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Abstract: The parts-per-billion-level nitric oxide (NO) gas sensing capability of a  

copper-ion-doped polyaniline/tungsten oxide nanocomposite (Cu2+/PANI/WO3) film 

coated on a Rayleigh surface acoustic wave device was investigated. The sensor developed 

in this study was sensitive to NO gas at room temperature in dry nitrogen. The surface 

morphology, dopant distribution, and electric properties were characterized using scanning 

electron microscopy, energy-dispersive X-ray spectroscopy mapping, and Hall effect 

measurements, respectively. The Cu2+/PANI/WO3 film exhibited high NO gas sensitivity 

and selectivity as well as long-term stability. At 1 ppb of NO, a signal with a frequency 

shift of 4.3 ppm and a signal-to-noise ratio of 17 was observed. The sensor exhibited 

distinct selectivity toward NO gas with no substantial response to O2, NH3 and CO2 gases. 

Keywords: copper-ion-doped polyaniline/tungsten oxide nanocomposite; nitric oxide 

(NO); gas sensor; Rayleigh surface acoustic wave (SAW) 

 

1. Introduction 

The demand for highly sensitive sensors featuring selectivity toward specific gases in various 

applications, such as industrial process control, environment protection, food safety, healthcare, and 
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security, has increased. Several sensing technologies, including optical, electronic, and electrochemical 

methods, have been developed for use in various applications [1–3]. Nitric oxide (NO) emissions are 

mainly generated through the combustion of fossil fuels, and combustion that occurs in power plants  

and vehicle engines. NO sensors are required to differentiate NO from other combustion gases in 

aftertreatment systems of the waste [4]. In environmental monitoring, NO sensors operate at  

sub-parts-per-million levels. 

NO sensors are also required for diagnosing respiratory diseases because the NO concentration in 

exhaled breath can indicate inflammation of the airways [5]. Studies have reported that an increased 

NO concentration in exhaled air is a key symptom of asthma [6–8]. Regarding breath analysis, sensors 

must be able to detect NO concentrations in the parts-per-billion range. The most common device 

applied in breath monitoring is the bulky chemiluminescence analyzer [9]. A sensor array based on a  

yttria-stabilized zirconia (YSZ) electrolyte and containing a WO3 sensing electrode and Pt-zeolite/Pt 

as the reference electrode designed for parts-per-billion-level NO detection was developed [10] and 

tested in a temperature range of 400–600 oC. An NO-selective sensor based on mixtures of WO3 and 

Cr2O3 was designed for operation at a low parts-per-billion level and was operated at 300 °C [11]. 

As mentioned previously, metal oxides are effective materials applied in parts-per-billion-level NO 

detection. Among these materials, WO3, ZnO, and SnO2 are often applied in NOx sensing [2,12–14]. 

However, such sensors must be operated at a high temperature, typically above 200 °C. In addition, 

metal-oxide-based gas sensors exhibit several disadvantages including poor selectivity, response, and 

recovery times in the range of minutes or even hours as well as high power consumption. In a previous 

study, we combined a conducting polymer, polyaniline (PANI), and a metal oxide, PANI/WO3 [15], to 

improve the sensitivity of detection at room temperature and retain the advantages of the constituent 

parts, which feature high surface functions to chemisorption for gas detection. Nevertheless, the 

detection limit for the NO gas was 23 ppb, which is insufficient for certain biomedical applications. To 

increase the sensitivity and lower the detection limit, selective reductive catalysts were introduced. 

Numerous transition metals, such as Fe, V, Cr, and Cu, exhibit low-temperature catalytic activity [16], 

and copper is among the most typical catalysts applied in selective catalytic reduction reactions. 

This study focused on Cu2+/PANI/WO3-nanocomposite-coated surface acoustic wave (SAW) sensors 

featuring sensitivity and selectivity toward NO in the parts-per-billion range at room temperature in dry 

nitrogen. The advantages of SAW devices, such as a small size, fabrication reproducibility, and fast 

output, make them suitable for application in gas detection [17–19]. SAW sensors can respond to targets 

that contribute to perturbation in SAW wave propagation. Mass loading, the electric effect, and the 

acoustoelectric effect perturb SAW propagation while the SAW sensor detects the target gas. The change 

in SAW propagation can be evaluated by measuring the frequency shift and resistance change of the 

SAWs. Therefore, this study investigated the detection properties of a sensor by analyzing SAW responses. 

2. Experimental Section 

2.1. Materials and Reagents 

An aniline monomer was purchased from ACROS (Bergen County, NJ, USA) and was distilled 

prior to use. Tungsten hexachloride (WCl6, Aldrich, St Paul, MN, USA), ammonium persulphate 
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((NH4)2S2O8, Showa, Tokyo, Japan), hydrogen chloride (HCl, Union Chemical Works Ltd., Hsinchu, 

Taiwan), isopropanol (TEDIA, Fairfield, OH, USA), copper sulfate (CuSO4, Aldrich), and ammonium 

hydroxide (NH4OH, TEDIA, Fairfield, OH, USA) were used without treatment. All chemicals used 

were of analytical reagent grade.  

2.2. Preparation of Cu2+/PANI/WO3 Films 

The procedure used to produce the tungsten oxide and tin oxide/PANI solutions was similar to that 

employed in our previous studies [20–22]. Tungsten oxide gel was first synthesized and then mixed 

with an aniline precursor. Subsequently, tungsten (VI) hexachloride (3 g) was mixed with isopropanol 

(50 mL) in an ice bath. Hydrolysis was achieved by adding a 0.5 M NH4OH aqueous solution (5 mL) 

at room temperature. The chloride ion in the solution was removed using deionized water. The 

precipitate was peptized by slowly applying NH4OH and refluxed for 3 days until it become gel. 

Distilled aniline (0.1 mol) was dissolved in 1 M HCl and mixed with a tungsten oxide gel through 

vigorous stirring. An ammonium persulphate solution (0.1 M) was added dropwise into the thoroughly 

mixed solution and polymerization proceeded at an ambient temperature for 20 h. Subsequently, the 

obtained PANI/WO3 precipitate was rinsed using deionized water and then washed with a 1 M HCl 

solution. The obtained solution was diluted using i-propanol to facilitate thin film deposition. 

The obtained PANI/WO3 solution was mixed with a CuSO4 aqueous solution to form a 0.05 wt % 

copper-ion-doped (Cu2+) PANI/WO3 film. The surface morphology and distribution of the elements were 

characterized using a field-emission scanning electron microscope (FE-SEM, Hitachi 4700, Toronto, 

Canada) and energy-dispersive X-ray spectroscopy (EDS) mapping (Horiba, Kyoto, Japan). The electric 

properties of the sensing film were evaluated using a Hall effect measurement system (HMS-3000, 

Ecopia, Chandler Heights, AZ, USA). 

2.3. Fabrication of Surface Acoustic Wave Sensors 

The SAW sensor was designed as a two-port resonator and was fabricated on a ST-cut quartz 

substrate. ST-cut quartz exhibits high temperature stability at room temperature [23–25]. Aluminum 

(Al) interdigital transducers (IDTs) were produced by conducting radio-frequency sputtering by using 

the lift-off method and exhibited a thickness of 3200 Å. The IDTs exhibited a pair number of 104, a 

period p of 32 μm, and an aperture of 960 μm. Each reflector in the device had 150 Al strip gratings; 

the metallization ratio was 0.5, and the length of the cavity was 605 μm. The oscillation frequency was 

measured by the spectrum analyzer (4395A, Agilent, Santa Clara, CA, USA) and was stable at 98.47 MHz 

after SAW resonator was connected with the oscillator [20]. The Cu2+/PANI/WO3 sensitive layer was 

spin coated on the space between the input and output IDTs and covered an area of 1.5 × 0.5 mm2. The 

thickness of the sensitive layer was approximately 3000 Å measured by ellipsometry. 

2.4. Surface Acoustic Wave Sensor Measurement 

This study made use of a dual-device configuration shown in Figure 1 to reduce interference from 

the environment. A coated SAW resonator was used as a sensor, and a non-coated resonator was used 

as a reference. The dimensions of each device were 15.4 × 5.8 × 0.5 mm3. Figure 2 shows the setup 
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applied in NO gas measurement experiments. High-purity nitrogen gas and certified 116 ppb and 300 ppb 

NO gas (Jing-De Gas Co., Kaohsiung, Taiwan) were mixed in various ratios by using a commercial 

gas mixer (Jing-De Gas Co.). Various concentrations of NO flowed from the gas mixer. The outflow, 

which was adjusted using mass flow controllers (Sierra, Kyoto, Japan), exhibited a constant flow rate 

of 110 mL/min. The NO breath sensor (FENO, Bedfont, UK) is an independent analytical instrument 

to analyze NO gas concentration generated by the gas mixer. The dual-device sensing system was 

placed in a temperature-stabilized, sealed 5-cm3 test chamber. A temperature controller maintained a 

constant temperature of 23 °C. The performance of the fabricated SAW sensor was measured at various 

concentrations of NO gas in the closed test chamber. 

 

Figure 1. Photograph of a dual-device configuration.  

 

Figure 2. Experimental setup for measuring NO gas.  

Two electronic configurations [26] for characterizing the SAW sensor were used in this study.  

One is the feedback-loop oscillator design [27] which was applied to design the SAW resonator 

stabilized oscillators to provide a single-frequency signal, measured by a frequency counter (53132A, 

Agilent, Santa Clara, CA, USA). The other one is a network analyzer (E5061B, Agilent), with software 
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(ATeam Scientific Ltd., Hsinchu, Taiwan), connected to the SAW resonator to obtain the impedance 

characteristics of the sensor. A frequency counter and a network analyzer were connected to a 

computer system by using a GPIB interface board and used to record the responses of the sensor.  

The impedance measurement was carried out at the resonant frequency in this study. Noise 

measurement was conducted using data collected for 5 min at 20 points per minute, and noise was 

employed as the standard deviation of the residuals of the linear least squares fit through the data. 

3. Results and Discussion 

The operating frequency of the SAW resonator was measured before and after the Cu2+/PANI/WO3 

sensitive layer was deposited and the frequencies were 98.392 MHz and 98.243 MHz, respectively, as 

shown in Figure 3. This negative frequency shift was accompanied by an increase in attenuation 

caused by mass loading on the SAW device. The same coating was applied to three sensors. The 

difference in the frequency shift between the sensors was less than 2%, indicating that the deposition 

method was reproducible. 

(a) (b) 

Figure 3. Example of frequency responses of (a) a raw SAW resonator and (b) after 

Cu2+/PANI/WO3 layer coating. 

The surface morphology of the as-synthesized sensitive film was analyzed using a FE-SEM and the 

distribution of various elements was characterized using EDS mapping as shown in Figure 4a,b, 

respectively. Figure 4a shows that the sensitive layer exhibited a uniform and porous structure that 

provided a large surface area for gas sensing. In Figure 4b, the bright dots indicate the distribution of 

various elements. W and Cu mapping of the Cu2+/PANI/WO3 sensitive layer indicated that the tungsten 

oxide and copper ions were distributed in the network of PANI uniformly, constituting a porous and 

thin film. 
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(a) (b) 

Figure 4. (a) SEM image of the as-synthesized sensitive layer and (b) the EDS mapping of 

various elements. 

The NO sensing properties in dry nitrogen were tested and the changes in frequency and  

resistance as a function of time were recorded when the sensor was exposed to NO gas at different 

concentrations. Figure 5 shows the transient response of a SAW sensor coated with a Cu2+/PANI/WO3 

sensitive layer at various NO concentrations ranging from low to high. The response was calculated as 

Δf/fo = (f – fo)/fo, where f is the resonant frequency of the sensor in the presence of NO and fo is the 

initial resonant frequency of the sensor in dry nitrogen. Only dry nitrogen flowed through the test 

chamber before NO was released. After the SAW sensor coated with a Cu2+/PANI/WO3 sensitive layer 

was exposed to NO, it detected an increased frequency. After 180 s, NO flow was discontinued and 

only dry nitrogen flowed through the test chamber to enable the frequency to return to its original level. 

The SAW sensor coated with a Cu2+/PANI/WO3 sensitive layer exhibited a change in frequency of 

more than 9.6 ppm when it was exposed to NO at 40 ppb. These results indicated that an SAW sensor 

coated with a Cu2+/PANI/WO3 sensitive layer was able to reversibly detect parts-per-billion levels of 

NO at room temperature. 

 

Figure 5. The transient response of a sensor to NO at various concentrations using dry 

nitrogen as carrier gas at room temperature.  
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The frequency shift shown in Figure 5 gives a positive frequency shift during exposure to NO gas. 

This phenomenon can be explained by the perturbation mechanisms in Equation (1). The perturbation 

mechanisms of SAW propagation after absorbing gas targets can be expressed as [28,29]: 
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where cm and ce are the coefficients of mass sensitivity and elasticity, m/A is the change in mass per 

unit area, h is thickness of the sensitive layer, G' is the shear modulus, K2 is the electromechanical 

coupling coefficient, σs is the sheet conductivity of the sensitive layer, Cs is the capacitance per unit 

length of the SAW substrate. The first term in Equation (1) represents the mass-loading effect, which 

results in a function of gas concentration. The second term is contributed from elastic properties of the 

sensitive layer. The third term represents the acoustoelectric effect. The frequency shift due to the 

change of the elastic constants of the film results in a positive change, which behaves differently when 

compared to the mass effect and acoustoelectric effect. Equation (1) shows a positive frequency 

response occurs as the elastic effect of the sensitive layer significantly increases and exceeds the 

change in mass and the acoustoelectric effect. All three effects were contributed to the frequency shift; 

however, it was not able to quantify the contribution for each in this system. Among those three effects, 

the elastic effect dominated the sensing response. Therefore, Figure 5 indicates that the modification of 

the elastic effect of the sensitive layer increased the oscillation frequency during exposure to NO gas. 

Figure 6 shows the frequency shifts of the SAW sensor coated with a Cu2+/PANI/WO3 sensitive 

layer at NO concentrations ranging from 1 ppb to 200 ppb in dry nitrogen. The number of adsorbed 

NO molecules decreased as the NO concentration decreased, and therefore, the corresponding 

frequency shifts decreased. At a NO concentration of 1 ppb, a signal with a frequency shift of 4.3 ppm 

and a signal-to-noise ratio of 17 was observed. The sensitivity of an SAW sensor is defined as the 

change in the frequency of the sensor in response to a change in NO concentration. The sensitivity of 

the sensor to the NO concentration is roughly linear in a logarithmic coordinate system. 

 

Figure 6. Frequency shifts of the sensor in response to various NO concentrations ranging 

from 1 ppb to 200 ppb using dry nitrogen as carrier gas at room temperature. 
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The Cu2+/PANI/WO3 sensitive film was a p-type semiconductor measured by Hall effect 

measurement in this study. We also examined the NO gas sensing behavior of an SAW sensor in 

response to impedance changes. We observed that apparent resistance changes occurred at resonant 

frequency after introduction of the gas. Therefore, the impedance measurement was carried out at the 

resonant frequency in this study. The response is calculated as ΔR/Ro = (R − Ro)/Ro, where R is the 

sensor resistance in presence of NO in dry nitrogen, and Ro is the initial resistance of the sensor in dry 

nitrogen at the resonant frequency in each case. As shown in Figure 7, a decrease in resistance 

occurred upon exposure to NO, and the response was reversible. Figure 8 shows that the resistance 

changes increased according to the concentration of NO in the range of 1–100 ppb. The resistance 

change became gradually saturated after an NO concentration of 70 ppb. The resistance of p-type 

semiconductors decreases when they are exposed to oxidizing gases [30,31]. Because the 

Cu2+/PANI/WO3 sensitive layer was a p-type semiconductor, the resistance decreased when it was 

exposed to a NO atmosphere. Copper is a typical catalyst applied in selective catalytic reduction 

reactions, and oxygen was absented in the sensing system of this study. The reduction reaction to the 

NO gas occurred on the surface of the sensitive layer, and the electrons were extracted from the sensitive 

layer. Nitric oxide might be reduced by the sensing membrane and it might be reduced into nitrogen and 

water. Consequently, the resistance decreased because of the increase of the carrier concentration in the 

sensitive layer, as shown in Figure 7. The proposed mechanism was shown in the following Figure 9. 

 

Figure 7. Resistance changes of the sensor at various NO concentrations using dry 

nitrogen as carrier gas at room temperature.  

 

Figure 8. Resistance changes of the sensor at various NO concentrations using dry 

nitrogen as carrier gas at room temperature.  
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Figure 9. The proposed sensing mechanism. 

Figure 10 shows the sensor response to an NO concentration of 10 ppb in three cycles. The 

frequency shift was approximately 6.4 ppm in each cycle. The repeated extent of the frequency 

response of the SAW sensor coated with a Cu2+/PANI/WO3 sensitive layer was 92% after 27 days.  

 

Figure 10. Frequency changes of the sensor at an NO concentration of 10 ppb in three gas 

on/off cycles using dry nitrogen as carrier gas at room temperature. 

Thus, the frequency response exhibited high repeatability and long-term stability. The response time 

of the sensor was calculated as the time required to reach 90% of the saturation value upon exposure to 

the NO gas; the recovery time was defined as the time required by the sensor to recover 90% of its 

saturation value after the flow of NO gas was discontinued. When the sensor was exposed to NO, an 

increase in frequency was observed. Figure 10 shows that the sensor responded to NO at 10 ppb, 

exhibiting a response time of 97 s. After NO gas flow was discontinued and the test chamber was 

purged with dry nitrogen, the frequency returned to its original value; the measured recovery time was 37 s. 

Figure 11 illustrates the response of the SAW sensor coated with a Cu2+/PANI/WO3 sensitive layer 

to NO gas at 20 ppb, O2 gas at 150 ppm, NH3 gas at 30 ppm, and CO2 gas at 55 ppm. The sensitivity is 

defined as the ratio of frequency shift to species concentration under the same gas flow rate and 

temperature. The gases did not affect the SAW NO sensor at the indicated concentrations. Thus, these 

results suggest that interference effects, such as those produced by CO2 and NH3, are negligible during 

the detection of NO at parts-per-billion levels in dry nitrogen. 
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Figure 11. The responses of the sensor to NO gas at 20 ppb, O2 gas at 150 ppm, NH3 gas at 

30 ppm, and CO2 gas at 55 ppm.  

The sensor performance has also been investigated in an atmosphere of dry air to evaluate the 

influence of oxygen on its response. The frequency shift to 40 ppb of NO is 9.9 ppm in dry nitrogen 

and 2.1 ppm in dry air, respectively. The frequency shift to 10 ppb of NO is 6.1 ppm in dry nitrogen 

and 0.8 ppm in dry air, respectively. It is quite clear that the sensor response is lower. 

4. Conclusions 

The results indicated that an SAW sensor coated with a Cu2+/PANI/WO3 sensitive layer exhibited 

high sensitivity, reversibility, repeatability, selectivity, and stability in detecting NO in dry nitrogen.  

At an NO concentration of 1 ppb in dry nitrogen, a signal with a frequency shift of 4.3 ppm and a  

signal-to-noise ratio of 17 was observed. The response and recovery times were 97 s and 37 s, 

respectively, at an NO concentration of 10 ppb in dry nitrogen. 

Although NO easily oxidizes and becomes NO2 through a reaction with O2 in a typical environment, 

the NO and N2 gases were mainly responsible for the changes in frequency and resistance in this study 

because of the isolation from oxygen that the controlled chambers provided. Our preliminary findings 

are a promising starting point to investigate Cu2+/PANI/WO3 as sensing layer for NO gas sensing at 

room temperature in dry nitrogen. Further improvements of this device will be focused on optimizing 

the doping concentration in order to reach that the sensor will function in air and minimize the effect of 

environmental humidity changes on the sensor performance. 
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