· µf )(
µ2
fMAP

+ µ2
f

) (
σ2
fMAP

+ σ2
f

)

where fMAP , f and g correspond to the obtained angular super-resolution image, the original image and
the observed image, respectively. The terms µ,σ, and ρ(f ,fMAP ) are the mean and standard deviation
of the vectors, and the correlation coefficient corresponds to the vector f and fMAP . The SSIM is a
quantitative measure between the super-resolution result and the original scene. The value of SSIM is
between −1 and one, and one means fully identical to the original scene.

In order to show the performance of the proposed deconvolution algorithm for angular
super-resolution under different noise levels, Gaussian noise models the signal-independent part of the
errors, such as thermal and electric noise, which is stronger than the signal-dependent noise in scanning
radar imaging. Using the approximationN(σ2,σ2) = Poiss(σ2), the Poisson noise can be approximated
by Gaussian noise. Then, the Gaussian noise with different levels is added to model the errors.

4.1.1. Parameter Values

In most of the Bayesian deconvolution algorithms, the regularization parameter has to be chosen, so
that it gives the best visual results. Both the data fidelity and the prior are presented in Equation (22),
and their size depends on the regularization parameter λ. Small values of the regularization parameter
tend to amplify the noise, while a large regularization parameter over smooths the radar image. Most of
the referenced methods need to manually choose the regularizing parameter λ to control the weight of
the prior, so that the result of super-resolution gives the best visual quality. However, this approach
is time consuming and relies too much on subjective factors. To overcome this problem, a number
of works on the selection of regularization parameter, such as the L-curve method [50], generalized
cross-validation [51] and the unbiased predictive risk estimator method [52], have been reported.

In order to determine the parameter λ in Equation (27), we choose the regularization parameter λ
by means of the L-curve method, which plots the squared norm of the prior solution X(λ) against the
squared norm of the corresponding residual solution Y (λ). The corner of the regularization parameter
curve is identified, and the corresponding parameter value λ is picked out as the weight coefficient in the
deconvolution process Equation (27). Specifically, L-curve method is proposed in [50], which selects
the regularization parameter λ that maximizes the curvature function:

C (λ) =
X ′′ (λ)Y ′ (λ)−X ′ (λ)Y ′′ (λ)

[
X ′(λ)2 + Y ′(λ)2

] 3
2

(28)
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where X (λ) = log (‖Hfλ − g‖2) and Y (λ) = log (‖D |fλ|‖2) are the log-transform of the data
fidelity and the prior information, respectively, and the superscript (′) represents the differentiation with
respect to λ.

In the simulations, the parameter λ is selected using the L-curve method. This is owed to the
advantage that the L-curve method is able to treat perturbations consisting of corrected noise and
robustness no matter which deconvolution method is used. The L-curve method is useful for direct
solvers. However, there are two parameters in the solution obtained using the proposed deconvolution
algorithm. This paper focuses on the performance of the proposed deconvolution algorithm in terms of
angular super-resolution in scanning radar. The automatic choice of the regularization parameter λ is
beyond the scope of this paper. To determine a good pair of parameters in Equation (27), we firstly use
the iterative solver with a lot of iterations and re-use it for all of the different choices of the regularization
parameter λ. Then, we choose the good solution using the L-curve. Figure 4 shows the obtained λ under
different noise levels, which is used in the following simulations. The setting of the iteration number of
the R-L algorithm is equal to the way for the proposed algorithm.
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of the angular super-resolution results. They are defined as
follows:

SNR = 20log10

∥f∥2

∥fMAP − f∥2

, ReErr =
∥fMAP − f∥2

∥f∥2

,

ISNR = 20log10
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,

SSIM =
2ρ(fMAP ,f) · (2µfMAP · µf )(
µ2
fMAP

+ µ2
f

) (
σ2
fMAP

+ σ2
f

) .

where fMAP , f , and g corresponds to the obtained angular
super-resolution image, the original image, and the observed
image, respectively. The terms µ, σ, and ρ(f ,fMAP ), are the
mean, standard deviation of the vectors, the correlation coef-
ficient corresponds to the vector f and fMAP . The SSIM is a
quantitative measure between the super-resolution result and
the original scene. The value of SSIM is between −1 and 1,
and 1 means full identical with the original scene.
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Fig. 3. Location of targets in the simulate scene

In order to show the performance of the proposed deconvo-
lution algorithm for angular super-resolution under different
noise levels. Gaussian noise models the signal-independent
part of the errors such as thermal and electric noise, which
is stronger than the signal-dependent noise in scanning radar
imaging. Using the approximation N(σ2, σ2) = Poiss(σ2),
the Poisson noise can be approximated by Gaussian noise.
Then the Gaussian noise with different levels is added to model
the errors.

1) Parameter values: In most of the Bayesian deconvolu-
tion algorithms, the regularization parameter has to be chosen
so that it gives the best visual results. Both the data fidelity
and the prior are presented in (21), and their size depends on
the regularization parameter λ. Small values of regularization
parameter tend to amplify the noise, while large regularization
parameter over smooth the radar image. Most of the referenced
methods need to manually choose the regularizing parameter
λ to control the weight of the prior so that the result of
super-resolution gives the best visual quality. However, this
approach is time-consuming and relies too much on subjective
factors. To overcome this problem, a number of works on the
selection of regularization parameter such as L-curve method
[42], generalized cross-validation [43], unbiased predictive risk
estimator method [44] have been reported.

In order to determine the parameter λ in (26) , we choose
the regularization parameter λ by means of L-curve method,
which plots the squared norm of the prior solution X(λ) a-
gainst the squared norm of the corresponding residual solution

Y (λ). The corner of the regularization parameter curve is
identified and the corresponding parameter value λ is picked
out as the weight coefficient in the deconvolution process (26).
Specially, L-curve method is proposed in [42], which selects
the regularization parameter λ that maximizes the curvature
function

C (λ) =
X ′′ (λ) Y ′ (λ) − X ′ (λ) Y ′′ (λ)

[
X ′(λ)

2
+ Y ′(λ)

2
] 3

2

. (27)

where X (λ) = log (∥Hfλ − g∥2) and Y (λ) =
log (∥D |fλ|∥2) are the log-transform of the data fidelity
and the prior information, respectively, and the superscript (′)
represents the differentiation with respect to λ.

In the simulations, the parameter λ is selected using L-curve
method. This owns to the advantages that L-curve method
are able to treat perturbations consisting of corrected noise
and robustness no matter which deconvolution method is used.
The L-curve method is useful for direct solvers. However,
there are two parameters in the solution obtained using the
proposed deconvolution algorithm. This paper focuses on the
performance of the proposed deconvolution algorithm in terms
of angular super-resolution in scanning radar. The automatic
choice of the regularization parameter λ is beyond the scope of
this paper. To determine a good pair of parameters in (26),we
firstly use the iterative solver with a lot of iterations, and re-use
it for all the different choices of the regularization parameter
λ. Then, choose the good solution using L-curve. Fig.4 shows
the obtained λ under different noise levels, which is used in the
following simulations. The setting of the iteration number of
R-L algorithm is equal to the way for the proposed algorithm.

2) Angular super-resolution results: Fig.5-Fig.7 show the
angular super-resolution results under different noise levels.
The BSNR = 20log10

∥g∥2

∥n∥2
is used to measure the quality of

these echo data with different noise levels. The regularization
parameter λ is computed by using Eq.(27), and Fig.4 shows
the L-curve and the corresponding curvature as a function of
λ. The number of iterations in Fig.4 are 75, 110, and 150 ,
respectively.
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Fig. 4. The L-curve at the different noise levels, and the corner corresponds
to the point with the maximum curvature.

Figure 4. The L-curve at the different noise levels; the corner corresponds to the point with
the maximum curvature.

4.1.2. Angular Super-Resolution Results

Figures 6–8 show the angular super-resolution results under different noise levels. The
BSNR = 20log10

‖g‖2
‖n‖2

is used to measure the quality of these echo data with different noise levels. The
regularization parameter λ is computed by using Equations (28), and Figure 4 shows the L-curve and
the corresponding curvature as a function of λ. The number of iterations in Figure 4 are 75, 110 and
150, respectively.

The angular super-resolution results by those methods under various noise levels are shown in
Figures 5–7. The visual quality of super-resolution results using the proposed deconvolution algorithm
are quite competitive with those using the Tikhonov regularization method, Wiener filter method and
R-L algorithm. It is noted that the angular super-resolution results by using the proposed deconvolution
algorithm exhibit a close match with the original scene.
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It can be seen from Figures 5–7 that the spikes of the targets in the results of the Tikhonov
regularization and Wiener filter are more connected compared with the results of the R-L algorithm
and the proposed method. The reason for this is that the Tikhonov regularization method is based on
the noise power of the observed scene, which makes the profile of targets overly smooth. The Wiener
filter obtains an optimal result in the sense of minimizing the mean square error between the obtained
result and the true scene using the correlation information between the signal and noise. Therefore, the
angular super-resolution performance of the Wiener filter is degraded when the received signal includes
complicated targets and high noise.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Tareget distribution (Degree)

N
or

m
al

iz
ed

 A
m

pl
itu

de

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Targets distribution (Degree)

N
or

m
al

iz
ed

 A
m

pl
itu

de

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Targets distribution (Degree)

N
or

m
al

iz
ed

 A
m

pl
itu

de

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Targets distribution (Degree)

N
or

m
al

iz
ed

 A
m

pl
itu

de

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

Targets distribution (Degree)

N
or

m
al

iz
ed

 A
m

pl
itu

de

(e)

Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.

(e)

Figure 5. (a)The echo data added by Gaussian noise with 30 dB; (b) Angular
super-resolution result of the Tikhonov regularization; (c) Angular super-resolution result
of the Wiener filter; (d) Angular super-resolution result of the R-L algorithm with 75 iters;
(e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.

(e)

Figure 6. (a) The echo added by Gaussian noise with 20 dB; (b) Angular super-resolution
result of the Tikhonov regularization; (c) Angular super-resolution result of the Wiener filter;
(d) Angular super-resolution result of the Richardson–Lucy (R-L) algorithm with 110 iters;
(e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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Fig. 5. The first row is the echo added by Gaussian noise with 30dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 75 iters. (e) Angular super-resolution result of the proposed method with 75 iters and λ = 0.1406.
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Fig. 6. The first row is the echo added by Gaussian noise with 20dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 110 iters. (e) Angular super-resolution result of the proposed method with 110 iters and λ = 0.4504.
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Fig. 7. The first row is the echo added by Gaussian noise with 15dB; the second row is the angular super-resolution results from the left to right: (b) Angular
super-resolution result of the Tikhonov regularization. (c) Angular super-resolution result of the Wiener filter. (d) Angular super-resolution result of the R-L
algorithm with 150 iters. (e) Angular super-resolution result of the proposed method with 150 iters and λ = 0.8296.

(e)

Figure 7. (a) The echo added by Gaussian noise with 15 dB; (b) Angular super-resolution
result of the Tikhonov regularization; (c) Angular super-resolution result of the Wiener
filter; (d) Angular super-resolution result of the R-L algorithm with 150 iters; (e) Angular
super-resolution result of the proposed method with 150 iters and λ = 0.8296.
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TABLE I
SUMMARY OF ANGULAR SUPER-RESOLUTION RESULTS FOR DIFFERENT

METHODS

Image Method SNR(dB) ISNR(dB) SSIM
Tikhonov 2.93 −0.43 0.61

Fig.5(a) Wiener 3.93 1.43 0.71

BSNR=14.91dB R-L 7.71 5.20 0.89

Proposed 8.45 5.94 0.91

Tikhonov 2.45 0.02 0.54

Fig.6(a) Wiener 3.17 0.69 0.64

BSNR=9.94dB R-L 6.28 3.74 0.83

Proposed 7.15 4.66 0.88

Tikhonov 2.30 0.05 0.50

Fig.7(a) Wiener 2.83 0.47 0.58

BSNR=7.69dB R-L 5.60 3.19 0.80

Proposed 6.71 4.36 0.84
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Fig. 8. Relative error performance comparison under various noise levels.

The angular super-resolution results by those methods under
various noise levels are shown in Fig.5, Fig.6, and Fig.7. The
visual quality of super-resolution results using the proposed
deconvolution algorithm are quite competitive with those using
the Tikhonov regularization method, Wiener filter method, and
R-L algorithm. It is noted that the angular super-resolution
results by using the proposed deconvolution algorithm exhibit
close match to the original scene.

It can be seen from Fig.5- Fig.7 that the spikes of the targets
in the results of the Tikhonov regularization and Wiener filter
are more connected compared with the results of the R-L
algorithm and the proposed method. The reason for this is that
the Tikhonov regularization method is based on noise power of
the observed scene, which makes the profile of targets overly
smooth. The Wiener filter obtains an optimal result in the sense
of minimizing the mean square error between the obtained
result and the true scene using the correlation information
between the signal and noise. Therefore, the angular super-
resolution performance of the Wiener filter is degraded when
the received signal includes complicated targets and high
noise.

In Fig.5, we can see that the visual quality of the angular
super-resolution result by using the R-L algorithm looks
similar to the result by using the proposed method. In Fig.6,
the proposed approach gives the super-resolution result where

the spikes of the targets look fairly separate whereas in the
angular super-resolution result by using the R-L algorithm, the
spikes of the targets looks more connected. The improvement
of the proposed method compared to R-L algorithm can also
be appreciated in Fig.7, as the spikes of the targets have been
separated, and the noise amplified by R-L algorithm is not
presented in the result by using the proposed method.

The reason is that the R-L algorithm is based on maximum
likelihood criterion, which is identical to the deterministic
method with no penalty function or prior information. The
maximum likelihood criterion aims at maximizing the agree-
ment between the measurement and the object, which yields
high noise estimates, particularly when the noise level is low.
This conclusion is also supported by Table I, in which the
evaluation parameters of the proposed algorithm are better
than the evaluation parameters associated with the comparative
methods.

Table I shows the comparisons between the Tikhonov
regularization method, Wiener filter, R-L algorithm and the
proposed deconvolution method on super-resolution results in
SNRs, ISNRs, and SSIMs. Referring to Table I, it is shown that
the proposed deconvolution algorithm produces the highest
SSIM values while keeping ISNR at a high level. Among
the four methods, both Tikhonov regularization method and
Wiener filter use the inverse filtering, which gives poor results.
R-L algorithm may be an attractive deconvolution approach
for super-resolution imaging, but the noise is amplified after
a small number of iterations and the false targets emerges.
This phenomenon is a generic problem for R-L algorithm,
leading to the larger error of the corresponding angular super-
resolution result. These results demonstrate that the proposed
deconvolution algorithm for angular super-resolution is quite
competitive over the conventional deconvolution algorithms.

In addition, another noticeable advantage of the proposed
deconvolution algorithm compared to conventional deconvolu-
tion algorithms is that the proposed deconvolution algorithm
suppresses the spurious peaks appearance in the angular-
resolution results under different noise levels, which leads
to a better angular super-resolution performance in terms
of precision. Fig.8 shows the relative error performance of
the algorithms in the different noise levels. It can be seen
from the Fig.8 that the Tikhonov regularization method and
Wiener filter have higher relative errors under various SNR
levels, while the proposed deconvolution algorithm is much
better than the conventional algorithms in terms of precision.
The reason is that the proposed deconvolution algorithm has
explored the prior information about the targets. This leads
to a more stable solution to the associated deconvolution
problem and the evaluation parameters are also better than
other comparative methods.

B. Experiment

In order to show the validity of the proposed method, we
present the real data results. Employing the scanning radar
system in Fig.10, the real data are acquired. The scanning
radar system parameters for experimental result are shown in
Table.II. The resolution of the range dimension was calculated

Figure 8. Relative error performance comparison under various noise levels.

In Figure 5, we can see that the visual quality of the angular super-resolution result by using the
R-L algorithm looks similar to the result by using the proposed method. In Figure 6, the proposed
approach gives the super-resolution result, where the spikes of the targets look fairly separate, whereas
in the angular super-resolution result, by using the R-L algorithm, the spikes of the targets looks more
connected. The improvement of the proposed method compared to R-L algorithm can also be appreciated
in Figure 7, as the spikes of the targets have been separated, and the noise amplified by the R-L algorithm
is not presented in the result by using the proposed method.

The reason is that the R-L algorithm is based on the maximum likelihood criterion, which is identical
to the deterministic method with no penalty function or prior information. The maximum likelihood
criterion aims at maximizing the agreement between the measurement and the object, which yields high
noise estimates, particularly when the noise level is low. This conclusion is also supported by Table 1,
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in which the evaluation parameters of the proposed algorithm are better than the evaluation parameters
associated with the comparative methods.

Table 1. Summary of angular super-resolution results for different methods. ISNR,
improved signal-to-noise ratio; SSIM, structure similarity.

Image Method SNR (dB) ISNR (dB) SSIM

Tikhonov 2.93 −0.43 0.61

Figure 5a Wiener 3.93 1.43 0.71

BSNR = 14.91 dB R-L 7.71 5.20 0.89

Proposed 8.45 5.94 0.91

Tikhonov 2.45 0.02 0.54

Figure 6a Wiener 3.17 0.69 0.64

BSNR = 9.94 dB R-L 6.28 3.74 0.83

Proposed 7.15 4.66 0.88

Tikhonov 2.30 0.05 0.50

Figure 7a Wiener 2.83 0.47 0.58

BSNR = 7.69 dB R-L 5.60 3.19 0.80

Proposed 6.71 4.36 0.84

Table 1 shows the comparisons between the Tikhonov regularization method, Wiener filter, R-L
algorithm and the proposed deconvolution method on super-resolution results in SNRs, ISNRs and
SSIMs. Referring to Table 1, it is shown that the proposed deconvolution algorithm produces the
highest SSIM values while keeping ISNR at a high level. Among the four methods, both the Tikhonov
regularization method and the Wiener filter use the inverse filtering, which gives poor results. The R-L
algorithm may be an attractive deconvolution approach for super-resolution imaging, but the noise is
amplified after a small number of iterations, and the false targets emerge. This phenomenon is a generic
problem for the R-L algorithm, leading to the larger error of the corresponding angular super-resolution
result. These results demonstrate that the proposed deconvolution algorithm for angular super-resolution
is quite competitive over the conventional deconvolution algorithms.

In addition, another noticeable advantage of the proposed deconvolution algorithm compared to
conventional deconvolution algorithms is that the proposed deconvolution algorithm suppresses the
spurious peak appearance in the angular-resolution results under different noise levels, which leads to
a better angular super-resolution performance in terms of precision. Figure 8 shows the relative error
performance of the algorithms in the different noise levels. It can be seen from Figure 8 that the Tikhonov
regularization method and Wiener filter have higher relative errors under various SNR levels, while the
proposed deconvolution algorithm is much better than the conventional algorithms in terms of precision.
The reason is that the proposed deconvolution algorithm has explored the prior information about the
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targets. This leads to a more stable solution to the associated deconvolution problem, and the evaluation
parameters are also better than other comparative methods.

4.2. Experiment

In order to show the validity of the proposed method, we present the real data results. Figure 9 shows
the tested scene in which three buildings and their distribution are shown. Employing the scanning
radar system in Figure 10, the real data are acquired. The scanning radar system parameters for the
experimental result are shown in Table 2. The resolution of the range dimension was calculated to be
1 m. The distance of each building is 45 m. The range from the scene center to the radar system is
about 594 m, and the angular resolution in the scene center is 95 m. The echo from three buildings is
much stronger than that from the other areas of the observed scene, so that the scene can be consider as
consisting of three main scattering point targets.

The range compression is applied to the recorded data. The imaging result and the corresponding
profile of the target area are shown in Figure 11a,b, respectively. From Figure 11b, we can see that the
echo of adjacent buildings is overlapping and covering the building features.

Table 2. Experimental parameters for real data.

Parameters Value Units

Carrier frequency 10 GHz

Band width 75 MHz

Pulse duration 2 µ s

Sampling frequency 200 MHz

Antenna scanning velocity 70 ◦/s

Antenna scanning area −45 ± 45 ◦

Main-lobe beam width 5 ◦
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Fig. 11. The received echo signal of the tested scene after range compression
and corresponding profile of the target area.
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(b)

Fig. 10. The scanning radar system[(a)front side and (b)back side] utilized
to collect scattering data.

The range compression is applied to the recorded data. The
imaging result and the corresponding profile of targets area
are shown in Fig.11(a) and Fig.11(b), respectively. From the
Fig.11(b), we can see that the echo of adjacent buildings is
overlap and cover the building features.

As compared with other methods, the maximum iterations
and the regularization parameter of the proposed algorithm
are hand-tuned alternative so that the corresponding super-
resolution result presents the best visual quality. For the
proposed deconvolution algorithm, we used the regularization
parameter λ = 1.47 and the iteration number is 100.

In Fig.12, we investigate the angular super-resolution perfor-
mance of the approaches. The first column of Fig.12 gives the
angular super-resolution imaging results of different methods.
The right column of Fig.12 presents the profile of the targets
scene corresponding to the left column. The first row presents
the angular super-resolution results using the Tikhonov regu-
larization method. The second row contains the Wiener filter
results, while the third and bottom rows contain angular super-
resolution results by using R-L algorithm and the proposed
algorithm, respectively. It can be obviously observed that the
amplitude of the targets profile in the right column of Fig.12
are different. The reason for this is that the distance from the
middle building to the radar is about 594m, while the distance
between the radar and the left/right building is about 597m.
This leads to the profile of the middle building is higher than
the other two profiles in the right column of Fig.12, which
also fits their physical truth.

Figure 9. The tested scene.
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The right column of Fig.12 presents the profile of the targets
scene corresponding to the left column. The first row presents
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larization method. The second row contains the Wiener filter
results, while the third and bottom rows contain angular super-
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Fig. 10. The scanning radar system[(a)front side and (b)back side] utilized
to collect scattering data.

The range compression is applied to the recorded data. The
imaging result and the corresponding profile of targets area
are shown in Fig.11(a) and Fig.11(b), respectively. From the
Fig.11(b), we can see that the echo of adjacent buildings is
overlap and cover the building features.

As compared with other methods, the maximum iterations
and the regularization parameter of the proposed algorithm
are hand-tuned alternative so that the corresponding super-
resolution result presents the best visual quality. For the
proposed deconvolution algorithm, we used the regularization
parameter λ = 1.47 and the iteration number is 100.

In Fig.12, we investigate the angular super-resolution perfor-
mance of the approaches. The first column of Fig.12 gives the
angular super-resolution imaging results of different methods.
The right column of Fig.12 presents the profile of the targets
scene corresponding to the left column. The first row presents
the angular super-resolution results using the Tikhonov regu-
larization method. The second row contains the Wiener filter
results, while the third and bottom rows contain angular super-
resolution results by using R-L algorithm and the proposed
algorithm, respectively. It can be obviously observed that the
amplitude of the targets profile in the right column of Fig.12
are different. The reason for this is that the distance from the
middle building to the radar is about 594m, while the distance
between the radar and the left/right building is about 597m.
This leads to the profile of the middle building is higher than
the other two profiles in the right column of Fig.12, which
also fits their physical truth.

(b)

Figure 11. (a) The received echo signal of the tested scene after range compression; (b) The
profile of the target ares.

As compared with other methods, the maximum iterations and the regularization parameter of
the proposed algorithm are hand-tuned alternatives, so that the corresponding super-resolution result
presents the best visual quality. For the proposed deconvolution algorithm, we used the regularization
parameter λ = 1.47, and the iteration number is 100.

In Figure 12, we investigate the angular super-resolution performance of the approaches. The first
column of Figure 12 gives the angular super-resolution imaging results of different methods. The right
column of Figure 12 presents the profile of the target scene corresponding to the left column. The first
row presents the angular super-resolution results using the Tikhonov regularization method. The second
row contains the Wiener filter results, while the third and bottom rows contain angular super-resolution
results by using the R-L algorithm and the proposed algorithm, respectively. It can be obviously observed
that the amplitudes of the target profiles in the right column of Figure 12 are different. The reason for
this is that the distance from the middle building to the radar is about 594 m, while the distance between
the radar and the left/right building is about 597 m. This leads to the profile of the middle building being
higher than the other two profiles in the right column of Figure 12, which also fits their physical truth.
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Fig. 12. The results of the angular super-resolution using different methods. Left column from top to bottom, angular super-resolution result obtained by
using Tikhonov regularization method refer to angular super-resolution result obtained by using Wiener filter method, angular super-resolution result obtained
by using R-L algorithm, and angular super-resolution result using the proposed method, respectively; Right column from top to bottom corresponds to the
profile of the left column in the target area.

The left column of Fig.12 shows the angular super-
resolution imaging results. It can be noted that the proposed
method gives the best results in terms of visible quality. This is
the fact that the proposed method is able to suppress the noise
amplification by incorporating the prior information about the
targets. We can see that the angular super-resolution results
obtained by using the Tiknonov regularization method and
Wiener filter method are still noisy, particularly around the
building boundaries. The improvement of the proposed method
compared to the other methods can also be appreciated in the

right column of Fig.12. The spikes of buildings in the result of
the proposed method look fairly separated whereas the spikes
of buildings in the other three results look more connected.
Therefore, we believe that the proposed method for angular
super-resolution in scanning radar is useful in real applications.

V. CONCLUSION

The angular super-resolution in scanning radar has received
much attention in recent years, however, limited work about
the application of deconvolution algorithm for angular super-
resolution in scanning radar has been reported. Since the
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Fig. 12. The results of the angular super-resolution using different methods. Left column from top to bottom, angular super-resolution result obtained by
using Tikhonov regularization method refer to angular super-resolution result obtained by using Wiener filter method, angular super-resolution result obtained
by using R-L algorithm, and angular super-resolution result using the proposed method, respectively; Right column from top to bottom corresponds to the
profile of the left column in the target area.
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the fact that the proposed method is able to suppress the noise
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targets. We can see that the angular super-resolution results
obtained by using the Tiknonov regularization method and
Wiener filter method are still noisy, particularly around the
building boundaries. The improvement of the proposed method
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using Tikhonov regularization method refer to angular super-resolution result obtained by using Wiener filter method, angular super-resolution result obtained
by using R-L algorithm, and angular super-resolution result using the proposed method, respectively; Right column from top to bottom corresponds to the
profile of the left column in the target area.

The left column of Fig.12 shows the angular super-
resolution imaging results. It can be noted that the proposed
method gives the best results in terms of visible quality. This is
the fact that the proposed method is able to suppress the noise
amplification by incorporating the prior information about the
targets. We can see that the angular super-resolution results
obtained by using the Tiknonov regularization method and
Wiener filter method are still noisy, particularly around the
building boundaries. The improvement of the proposed method
compared to the other methods can also be appreciated in the
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using Tikhonov regularization method refer to angular super-resolution result obtained by using Wiener filter method, angular super-resolution result obtained
by using R-L algorithm, and angular super-resolution result using the proposed method, respectively; Right column from top to bottom corresponds to the
profile of the left column in the target area.
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targets. We can see that the angular super-resolution results
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Wiener filter method are still noisy, particularly around the
building boundaries. The improvement of the proposed method
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Figure 12. The results of the angular super-resolution using different methods. (a) Angular
super-resolution result obtained using Tikhonov regularization method; (b) The profile of
Angular super-resolution result obtained using Tikhonov regularization method in the target
area; (c) Angular super-resolution result obtained using Wiener filter method; (d) The
profile of Angular super-resolution result obtained using Wiener filter method in the target
area; (e) Angular super-resolution result obtained using R-L algorithm; (f) The profile of
Angular super-resolution result obtained by using Wiener filter method in the target area;
(g) Angular super-resolution result using the proposed method; (h) The profile of Angular
super-resolution result obtained using proposed method in the target area.

The left column of Figure 12 shows the angular super-resolution imaging results. It can be noted
that the proposed method gives the best results in terms of visible quality. This is due to the fact
that the proposed method is able to suppress the noise amplification by incorporating the prior
information about the targets. We can see that the angular super-resolution results obtained by using
the Tikhonov regularization method and Wiener filter method are still noisy, particularly around the
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building boundaries. The improvement of the proposed method compared to the other methods can also
be appreciated in the right column of Figure 12. The spikes of buildings in the result of the proposed
method look fairly separated, whereas the spikes of buildings in the other three results look more
connected. Therefore, we believe that the proposed method for angular super-resolution in scanning
radar is useful in real applications.

5. Conclusions

The angular super-resolution in scanning radar has received much attention in recent years; however,
limited work about the application of the deconvolution algorithm for angular super-resolution in
scanning radar has been reported. Since the conventional linear deconvolution approaches result in
large noise amplification and, thus, a poor angular resolution, this paper proposes a deconvolution
algorithm for angular super-resolution in scanning radar. This algorithm can be interpreted as solving a
deconvolution problem, corresponding to the original angular super-resolution problem under the MAP
criterion. To use the MAP criterion for realizing the angular super-resolution, we first transform the
original angular super-resolution problem into an equivalent maximum a posteriori estimation task, so
that the prior information about the statistical characteristics of the original scene can be incorporated.
In this paper, the Laplace distribution is used to represent the prior information about the targets. This
makes the resulting MAP estimation task challenging due to the presence of a “non-smooth” function
in the cost function, which calls for an effective and robust differentiable approximation. Therefore,
a convex optimization method with differentiable approximation is employed to solve the associated
MAP estimation task. In our experiments with synthetic data, the proposed deconvolution algorithm
for angular super-resolution has higher precision and suppresses the noise amplification in the angular
super-resolution results.
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