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Abstract: A practical algorithm is proposed for determining the orbit of a geostationary 

orbit (GEO) satellite using single-epoch measurements from a Global Positioning System 

(GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three 

components of a state vector to determine the satellite’s state, even when it is impossible to 

apply the classical single-point solutions (SPS). Through consideration of the 

characteristics of the GEO orbital elements and GPS measurements, the components of the 

state vector are reduced to three. However, the algorithm remains sufficiently accurate for 

a GEO satellite. The developed algorithm was tested on simulated measurements from two 

or three GPS satellites, and the calculated maximum position error was found to be less 

than approximately 40 km or even several kilometers within the geometric range, even 

when the classical SPS solution was unattainable. In addition, extended Kalman filter 

(EKF) tests of a GEO satellite with the estimated initial state were performed to validate 

the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability 

of divergence that can be caused by large errors in the initial state. 
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1. Introduction 

Many ground-tracking networks and facilities are required to track the position of geostationary 

orbit (GEO) satellites if a ground-tracking system is used [1,2]. The Global Positioning System (GPS) 

receiver can provide high-accuracy position data at a low cost; thus, it is reasonable to use GPS 

receivers in GEO satellites. However, position accuracy, which is calculated using a single-point 

solution (SPS) algorithm with snapshot measurements, is low compared with that of low Earth orbit 

(LEO) satellites or ground users; in certain cases, no result is produced. These disadvantages occur 

because the GPS signal power is lower than that of the LEO satellite, and the geometrical 

configuration of the GPS satellites relative to the GEO satellites is unfavorable. Therefore, an orbit 

determination (OD) filter is needed to overcome these unfavorable circumstances [3]. 

There are two main types of orbit determination (OD) filters: post-processing and real-time 

processing techniques. A real-time OD filter is needed to operate a geostationary orbit (GEO) satellite 

instantly and properly; one such filter is the extended Kalman filter (EKF), which is well known for its 

accuracy and efficiency. The EKF convergence time is determined by the initial state and conditions [4]. 

However, most studies do not consider how to determine the initial state and its conditions [5]. More 

than four GPS satellites are observable in low Earth orbit (LEO); thus, single-point solutions (SPS) can 

be applied at any time and the result can be used as the initial states of the EKF with a high level of 

accuracy. Typically, fewer than four GPS satellites are observable at the GEO; therefore, SPS are not 

always applicable. In these situations, alternative solutions must be employed, such as the short arc 

batch technique, which is a post-processing technique that requires measurements over a long period of 

time; thus, this technique does not provide navigation data instantly [6,7]. 

In this paper, we developed a coarse initial orbit determination algorithm to improve the accuracy of 

the initial EKF states under the sparse visibility of GPS satellites. The application of the proposed 

algorithm is illustrated in Figure 1. We used the characteristics of GEOs to develop our algorithm: GEO is 

an almost circular orbit, and its inclination angle is nearly zero. We set the minimum number of state 

components to calculate the state of the satellite using snapshot measurements under the sparse visibility of 

GPS satellites. This algorithm can determine the GEO satellite’s state vector even when fewer than four 

GPS satellites are visible, and it is very practical because it does not require long-term measurements.  

 

Figure 1. Application of the coarse initial orbit determination algorithm. 
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The remainder of this paper is organized as follows. In Section 2, the details of the coarse initial 

orbit determination algorithm are explained. In Section 3, the general EKF-based orbit determination 

scheme is discussed. In Section 4, simulations of the proposed algorithm and EKF are performed to 

test the accuracy and the availability of the proposed algorithm. Finally, the results of the developed 

algorithm and EKF are discussed.  

2. Coarse Initial Orbit Determination Algorithm  

Four unknown variables appear in the classical SPS algorithm using the GPS signal: position 
components ( , ,x y z ) and receiver clock bias error ( rδ ). Thus, measurements from at least four GPS 

satellites are required. The user position can typically be calculated using the GPS at a LEO satellite at 

any time because more than four GPS satellites are observed at the LEO satellite’s altitude. The error 

of the calculated single point position of a LEO is less than several dozens of meters and can be used 

as the initial state of the EKF. However, it is impossible to calculate the position using the classical 

SPS algorithm when fewer than four GPS satellites are visible at the GEO. More than four GPS 

satellites are infrequently visible at the GEO satellite; thus, the point position is not always determined. 

Thus, we must wait until more than four GPS satellites are visible to obtain navigation data.  

We developed a coarse initial orbit determination algorithm to calculate a point solution using 

measurements obtained from the receiver with two or three GPS satellites. The algorithm uses a 

minimum number of state variables, which were selected by considering the characteristics of the 

GEO. The classical orbital elements of the ideal GEO are shown in Figure 2.  

 

Figure 2. Simplified geostationary orbit (GEO) model. a = 42,164 km  and 0e i= = , e  is 

the eccentricity and i  is the inclination. 

The right ascension of the ascending node (RAAN) of the ideal GEO cannot be defined because the 

inclination angle is zero. The eccentricity is also zero, and thus, the argument of perigee cannot be 

defined either. Thus, we can define the state of the GEO satellite using only its true longitude value. 

The true longitude is a useful term when defining circular and equatorial orbits, and its equation is 

given by 

( )
ˆ

cos
ˆtrue

I r

I r

⋅λ =

  (1)
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If we assume that the satellite rotates in the ideal GEO, the states of a satellite can be approximately 

expressed by one element: the true longitude. We included two additional variables (the clock bias and 

clock bias rate of the receiver) in the state vector of the GEO satellite because these error components 

are included in the C/A code pseudorange and pseudorange rate. Thus, the state vector of the GEO 

satellite is defined as 

T

Kep true r rX c c = λ δ δ 
  (2)

where c  is the speed of light, rδ  is the receiver’s clock bias, and rδ  is the receiver’s clock bias rate.  

The state vector in Equation (2) can be converted into Cartesian coordinates and given by  

cos( ) sin( ) 0 sin( ) cos( ) 0
T

cart true true true true true true r rX a a a a c c= λ λ − λ λ λ λ δ δ      (3)

3true

GM
M n

a
⊕λ = = =   (4)

where G  is the gravitational constant and M ⊕  is the mass of the Earth. The value of a  was set to a 

constant, and thus, the differential of a  is zero.  

Then, the measurement vector can be defined as 

[ ]1 1

T

M MZ = ρ ρ ρ ρ   (5)

t t rr r c c nρ = − − δ + δ + 
 (6)

( )ˆ t t re v v c c nρ = ⋅ − − δ + δ +     (7)

ˆ t

t

r r
e

r r

−=
−

 
   (8)

where M  is the number of visible GPS satellites (two or three in this paper); tr


 and tv


 are the position 

and velocity vectors, respectively, of the GPS satellite; r


 and v


 are the position and velocity vectors, 
respectively, of the GEO satellite; tδ  and tδ  are the GPS satellite clock bias and clock bias rate, 

respectively; rδ  and rδ  are the receiver clock bias and clock bias rate, respectively; ê  is the unit 

direction vector; ρ and ρ  are the pseudorange and pseudorange rate, respectively; and n  is the 

measurement noise from the assumed Gaussian distribution. The ionospheric error is not included  

in Equations (6) and (7) because we assume that the ionospheric error can be removed by the  

dual-frequency GPS receiver.  
We use a least-squares technique to calculate KepX ; this technique minimizes the square sum of the 

difference between Z  and refZ  Z  is the measurement vector obtained from the GPS receiver at the 

true point KepX , and refZ  is the calculated measurement vector at the reference point refX . We assume 

that the GEO satellite’s position is approximately known when the GPS receiver starts its own signal 
processing; thus, refX  is chosen with an error of 1000 km in the first calculation and is updated 

iteratively until convergence is reached. The function of refZ  is nonlinear, and thus, refZ  must by 

linearizing at the point refX . The least-squares technique to determine  is given by 

Kep Kep refX X XΔ = −  (9)

KepX
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refZ Z ZΔ = −  (10)

1 1

T

ref ref ref refM refMZ  = ρ ρ ρ ρ    (11)

ref t ref t rr r c cρ = − − δ + δ 
 (12)

( )ˆref t ref t re v v c cρ = − − δ + δ      (13)

refZ H XΔ = Δ  (14)

( ) 1T T
ref

cart Kep

X H H H Z

H H H

−
Δ = Δ

=
 (15)

Kep ref refX X X= + Δ  (16)

The equations of the measurement matrix KepH  and cartH  are given by 

cart
Kep

Kep

X
H

X

∂=
∂

 (17)

cart
cart

Z
H

X

∂=
∂

 (18)

If we define the state vector as Equation (2), we can calculate the position of the GEO satellite using 

single-epoch measurements of two or three GPS satellites. In the definition of the state vector in  

Equation (2), the inclination angle and eccentricity are not included in the variables; however, these 

variables exist in the real GEO orbit and could increase the error of the state vector calculated 

iteratively. The geometric state error estimated by the proposed algorithm can be defined as 

3 3 3

cos( )

( ) ( ) ( ) sin( )

0

x r

y R R i R r

z

ν   
   = −Ω − −ω ν   
      

 (19)

( ) ( ) ( ) ( )2 2 2 22 cos( ) sin( )est est r estx a y a z c cε = − λ + − λ + + δ − δ  (20)

where Ω  is the ascending node, i  is the inclination, ω  is the argument of perigee, ν  is the true 
anomaly, r  is the radius, estλ  is the estimated true longitude, and estcδ  is the estimated receiver clock bias. 

In Equation (20), ( )2
z  is a constant bias term that cannot be reduced or removed by the proposed 

algorithm; therefore, the error could be increased if the z-component has great value. However, we can 

still determine the state vector as accurately as possible given the sparse visibility of the GPS satellites. 

After calculating the state vector using Equations (9)–(18), the vector can be used as the initial state 

value for the EKF with a practical level of accuracy. 
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3. EKF Scheme 

The EKF is well known for its accuracy and speed; thus, it is used in non-linear system applications, 

such as real-time OD. We will not explain the entire algorithm in detail, as it is not the focus of this 

paper. Thus, the equations of the EKF algorithm scheme are summarized in Table 1 [5,8]. 

Table 1. Extended Kalman filter (EKF) processing scheme using GPS measurements. 

Nonlinear Dynamics Model 

1 1 1( ) ,    (0, )k k k k kX X w w N Q− − −= φ +   

Nonlinear Measurement Model 
( ) ,    (0, )k k k k kZ h X v v N R= +   

State and Measurement 
T

r rX x y z x y z c c = δ δ 
    

[ ]1 1

T

M MZ = ρ ρ ρ ρ   

t r tr r c cρ = − + δ − δ 
 

( )ˆ t r te v v c cρ = − + δ − δ      

Time update 

Predicted state estimation:  

Linear approximation:  

Predicted covariance matrix: 1 1 1 1
ˆ T

k k k k kP P Q− − − −= Φ Φ +  

Measurement update  

Predicted Measurement:  

Measurement matrix linearization:  

Kalman gain computation: 
1T T

k k k k k k kK P H H P H R
−

 = +   

State estimation: ˆ ( )
kk k k kX X K Z Z= + −  

Updating posteriori covariance matrix: [ ]ˆ
kk k kP I K H P= −  

We used two-body gravity and other perturbations to predict the state of the satellite. The equation 

of the general accelerations acting on a satellite is [5]: 

3 perturbedr r a
r

μ= − +    (21)

where r


 is the position vector of the satellite in the Earth-centered inertial (ECI) coordinate system, μ  
is the gravitational constant of the Earth and perturbeda


 is the other perturbed acceleration. 

We included gravitational attraction by a nonspherical central body, third-body effects (Sun and 

Moon) and solar-radiation pressure in the perturbed accelerations [5,9]. The gravitational attraction by 

the nonspherical central body is expressed as: 

1 1
ˆ( )k k kX Xφ − −=

1

1
1

k

k
k

X XX

φ

−

−
−

=

∂Φ ≈
∂

( )k k kZ h X=

k

k
k

X X

h
H

X =

∂≈
∂
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[ ]{ }, , ,
2 0

1 sin( ) cos( ) sin( )
nn

n m sat n m sat n m sat
n m

R
U p C m S m

r r

∞
⊕

= =

 μ  = + φ λ + λ  
   

  (22)

where R⊕  is the radius of the Earth, p  is the associated Legendre polynomials, satφ  is the latitude of 

the satellite, satλ is the longitude of the satellite, and C and S  are the gravitational coefficients.  

The equation of the third-body effect is expressed as: 

3 3
3 3 3

3 3

sat sat
sat

sat sat

r r r
r

r r r
⊕ ⊕ ⊕

⊕
⊕ ⊕

 μ= − + μ − 
 

    (23)

where ⊕μ  is the gravitational constant of the Earth, 3μ  is the gravitational constant of the third body, 

satr⊕


 is the position vector pointing from the Earth to the third body, 3satr


 is the position vector pointing 

from the satellite to the third body and 3r⊕


 is the position vector pointing from the Earth to the  

third body. 

The acceleration by solar radiation pressure is included and is one of the significant accelerations 

acting on GEO satellites. The solar radiation pressure is expressed as: 

SR R sat
SR

sat

P C A r
a

m r
= −  






  (24)

where SRP  is the solar pressure, RC  is the reflectivity, A  is the effective area of the satellite and m  is 

the mass of the satellite. 

We introduced some errors into the dynamics model of the EKF filter compared with the 

measurement dynamics model to better approximate a real situation, and the errors are listed in  

Table 2. The degree and order of the geopotential were lowered from 20 to 10, and the satellite area for 

the solar pressure model was adjusted to create a 10% error [2].  

The errors of the initial state were assumed to be approximately 10 km and 0.01 km in position and 

velocity, respectively. With these values, we set the initial covariance as follows: 

2 2 2 2 2 2 2 2
1 1 1 2 2 2 1 2P P P P P P P PP diag  = σ σ σ σ σ σ σ σ   (25)

where ( )22 2
1 10 kmPσ =  and ( )22 4

2 10 km sP
−σ = . 

The noise of the range and that of the range rate are Gaussian distributions with standard deviations 

of 0.01 km and 0.0001 km/s, respectively, in the simulation. We set R as follows for the case of two or 

three GPS satellites, respectively: 

2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2  R R R R R R R R R RR diag or diag   = σ σ σ σ σ σ σ σ σ σ     (26)

where ( )22 4
1 10 kmR

−σ =  and ( )22 8
2 10 km sR

−σ = . 
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Table 2. COMS orbital elements. 

 Measurement Dynamics EKF Dynamics Error 

Initial epoch time UTC 00:00:00 1 January 2006 - 

Simulation time 24 h - 

Geopotential model 
EGM-96 

(Degree: 20, Order: 20) 
(Degree: 10, Order: 10) 

Third-body gravity Sun, Moon (DE405) - 

Solar pressure 4.57 × 10−6 N/m2 - 

Cross-sectional area 18.941 m2 17.046 m2 (10% error) 

Satellite mass 1547 kg - 

Numerical integration 
algorithm 

Runge-Kutta 68 - 

X −27,828.9136 (km) - 
Y −31,685.02205 (km) - 
Z 3.51107 (km) - 

Vx 2.30981 (km/s) - 
Vy −2.02866 (km/s) - 
Vz −0.00192 (km/s) - 

The elements of the process noise covariance must be approximately 10−16, with the same level of 

error as the dynamics model of the filter; however, we tuned these values with consideration for the 
initial state error and convergence time [10,11]. We determined Q  as follows:  

2 2 2 2 2 2 2 2
1 1 1 2 2 2 1 2Q Q Q Q Q Q Q QQ diag  = σ σ σ σ σ σ σ σ   (27)

where ( )22 12
1 10 kmQ

−σ =  and ( )22 16
2 10 km sQ

−σ = . 

4. Simulation and Results 

4.1. Simulation Procedure  

We chose the Communication, Ocean and Meteorological Satellite (COMS) launched by the Korea 

Aerospace Research Institute (KARI) as our GEO satellite for simulation. The COMS is located at 

128.2° east, and COMS missions are related to Ka-band communication services, meteorological 

monitoring, and ocean observation [2]. We simulated the satellite’s orbit to validate and test the 

developed algorithm. First, we generated the position and velocity data of COMS for 24 h using a 

numerical orbit propagation algorithm. Then, the pseudorange and pseudorange rate, which were 

obtained from the receiver in the GEO satellite, were generated with simulated GPS signals. The 

developed algorithm was tested using the generated measurements under the condition that two or 

three GPS satellites were observable. Then, the calculated state vector was set to the initial state of the 

EKF, and the EKF was processed. The overall simulation procedure is summarized in Figure 3. 
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Figure 3. Diagram of the simulation procedure. 

 

Figure 4. Number of visible GPS satellites over 24 h with 25 dB-Hz and 30 dB-Hz 

thresholds for signal acquisition and tracking; 30 dB-Hz is the minimum value that 

conventional receivers can track.  

4.2. Generation of Measurements 

The first simulation step was to propagate the GEO satellite’s orbit. We propagated the GEO using 

Cowell’s method, which propagates the position and velocity of the satellite by integrating the 

accelerations caused by perturbations at each time step [5]. We included the geopotential, solar 

pressure, and third-body gravity (the Sun and Moon). We chose the EGM-96 model as the 

geopotential, and the degree and order were both set to 20. The Runge-Kutta 68 algorithm was chosen 

as the numerical integrator, and the integral step was set to 10 s. The initial orbital elements for 

propagation are listed in Table 2. 
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The GPS satellites’ position and velocity were generated every 10 s for 24 h using the Almanac 

data. After generating the positions and velocities of the GEO and GPS satellites, we checked whether 

the GPS satellites were observable at each epoch. A GPS satellite was only visible when it was not 

blocked by the Earth and its signal power was sufficiently strong to be processed by the GPS receiver. 

After determining the visibility of the GPS satellites, the C/A code pseudorange and pseudorange 

rate were calculated. The C/A code pseudorange is given by [12] 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t r t

t r t

r TX r RX c RX c TX n

r RX r RX c RX c RX n

ρ = − + σ − σ +

= − τ − + σ − σ − τ +

 

   (28)

( )
( )

0 1 0

0 1 0

r

t

b b t t

a a t t

σ = + −

σ = + −
 (29)

where ρ  is the C/A code pseudorange in L1, RX  is the signal reception time, TX  is the signal 

emission time, rσ  is the receiver clock bias, tσ  is the GPS satellite clock bias, n  is noise, τ  is the time 

delay, 0t  is the reference time, 0a  and 1a  are the polynomial coefficients of the GPS satellite clock 

bias, and 0b  and 1b are the polynomial coefficients of the receiver clock bias.  

The geometric distance from the GPS satellite to the receiver was calculated using ( )tr TX


 and 

( )r RX


; we did not use ( )r TX


 [13]. The GPS signal travels through space at the speed of light, and 

thus, the receiver does not instantly receive the signal emitted from the GPS satellite. Therefore, the 

signal reception time is later than the signal emission time. The equation of the elapsed time from the 

emission to reception is given by 

( ) ( )

( ) ( )

t

t

r TX r RX

c
r RX r RX

c

−
τ =

− τ −
=

 

   (30)

τ  appears on both sides of Equation (30). Thus, an iteration technique was used to calculate the proper 

τ . First, ( )tr RX


 was used instead of ( )tr RX − τ
 to calculate the temporary τ  on the left side of the 

equation, Then, the temporary τ  was used on the right side of Equation (30) to update the temporary τ , 

and the iterations continued until τ  converged [13,14]. 

The equation for the pseudorange rate is similar to that for the pseudorange and is given by 

[ ]ˆ ( ) ( ) ( ) ( )t r te v TX v RX c RX c TX nρ = ⋅ − + δ − δ +     (31)

where rδ  and tδ  are the clock bias rates of the receiver and GPS satellite, respectively. These variables 

are calculated from the derivatives of rσ  and . 

4.3. Simulation Results  

The algorithm was tested using data from the four points (A, B, C and D) selected from the 24 h 

simulated GEO orbit. We selected four points at 6 h intervals to rigorously validate the algorithm. The 

simulation times of the selected points A, B, C and D were UTC 00:00:00, 06:00:00, 12:00:00 and 

18:00:00, respectively, on 1 January 2006. The position and velocity vector of each point is given in 

Table 3.  

tσ
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Table 3. Position and velocity of the COMS at the four selected points. 

Point A B C D 

UTC time 00:00:00 06:00:00 12:00:00 18:00:00 

x (km) −27,828.9136 31,792.4080 27,551.1020 −32,042.5366
y (km) −31,685.0220 −2769.1326 31,911.9004 27,494.4159 
z (km) 3.5110 −27.4958 −5.3747 28.3683 

vx (km/s) 2.3098 2.0194 −2.3276 −1.9989 
vy (km/s) −2.0286 2.3185 2.0093 −2.3364 
vz (km/s) −0.0019 −0.0003 0.0019 0.0004 

Semi-major axis (km) 42,165.029 42,166.897 42,165.112 42,167.097 
Eccentricity 0.000140 0.000108 0.000142 0.000192 

Inclination (deg) 0.0360 0.0378 0.0378 0.0393 
Ascending node (deg) 56.3009 58.8100 60.3141 61.9844 

Argument of perigee (deg) 348.0949 325.9801 12.1476 17.0192 
True anomaly (deg) 172.4067 260.1279 348.8802 77.4768 

The observable GPS satellites over 24 h are depicted in Figure 4; however, the simulations were 

performed under controlled conditions in which only two or three GPS satellites were visible. The 

initial error in the reference position was set to 1000 km at each of the four points, and the reference 

receiver clock bias was set to 100 km. The noise terms in Equations (28) and (31) were selected from 

Gaussian distributions with standard deviations of 0.01 km and 0.0001 km/s, respectively.  

The positions of the COMS and its visible GPS satellites at each point are shown in Figures 5–12. 

The red spot represents the COMS, and the yellow spots represent GPS satellites. At each point, we 

produced scenarios such that two or three GPS satellites were visible at the COMS. Thus, we 

intentionally chose GPS satellites among those visible to control the number of visible satellites if 

more than three GPS satellites were visible. For consistency, we simply removed one satellite from the 

scenario where three GPS satellites were visible such that only two GPS satellites were visible. As shown 

in the figures, the visible GPS satellites are located behind the Earth and are located closely together. 

 

Figure 5. Point A with two visible GPS satellites. 
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Figure 6. Point A with three visible GPS satellites. 

 

Figure 7. Point B with two visible GPS satellites. 

 

Figure 8. Point B with three visible GPS satellites. 
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Figure 9. Point C with two visible GPS satellites. 

 

Figure 10. Point C with three visible GPS satellites. 

 

Figure 11. Point D with two visible GPS satellites. 
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Figure 12. Point D with three visible GPS satellites. 

We tested the developed algorithm using a single-epoch measurement at each point. The calculated 

state vectors of the COMS were compared to the true values, and the differences of each are 

summarized in Tables 4 and 5. We also tested the influence of the position of the third GPS satellite at 

point D; more than three GPS satellites are observable at point D. We ran simulations with two fixed 

GPS satellites and a third satellite placed at several different positions. The results are summarized in 

Table 6. The residual refers to the difference between the calculated and true values. The results 

indicate that the residual of the calculated position is less than 40 km in range, and three of the four 

points have residuals of less than several kilometers in range when using three visible GPS satellites.  

Table 4. Estimated error when using two visible GPS satellites. 

Residuals A B C D 

x (km) 4.453 13.415 −2.984 16.474 
y (km) 5.113 16.693 8.600 20.910 
z (km) −3.511 27.495 5.374 −28.268 

Vx (km/s) 0.000325 −0.000971 0.000001 −0.000963 
Vy (km/s) 0.000331 0.000796 −0.000543 0.001067 
Vz (km/s) 0.001920 0.000348 −0.001994 −0.000458 

clock bias (km) 6.019 2.108 −5.550 −9.404 
clock bias rate (km/s) 0.000001 −0.000519 −0.000276 0.000424 

The residuals increase as the z-component of orbital state increases. The maximum error occurs 

when the z-component of the orbital state is greatest, and the errors are small when the z-components 

of the orbital state are small. This relationship occurs because the developed algorithm does not 

include the z-component in the state vector, and thus, the z-component in the real orbit influences the 

x- and y-components in the state vector. The z-component value increases with the inclination and the 

relationship between the inclination and error at point D are presented in Figure 13. Based on  

Figure 13, we can conclude that the accuracy level of the proposed algorithm is high when the GEO 

satellite’s inclination is small.  
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Table 5. Estimated error when using three visible GPS satellites. 

Residuals A B C D1 

x (km) 1.908 4.642 4.951 17.425 
y (km) 7.349 6.615 1.750 22.021 
z (km) −3.511 27.495 5.374 −28.268 

Vx (km/s) 0.000162 −0.000236 0.000514 −0.001044 
Vy (km/s) −0.000517 0.000156 0.000003 0.001136 
Vz (km/s) 0.001920 0.000348 −0.001994 −0.000458 

clock bias (km) 7.156 −1.598 −4.319 −10.088 
clock bias rate (km/s) −0.000194 −0.000261 −0.000472 0.000194 

Table 6. Estimated errors when using two fixed GPS satellites and a third satellite at 

various positions at point D. 

Residuals D1 D2 D3 

x (km) 17.425 5.2519 −7.992 
y (km) 22.021 7.799 −7.787 
z (km) −28.268 −28.268 −28.268 

Vx (km/s) −0.001044 −0.000007 0.001122 
Vy (km/s) 0.001136 0.000249 −0.000716 
Vz (km/s) −0.000458 −0.000458 −0.000458 

clock bias (km) −10.088 −5.146 −0.468115 
clock bias rate (km/s) 0.000194 −0.000050 −0.000165 

No significant difference occurs when using measurements from two or three visible GPS satellites, 

except for point B, where the residual decreases when using the measurements from three GPS 

satellites. Furthermore, the geometric relationship among the GPS satellites and the GEO also affected 

the accuracy of the algorithm, as demonstrated by the simulation results for point D.  

 

Figure 13. Relationship between inclination and the estimated error at point D. 
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The EKF was tested using the initial state vector calculated by the developed algorithm at each point. 

The time update was processed using the Runge-Kutta method. The simulation results of the EKF are 

shown in Figures 14–18. The time for filter convergence varied across the simulation points and the error 

of the initial state; however, the filter converged within 120 min with an accuracy of 100 m in all 

simulations. The errors expressed in the RIC frame after the filter is stabilized are shown in  

Figures 19 and 20, and the error norm is bounded at 30 m when using three GPS satellites. These results 

were quite acceptable because the EKF filter for a GEO converges very slowly due to the orbit’s 

characteristics. For example, the convergence time of the EKF filter for a GEO is approximately one or 

two hours under the sparse visibility of GPS satellites [15]. The convergence rate of the filter depends on 

the geometric location of the GPS satellites and the changing visibility of the GPS satellites, and thus, the 

convergence rate varies even though the accuracies of the initial conditions are not significantly different.  

 

Figure 14. Test result of the EKF simulation started at point A. 

 

Figure 15. Test result of EKF simulation started at point B. 
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Figure 16. Test result of the EKF simulation started at point C. 

 

Figure 17. Test result of the EKF simulation started at point D for GPS satellite position D1. 

 

Figure 18. Test result of the EKF simulations started at point D for various positions of the 

third GPS satellite. The Y axis is zoomed for convenience. 
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Figure 19. The stabilized EKF errors in a RIC frame when using two GPS satellites. (R is 

radial, I is along-track and C is cross-track direction). 

 

Figure 20. The stabilized EKF errors in a RIC frame when using three GPS satellites. 

5. Conclusions 

The main goal of the algorithm is to calculate the state of the GEO satellite using a single-epoch 

measurement under the sparse visibility of the GPS satellites, which is usually impossible, even when 

applying the classical SPS algorithm. The proposed algorithm can calculate the position, velocity and 

receiver’s clock bias using only a single-epoch measurement of two or three GPS satellites without 

data from external sources. Therefore, the calculated result can be used as the initial state as soon as 

the measurements are generated by the receiver. The resulting maximum range error is less than  

40 km, and when using the result as the initial state of the EKF, which uses a very accurate dynamic 

model, the filter converges to an error of 100 m within 120 min in the worst case. The maximum error 

norm of the EKF after filter stabilization is bounded at 30 m when three GPS satellites are observable. 
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Given this acceptable result and the benefits of the algorithm, we expect that our algorithm is 

sufficiently accurate, robust, efficient, and practical for determining the initial orbit of GEO satellites. 
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