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Abstract: An improvement method for the pose accuracy of a robot manipulator by using
a multiple-sensor combination measuring system (MCMS) is presented. It is composed of
a visual sensor, an angle sensor and a series robot. The visual sensor is utilized to measure
the position of the manipulator in real time, and the angle sensor is rigidly attached to the
manipulator to obtain its orientation. Due to the higher accuracy of the multi-sensor, two
efficient data fusion approaches, the Kalman filter (KF) and multi-sensor optimal information
fusion algorithm (MOIFA), are used to fuse the position and orientation of the manipulator.
The simulation and experimental results show that the pose accuracy of the robot manipulator
is improved dramatically by 38%∼78% with the multi-sensor data fusion. Comparing with
reported pose accuracy improvement methods, the primary advantage of this method is that
it does not require the complex solution of the kinematics parameter equations, increase
of the motion constraints and the complicated procedures of the traditional vision-based
methods. It makes the robot processing more autonomous and accurate. To improve the
reliability and accuracy of the pose measurements of MCMS, the visual sensor repeatability
is experimentally studied. An optimal range of 1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m in the field of
view (FOV) is indicated by the experimental results.
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1. Introduction

Since the first demonstration by Devol et al. in 1956, robots have been widely exploited in many
fields, such as spraying, painting, spot welding, sealing, parts picking and other operations [1]. A
fine accuracy in terms of the robot manipulator pose is mostly required in recent applications of
industrial robots. The pose accuracy is defined precisely by ISO 9283 (1998) [2] as the deviation that
occurs between the required and attained poses and the variance of the attained poses in a number of
repetitions [1].

Considerable research for many years has been done about the improvement of the pose accuracy
of robots. The kinematics errors refer to the differences between the kinematics parameters of a robot
and its nominal values because of the manufacturing and assembly tolerance. Cost restriction aside, the
kinematics calibration is an effective method to improve the absolute accuracy of robots [3]. A number of
research of the kinematics calibration has been presented, e.g., Denavit and Hartenberg (1957) proposed
a D-Hmodel that provided the basis for the kinematics calibration. Further, Hayati (1983) presented a
revised D-H model for proposing a linear model, which related the parameter errors to the end-effector
positioning error of the serial robot directly. However, these methods have limitations. For example,
due to both the geometric errors and non-geometric errors, the kinematics model used in the robot
controller cannot accurately describe the kinematics transformation of the actual robot. This will result
in a large positioning inaccuracy [2]. Moreover, the calibration is usually performed off line, but the
kinematics parameter errors often change with the load or environment variation. Therefore, the online
and independent measurement is indispensable to improve the pose accuracy.

To avoid these disadvantages, some researchers begun trying to improve the pose accuracy from the
perspective of the robot external measurement. They obtain the robot pose through external sensors to
directly monitor the tool, workpiece and manipulator instead of considering the kinematics parameters
and the influence caused by the environment. Frank S. Cheng (2007) proposed a method of robot cell
calibrations to recover the accuracy of the originally defined robot tool-center-point (TCP) positions
by employing a precise external sensor measuring system [4]. Hans de Ruiter (2008) presented a
3D-model-based computer-vision method for tracking the full six DOF pose of a rigid body in real
time via a combination of the textured model projection and the optical flow [5]. Kaijen Hsiao (2011)
applied a robot hand with tactile sensors, to localize the object on a table and ultimately achieved a
target placement [6]. Qu Weiwei (2011) presented a closed-loop tracking system based on a laser sensor
to reduce the relative pose error of the robot to less than 0.2 mm and ±1" in the robot-aided aircraft
assembly drilling process [7]. Guanglong Du (2014) presented an online robot self-calibration method
that utilized a position sensor to obtain the position of the manipulator and an inertial measurement
unit (IMU) to obtain the orientation of the manipulator in real time [3]. However, these methods also
have limitations. The traditional vision-based methods utilized to calibrate a robot require the special
complex steps, such as the camera calibration, corner detection and laser alignment. The laser-based
methods require a large and open-sided space, and the laser beam is easily sheltered during the motion
of the robot manipulator. These procedures are inconvenient, time consuming and infeasible for some
applications. Therefore, in this paper, we develop a novel and flexible pose measurement system of a
robot based on a visual sensor and an angle sensor. This is a quick and efficient method to improve the
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pose accuracy through fusing the redundant data of the multi-sensor. Our method does not require the
complex solution of the kinematics parameter equations and the complicated procedures of the traditional
vision-based methods, such as the camera calibration, corner detection and laser alignment. Moreover,
this method is not influenced by the load and environmental variations with the online measurement.
Those characteristics make the robot processing more autonomous, efficient and accurate.

In this work, we construct the flexible pose measurement system by a dynamic three-dimensional
photogrammetry system, a high precision digital inclinometer and a six DOF series robot, which is
rarely seen in similar research, so far. It is generally known that the absolute pose accuracy of the
robot is worse than its repeatability accuracy. Fortunately, the combination of the high-precision sensors
can improve the absolute pose accuracy. In this paper, as a non-contact sensor, the photogrammetry
is an accurate technique that is widely used in industrial settings, yielding a measurement precision up
to 1:200,000 [8]. The angle sensor, the inclinometer, has a high sensitivity to minor variations of the
angle as small as 0.01◦. Together with the high-precision encoding of the robot itself, the combination
of all three sensors could compensate for each other to achieve a higher pose accuracy ultimately.
The multi-sensors will generate a mass of data. For fusing the redundant data, this paper presents two
kinds of data fusion methods, the Kalman filter fusion method (KF) and multi-sensor optimal information
fusion algorithm (MOIFA), which are modeled and applied in this research.

Besides the factor of the robot itself, the measuring error of the visual sensor also can cause the
inaccuracy of results. Therefore, we take the repeatability error of the visual sensor as a research object,
and we find an optimal field of view (FOV) of the photogrammetry system in which its repeatability
accuracy is the best.

2. Method for the Improvement of the Pose Accuracy of the Robot

2.1. System Constitution

The conventional robot system cannot decrease the pose error at the control level due to the open-loop
control architecture and simplified control laws. Instead of open-loop robot systems, the multiple-sensor
combination measuring system (MCMS) presented in this paper sets up a closed-loop measurement
system to improve the pose accuracy of the robot. As shown in Figure 1, the described system is made
up of a series robot, an industrial photogrammetry system, a digital inclinometer and the PC software.
As we know, the excellent measurement performance is achieved through the use of highly sophisticated
components. In this paper we adopt a 6 DOF robot, whose repeatability accuracy is 10−3 mm. This
robot is offered by KUKA Co., Ltd. (Shanghai, China) and its model is KP 5 arc. We also choose a high
precision industrial three-dimensional photogrammetry system to dynamically track and measure the
robot pose in real time. The photogrammetry system is composed of 4 motion-sensitive CCD cameras
set on top of the robot. We also adopt a high accuracy digital inclinometer LE-30, whose accuracy is
0.01◦. The inclinometer can rapidly measure both the angle of the pitch and yaw at a 20-ms frequency,
and it can be set up on the robot manipulator to measure the attitude angle in real time. However, only
possessing highly sophisticated instruments is not enough; the pose accuracy will be improved through
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fusing the redundant data of the sensors. These data should be converted by the coordinate transformation
matrix previously.

Figure 1. The schematic diagram of the multiple-sensor combination measuring system (MCMS).

2.2. Method of Data Fusion

As is well known, the primary aim of the sensor fusion is to improve the accuracy by using the
redundant information gathered from multiple sources [9]. Since the construction of the MCMS, the
sensor fusion is suitable to apply in this system. Currently, a number of different types of data fusion
methods are being used in industry, such as the Wiener filter, constrained least squares filter, α-β filter,
α-β-γ filter, Kalman filter [10], linear minimum variance fusion algorithm, etc. The Kalman filter (KF),
first proposed in 1960 by Kalman [11], has been successfully used in the Apollo moon flight and C-5A
aircraft navigation systems. Walker and Harries [12] improved the system robustness and adaptability
in the mobile robot area through KF and multi-sensor fusion. The multi-sensor optimal information
fusion algorithm in the linear minimum variance sense (MOIFA) is a geometric fusion method that was
developed by Nakamura [13] and has been enhanced by Elliot et al. [14]. A demonstration of its use can
be seen in [15], where the method was applied to an optical encoder and a camera sensor [16]. The two
methods allow improving the fusion accuracy significantly, so we choose both of them as the methods
of data fusion in this paper. We will summarize them respectively in Sections 2.2.1 and 2.2.2.

2.2.1. Kalman Filter

The Kalman filter solves the optimal linear filtering problems on the basis of a minimum mean square
error method. The present value of the signal can be calculated according to the prior predicted value
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and the latest observation data. The Kalman filter predicts the value through a group of state equations
and recursive methods. This recursive solution usually is expressed in the form of the predicted value.
The following Equations (1)–(5) are the recursion formulas of the Kalman filter:

X (k) = X (k/k − 1) +H (k) [Y (k)− C (k)X (k/k − 1)] (1)

X(k/k − 1) = A(k)X(k − 1) (2)

H (k) = p (k/k − 1)C(k)T [C (k) p (k/k − 1)C(k)T +R (k)]−1 (3)

p (k/k − 1) = A (k) p (k − 1)A(k)T +B (k)Q (k)B(k)T (4)

p (k) = [I −H (k)C (k)]p (k/k − 1) (5)

where X (k) is a multi-dimensional state vector i.e., the predicted value at time k of a single sensor.
C (k) is an observation vector. A (k) and B (k) are the transfer matrices determined by the system.
Y (k) is the observation value of a single sensor. Q (k) is the system noise matrix, and R (k) is the
measurement noise matrix. The statistics features E [X(0)] and var [X(0)] of the initial state X(0) are
known as X(0) = E [X(0)] = µ0 and p (0) = E[(X(0)− E(X(0)))2] = var[X(0)].

Substituting p (0) into Equation (4), we obtain p (1/0). Substituting p (1/0) into Equation (3), we
obtain H (1). Substituting H (1) into Equation (1), we obtain X (1) in the condition of the minimum
mean square error. At the same time, substituting p (1/0) into Equation (5), we obtain p (1). Then, we
obtain p (2/1) by p (1),H (2) by p (2/1) andX (2) byH (2), the as same as above, and so on. Therefore,
the predicted value at time k can be calculated.

In this paper, we only take into account the position accuracy of the robot. Two sensors, the
photogrammetry system and the series robot, are utilized. Y 1(k) is the observation value at time k
of the photogrammetry system. Y 2(k) is the observation value at time k of the robot, and X1(k) is the
predicted value at time k of the photogrammetry system. X2(k) is the predicted value at time k of the
robot. Xf (k) is fused by X1(k) and X2(k) with the weighting matrix W, which is determined by the
typical accuracy values of the measuring instruments. Following is the principle of data fusion:
X i is the three-dimensional coordinate of the predicted value with the i-th sensor. It usually can be

expressed by means of a function of θ as X i = f(θi), and θ is a multi-dimensional vector. A predicted
value with additive noise can be represented asX i = f(θi+δθi), where δθi represents the additive noise.
Equation (6) is deduced by Taylor expanding X i and neglecting the quadratic term.

X i = f(θi) + J(θi)δθi (6)

where J(θi) is the Jacobian matrix of the i-th sensor, J(θi) = ∂Xi

∂θi
.

Assuming a Gaussian distribution for the noise gives E[δθi]
∆
= δθi = 0. Combining Equation (6), the

mean and covariance of X i are:
E[X i]

∆
= X i = f(θi) (7)

V [X i]
∆
= E[(X i −X i)(X i −X i)T ] = E[J iδθiδθi

T
J i
T

] = J iQiJ i
T (8)

where Qi is the covariance matrix of δθi.
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The weight matrix is defined as W = (W 1W 2...W n), and n is the number of the sensors. The fusion
value at time k combines multiple measurements by the weighted average:

X(k) =
n∑
i=1

W iX i(k) (9)

where W ∈ 3 × 3n. W i is the weighting matrix of the i-th sensor. It is assumed that X i = X ,
i.e., all measurement instruments are properly calibrated. Using Equations (9) and (7), the fused mean
value becomes:

E[X(k)] =
n∑
i=1

W iE[X i(k)] =
n∑
i=1

W iX i(k) =

(
n∑
i=1

W i

)
X(k) (10)

since,
E[X(k)] = X(k) (11)

then,
n∑
i=1

W i = I , where I is the identity matrix.

Using Equations (6)–(11), the covariance matrix becomes:

V [X(k)] = E[(X(k)−X(k))(X(k)−X(k))T ]

= E

[(
n∑
i=1

W iX i(k)−
n∑
i=1

W iX i(k)

)(
n∑
i=1

W iX i(k)−
n∑
i=1

W iX i(k)

)T]
=

n∑
i=1

W iJ iQiJ iTW iT

(12)

W i can be solved by means of Lagrange’s method. The solving process is detailed in [13]. The
weighting matrix is given to be:

W i =

{
n∑
i=1

(
J iQiJ iT

)}−1(
J iQiJ iT

)−1
(13)

In this paper, W 1 and W 2 represent the weighting matrices of the photogrammetry system and the
series robot separately. According to Equation (9), the fused result at time k is:

Xf (k) = W 1X1 (k) +W 2X2 (k) (14)

2.2.2. Multi-Sensor Optimal Information Fusion Algorithm

The optimum fused value of the spatial coordinates for the robot position can be calculated as shown
in Equation (15). “The optimum value” means the minimum variance unbiased estimate of the fused
result X̂ .

X̂ =
n∑
i=1

W iX i (15)

where i is the number of measuring instruments. The weighting matrix is shown to be:

W i =

{
n∑
i=1

(
J iQiJ iT

)}−1(
J iQiJ iT

)−1
(16)
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where Qi, J i are the covariance matrix and the Jacobian matrix of the i-th measuring instrument. In this
paper, the covariance matrices of the photogrammetry system and robot are shown below:

Qc =

 δxc
2

δyc
2

δzc
2

Qr =

 δxr
2

δyr
2

δzr
2

 (17)

where (δxc,δyc,δzc), (δxr,δyr,δzr) are three components of the typical accuracy values the photogrammetry
system and of the robot. SubstitutingQc andQr into Equations (15) and (16), we can obtain the optimum
fused result.

The covariance of X i is given to be:

V i(X) = J iQiJ iT (18)

The fused covariance of X̂ is given below:

V (X) =

{
n∑
i=1

(
J iQiJ iT

)−1

}−1

(19)

It obviously can be deduced from Equation (19) that V (X)−1 > V i(X)−1; then V (X) < V i(X).
This proves that the fusion accuracy is better than the local accuracy.

3. Experiments and Discussion

To improve the accuracy of a robot manipulator, there are two steps in this paper. Firstly, the accuracy
of a robot manipulator can be improved through the calibration for the kinematics parameters of the
robot by the photogrammetry system. In addition, through calibrating the kinematics parameters of the
robot, we can obtain a transformation relationship between the coordinate system of the photogrammetry
system and robot. This makes the base coordinate system of the robot be a local unified coordinate
system. Secondly, using the pose data of the calibrated robot and the online measurement of the
multi-sensor combined measurement system (MCMS), three kinds of measurement data can be obtained.
They are from the calibrated robot, photogrammetry system and inclinometer. The result can be
improved by fusing these redundant data through KF and MOIFA. Therefore, four experiments are
designed in this paper. Firstly, as an important part in MCMS, since the photogrammetry system
directly monitors the robot pose, the accuracy of the photogrammetry system is crucial to the whole
measurement system. The measurement errors of the photogrammetry system often appear to be due to
the distortion on the edge of the FOV and the mistaken identity to the target. Therefore, it is necessary
to research the repeatability accuracy of the photogrammetry system in its FOV, which is detailed in
Section 3.1. Secondly, to improve the pose accuracy of the robot, the primary work is the calibration of
the robot. Therefore, the experiment using the photogrammetry system to calibrate the robot is designed
in Section 3.2. Thirdly, to observe the effect of the two data fusion methods, we design a simulation in
Section 3.3. At last, in Section 3.4, a lab experiment is designed for verifying the result of the simulation.
In this paper, all accuracy values (simulations and measurements) are given through the “three-sigma
rule”, which is a method of eliminating the gross error by thrice the standard error in the theory of errors.
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3.1. Repeatability Precision of Photogrammetry System

One of the ways to improve the photogrammetry system accuracy is to search for the optimal range of
the FOV. As shown in Figure 2a, in order to test the accuracy of the photogrammetry system in the FOV,
an experiment is designed as follows. The space of 1× 0.8× 1 m is divided into five planes from bottom
to top, each of which contains 8∼9 points. Then, 9∼12 lines are formed through connecting the adjacent
points. We move the robot manipulator to these points sequentially, and the photogrammetry system
measures the coordinates of each point five times. In this paper, the laser tracker offered by FARO Co.,
Ltd. measures all points three times, and the result is used as the reference value. The FARO Xi laser
tracker in the lab, whose uncertainty of the absolute distance meter (ADM) is 10 µm + 1.1 µm/mL, has
been verified by the National Metrology Institute of China (NIM CDjx2008-0782). The measurement of
the lines is similar as the points. The image of the experimental field is shown in Figure 2b.

(a) (b)

Figure 2. (a) Experimental principle of repeatability precision of the photogrammetry
system; (b) the image of the experimental field.

3.1.1. Results of the Repeatability Precision of the Photogrammetry System

As shown in Table 1, the standard deviations of the position for 43 points are calculated by five
groups of data, where δx,δy,δz are the standard deviations of three dimensions. Due to space limitations,
we extract the data of Planes 1 and 5. δd is the compound standard deviation of δx,δy,δz.
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Table 1. The standard deviations of the repeated measurement of points (units: mm).

Plane 1 δx δy δz δd

1 0.046 0.929 0.303 0.979
2 0.119 0.872 0.246 0.914
3 0.128 1.058 0.242 1.093
4 0.218 0.800 0.325 0.891
5 0.106 1.189 0.229 1.215
6 0.075 1.028 0.275 1.067
7 0.064 0.972 0.283 1.015
8 0.231 1.126 0.272 1.181

Plane 5 δx δy δz δd

35 13.902 7.396 10.661 19.017
36 0.062 0.950 0.255 0.985
37 4.709 9.126 1.822 10.431
38 0.075 1.057 0.256 1.090
39 10.487 9.584 25.830 29.479
40 0.095 0.920 0.286 0.968
41 0.102 0.896 0.406 0.989
42 0.064 0.989 0.285 1.031
43 0.068 1.007 0.273 1.046

In order to show the distribution of the repeatability error in the FOV of the photogrammetry system,
the histograms of the standard deviation are drawn in Figure 3. Figure 3a–e shows the error of
Planes 1∼5, and Figure 3f shows the merged errors of all planes.

Some phenomena are observed in Figure 3. Firstly, the maximum error appears at the corner of each
plane, such as Points 1, 3, 5, 7. Their merged errors are much larger than the other points, as shown
in Figure 3. Except for these cornered points, the errors of the rest of the points are almost similar.
Secondly, with the decreasing of the distance between the plane and the camera, the values and the
number of the errors increase. Thirdly, the errors in the direction of x and z are smaller than y.

In this paper, TENYOUNfull body motion capture 3DMoCap-GC130 is used as a visual sensor.
It takes more than 6 mm of prime lens as the optical lens of the camera. Its measurement range is
more than 1 × 1 × 1 m. As we known, the FOV of the camera will enlarge with increasing of the
photograph distance. The size of Plane 5 is 1 × 0.8 × 1 m, which can be considered to be the range
close to the limitation of the measurement range. Plane 1, the length size of which is 1 × 0.8 × 2 m, is
in a reasonable measurement range. Therefore, the error of Plane 5 is the largest in all planes and that of
Plane 1 is the smallest. The result in Table 1 and Figure 3 shows that the repeatability error in the range
of 1× 0.8× 1 ∼ 2× 0.8× 1 m has higher accuracy. The best accuracy is in the center of the range, the
average values of which are δx = 0.124 mm, δy = 0.997 mm, δz = 0.272 mm, δd = 1.045 mm.
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(a) (b) (c)

(d) (e) (f)

Figure 3. The histograms of the error of five planes and the merged error of all planes.

Table 2. The standard deviations of lines (units: mm).

Plane 1 dl dc ∆d

1 400.202 400.249 −0.047
2 400.482 400.179 0.302
3 500.253 501.264 −1.010
4 500.140 499.492 0.647
5 400.794 400.350 0.443
6 400.509 400.491 0.018
7 500.325 500.498 −0.172
8 400.399 400.583 −0.184
9 500.112 500.306 −0.193

Plane 5 dl dc ∆d

1 321.442 400.547 −79.104
2 398.357 401.150 −2.793
3 501.106 500.544 0.562
4 458.928 500.737 −41.809
5 409.822 401.110 8.711
6 401.108 400.693 0.415
7 499.526 500.038 −0.511
8 447.228 499.478 −52.249
9 499.533 500.300 −0.767

10 401.440 400.309 1.131
11 499.971 500.153 −0.181
12 401.508 402.316 −0.808
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Secondly, we discuss the situation of the lines. As shown in Table 2, the standard deviations of
54 lines are calculated in comparison to the data of the laser tracker. Similarly, we select the data of
Plane 1 and Plane 5. dl is the length measured by the laser tracker, and dc is the length measured by
the photogrammetry system. ∆d is the difference of the laser tracker and the photogrammetry system.
The errors of the lines of each plane are drawn in Figure 4.

Figure 4. The error of the lines of five planes.

From Table 2 and Figure 4, we can find that the error of the lines has a similar phenomena as the points.
The error of the lines increases with the decreasing of the distance between the plane and camera. The
peak of the error appears in Lines 3, 4, 6, 8, which connect to the corner Points 1, 3, 5, 7. Accordingly,
a conclusion can be drawn that the accuracy of the photogrammetry system is much higher in the range
of 1× 0.8× 1 ∼ 2× 0.8× 1 m. The best accuracy of the lines is located in the center of the FOV, and
its average value is ∆d = 0.478 mm.

Therefore, the photogrammetry system can be used as the calibration instrument. The measured
data also can be used as the feedback data to compensate for the errors of the robot in its effective
measurement range.

3.2. Calibrating Method for the Robot

One of the ways to improve the pose accuracy for the robot manipulator is to calibrate the kinematics
parameters of the robot. The photogrammetry system is used to monitor the pose of robot, so that it
is reasonable to calibrate the robot by means of it. This paper proposes a calibrating method for the
position error of the robot that is based on the D-H model. The first step of this method is to build a
model of the coordinate transformation between the coordinate system of the photogrammetry system
and the robot. Then, a kinematics parameter model of the robot manipulator is established according to
the differential equation of the kinematics parameters error for the robot axes. The measured data of the
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photogrammetry system are converted into the coordinate system of the robot. Through comparing with
the converted measured data, the parameters of the robot, such as the robot kinematics parameter, target
installation error and transferred error of coordinate system, can be calibrated. A simple description of
the main principle is shown below. The details of the calibrated method are shown in [17,18].

Figure 5 shows a simple model of the robot calibration. OpXpYpZp is the coordinate system of the
photogrammetry system. OoXoYoZo is the actual base coordinate system of the robot. OrXrYrZr is the
virtual base coordinate system of the robot measured by the photogrammetry system. The difference
between the OoXoYoZo and OrXrYrZr is caused by the errors of the transfer matrix.

Figure 5. Simplified model of the robot calibration.

In order to obtain the position error of the robot, we must unify the coordinate systems of the

photogrammetry system to the robot firstly. Assume Tr
p=


r11 r12 r13 x

r21 r22 r23 y

r31 r32 r33 z

0 0 0 1

 is the transfer matrix

from the coordinate system of the photogrammetry system OpXpYpZp to the virtual base coordinate
system of the robot OrXrYrZr. Rotating Axis 1 of the robot with a certain degree, the photogrammetry
system can obtain a group of data. Fitting the data, we obtain the vector of the direction z, which is the
third component of Tr

p. Similarly, the vector of the direction x, i.e., the first component of Tr
p, can be

obtained by rotating Axis 2 of the robot. Then, the vector of the direction y, i.e., the second component
of Tr

p, can be calculated by the cross-product of vector z and x. The translation vector (x, y, z) also can
be fitted by the data.

Suppose that the error model of the transfer matrix from the OrXrYrZr and OoXoYoZo is expressed
as Equation (20):
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To
r =


1 −δz δy dx

δz 1 −δx dy

−δy δx 1 dz

0 0 0 1

 (20)

where δx, δy, δz are the errors of the rotation matrix and dx, dy, dz are the errors of the translation matrix.
In addition, the cooperation target of the photogrammetry system, which is set up at the end axis of

the robot, should be considered as an additional axis, Axis 7. Therefore, the transfer matrix from Axis 6
to Axis 7 is shown in Equation (21).

T7
6=


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (21)

where tx, ty, tz are the translation vectors, which can be measured previously.
Therefore, the transfer matrix from the coordinate system of the photogrammetry system to the

coordinate system of the robot manipulator is shown in Equation (22).

T =

(
7∑

i=1

Ti
i−1

)
To
rT

r
p (22)

Assume Bp =


r1p r2p r3p pxp

r4p r5p r6p pyp

r7p r8p r9p pzp

0 0 0 1

 is the pose of a certain point in the coordinate system of the

photogrammetry system, where r1p ∼ r9p are the attitude parameters and pxp ∼ pzp are the position
parameters. The converted pose of this point from the coordinate system of the photogrammetry system

to the coordinate system of the robot manipulator Br =


r1r r2r r3r pxr

r4r r5r r6r pyr

r7r r8r r9r pzr

0 0 0 1

 can be obtained by

calculation of Br = T · Bp using Equation (22). Then, the Z-Y-Z Euler angles (φ, θ, ψ), which express
the attitude angles of the robot manipulator, can be obtained as shown in Equation (23).

φ = arctan r6r
r3r

θ = arctan

√
r7r2+r8r2

r9r

ψ = arctan r8r
−r1r

(23)

The link parameters of the robot are the most significant impact factors on the position error of the
robot. In the D-H model, they are the length of the link a, the displacement of the link d, the angle of
rotation α and the link angle of each axis θ. In this paper, we adopt a series robot of six axes, so we can
totally obtain 24 kinematics parameters ∆a1∼4, ∆d1∼4, ∆α1∼4, ∆θ1∼4. In addition, the transfer matrix
from the coordinate system of the robot tool-center-point (TCP) to the end axis of the robot has nine
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rotation and translation error variables, as Equation (20) shows. Therefore, there are 33 parameters of
the robot that need to be calibrated.

According to the distance error model of a series robot [17], the relationship of the distance error and
position error is shown as Equation (24).

∆l(i, i+ 1) =

[
xR(i+ 1)− xR(i)

lR(i, i+ 1)
,
yR(i+ 1)− yR(i)

lR(i, i+ 1)
,
zR(i+ 1)− zR(i)

lR(i, i+ 1)

]
· (d−−→pi+1 − d−→pi ) (24)

where i is the number of the point on the command trajectory. lR(i, i + 1) is the distance between the
point i and i + 1 on the command trajectory. (xR, yR, zR) is the position coordinate components of a
certain point in the robot coordinate system OoXoYoZo. ∆l is the distance error, i.e., the difference value
between the theoretical position and practical position. In this paper, the theoretical value is obtained by
the robot encoder, and the practical value is obtained by the photogrammetry system. dp is the vector for
the position error of the robot.

Because of the impact of four link parameters of the robot, it will cause the position error for the
adjacent axes of the robot dTi

i−1, which can be expressed as Equation (25).

dT ii−1 =
∂T ii−1

∂θi
∆θi +

∂T ii−1

∂αi
∆αi +

∂T ii−1

∂ai
∆ai +

∂T ii−1

∂di
∆di (25)

If each of the two adjacent axes are influenced by the link parameters, the transformation from the
base coordinate system of the robot to the coordinate system of the robot manipulator can be expressed
as Equation (26). In this paper, N = 6.

TN
0 +dTN

0 =
N∏

i=1

(
Ti

i−1+dTi
i−1

)
=

N∏
i=1

(
Ti

i−1+Ti
i−1∆i

)
(26)

where ∆i = Tθi ·∆θi + Tαi ·∆αi + Tai ·∆ai + Tdi ·∆di. Additionally, Tθi, Tαi, Tai, Tdi can be obtained
by the calculation of the robot kinematics parameters. Through expanding Equation (26) with a large
number of simplifications and combinations, the position error of the robot manipulator can be obtained
as given in Equation (27). More detail about the calculation procedures can be found in [17].

∆p = [dtxdtydtz]
T

=

 kx1θ kx1α kx1a kx1d kx2θ · · · kx6θ kxtx kxty kxtz
ky1θ ky1α ky1a ky1d ky2θ · · · ky6θ kytx kyty kytz
kz1θ kz1α kz1a kz1d kz2θ · · · kz6θ kztx kzty kztz

 ·
[∆θ1∆α1∆a1∆d1∆θ2 · · ·∆d6∆tx∆ty∆tz]

T

= Bi∆qi

(27)

where ∆p is the position error of the robot manipulator. (dtx, dty, dtz) are the Cartesian coordinate

components of the position error. Bi =

 kx1θ · · · kxtz
... . . . ...
kz1θ · · · kztz

 is the parameter matrix related to the

typical position value of the robot manipulator. ∆qi = [∆θ1 · · ·∆tz]T are the kinematics parameters of
six-degree series robot and the translation error parameters from the coordinate system of the robot TCP
to the end axis of the robot. In Equation (27), the left side is the position error at each point measured
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by the photogrammetry system. The right side is the kinematics errors that need to be corrected. These
errors can be revised by the least squares method in the generalized inverse matrix sense.

After calibrating by the photogrammetry system, the position error of the robot can be less than
1 mm. Figure 6 shows the position error of 71 points.
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Figure 6. The position error of the robot after calibration.

3.3. Simulation Test of the Sensor Data Fusion Methods

In terms of the position of the robot manipulator, there are two kinds of measurement data: one
is obtained from the photogrammetry system and the other one is from the encoder of the robot. We
propose two sensor data fusion methods to fuse the two kinds of position data. In order to compare
the two methods, a simulation test is developed in MATLAB. One-hundred random points are created
in a space of 100 × 100 × 100 mm to simulate the actual positions of the robot. For the purpose of
simulating the actual value, each point is mixed with an error. It follows the normal distribution, which
is determined by the typical value δ of the measured instruments. In this paper, the typical accuracy
values of the photogrammetry system are δxc = δyc = δzc = 0.15 mm. The typical accuracy values of
the robot are δxr = 0.157 mm, δyr = 0.087 mm, δzr = 0.043 mm. The typical values are calibrated by
the FARO Xi laser tracker. Then, 100 points are fused by using KF and MOIFA.

In the first method, the simulated measured value of the photogrammetry system and robot, Y 1(k)
and Y 2(k), are input into KF, as described in Equations (1)–(5), to obtain the estimated state variables,
X1(k + 1) and X2(k + 1). Then, they are fused using the weight matrix W described in Equation (14),
which is determined by the Jacobian matrices and covariance matrices of the photogrammetry system
and robot. The fused error using KF is drawn in Figure 7a. In the second method, the simulated value
of the photogrammetry and robot are fused as described in Equations (15)–(17). The fusion errors of
MOIFA are drawn in Figure 7b.
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(a) (b)

Figure 7. (a) The simulated fused error using the KF method; (b) The simulated fused error using
the multi-sensor optimal information fusion algorithm (MOIFA).

3.3.1. Results of the Simulation Test of the Data Fusion Methods

As shown in Table 3, ∆x1, ∆x2 are the estimated errors of the photogrammetry and robot after fusing
by the KF method, respectively. ∆xf is the fused error. ∆CM , ∆RB are the errors of the photogrammetry
and robot, respectively. ∆f is the fused error after fusing by MOIFA.

Table 3. Simulation results of the data fused by KF and MOIFA (units: mm).

∆x1 ∆x2 ∆xf

−0.198 0.139 0.043

∆CM ∆RB ∆f

0.240 0.156 0.129

Since the photogrammetry system has a bigger typical accuracy value, the error of the
photogrammetry system is bigger than that of the robot, as shown in Table 3. It is indicated in Figure 7a,b
and Table 3 that either of the methods can reduce the error after the data fusion. Through calculating the
data in Table 3, the error is reduced by 78.2% with KF and by 46.1% with MOIFA. As shown in Table 3,
KF has smaller fused errors than MOIFA. In addition, KF can predict the state variables of next moment,
which is suitable to be applied in the dynamic measurement and compensation. MOIFA can only analyze
the ready-measured data. However, it will cause the hysteresis of the real-time compensation. It should
be noted that the measuring range is 0∼100 mm in this experiment. KF is a linear filter, so that its fused
error will be enlarged with increasing the measuring range. This will be verified in the lab experiment in
Section 3.4.

3.4. Verified Experiment in the Lab

In order to validate the conclusion of the simulation test, a data fusion-verified experiment in lab is
designed. For the purpose of measuring the pose of the robot manipulator, a five-ball target frame of
the photogrammetry system and the inclinometer are set up at the end of the robot through a special
fixture, as shown in Figure 1. Seventy six points are located on the surface of a 200-mm radius sphere,
which is in the space of 1 × 1 × 1 m in the front of the robot. Obviously, these points must also be
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located in the effective measurement area of the photogrammetry system, as described in Section 3.1.
For acquiring the stable data, the robot stays in each position for 7 s to offer enough measurement time
for the photogrammetry system. Since the robot has been calibrated in Section 3.2, in this experiment,
all data are converted into the base coordinate system of the robot. The measurement value of the FARO
Xi laser tracker is used as the reference value. Then, 71 picked points are fused using KF and MOIFA.

The same as the process of the simulate experiment described in Section 3.3, the fused error using KF
is drawn in Figure 8a, and the fused error using MOIFA is drawn in Figure 8b.

(a) (b)

Figure 8. (a) The experimental error using KF; (b) the experimental error using MOIFA.

3.4.1. Result of the Verified Experiment in the Lab

The average values of the measurement error are shown in Table 4.

Table 4. Experimental results of the data fused by KF and MOIFA (units: mm).

∆x1 ∆x2 ∆xf

−3.940 3.379 1.297

∆CM ∆RB ∆f

1.587 1.386 0.981

It is indicated in Table 4 that in the lab experiment, the errors of the photogrammetry system are
bigger than that of the robot. This is because its typical value is bigger than the robot, that same as the
simulation experiment shown in Section 3.3.1. The error of the photogrammetry system ∆CM in the lab
experiment is smaller than the simulation test. This illustrates that the accuracy of the photogrammetry
system in its effective FOV is improved, as we had tested in the repeatability experiment in Section 3.1.1.
It is seen in Figure 8a,b and Table 4 that both of the fused methods can reduce the error after the data
fusion. Through the data calculation in Table 4, the error is reduced by 67.3% with KF and by 38.2%
with MOIFA. This is a little smaller than the results of the simulation, but both of them have common
trends. However, the value of the fused error using KF is a little larger than the error of the simulation.
The reason is that KF is a linear filter, which had been discussed previously in Section 3.3.1. Comparing
to the other works, Yauheni and Jerzy of Warsaw University of Technology obtain the improved value of
the positioning accuracy for the robot end-effector ∆L = 2.39 mm using the method of joint error mutual
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compensation. Li Junmin and Wang Jinge et al. improved the pose accuracy of the robot to 2.2 mm
based on the unit quaternion and the prediction of the pose estimation accuracy. It is indicated that the
multiple-sensor combination measuring system (MCMS) proposed in this paper has good performance
for improving the pose accuracy of the robot.

Therefore, a conclusion can be made in comparison to the simulation that both of the data fusion
methods can lead to the improvement of the results. MOIFA has more stable accuracy of the fusion, but
it has no predicted function, which would cause hysteresis in the feedback control system of the robot.
KF is widely applied in the areas of robotics and aviation. It possesses the predicted function of the next
moment, which is suitable for real-time measurement and compensation. However, its predicted error
would be enlarged with increasing measurement range, since it is a kind of linear filter. According to
the features of the two data fusion methods, we can adopt KF to fuse data when dynamic and real-time
measurement is needed, as well as when the measurement range is small. Otherwise, MOIFA can be
adopted when the static and offline measurement is needed, as well as when the measurement range
is large.

4. Conclusions

In this paper, we proposed a multi-sensor combination measuring system (MCMS) and two sensor
data fusion methods to improve the pose accuracy of industrial robots. The advantage of this method
is that it is automatic and does not involve environmental intervention. To ensure the accuracy of the
measured sensor, this paper researched the repeatability precision of the photogrammetry system and
the robot calibration by means of the photogrammetry system. The experimental results show that
the best accuracy of the photogrammetry system is in the center of the FOV, which is the range of
1 × 0.8 × 1 ∼ 2 × 0.8 × 1 m. The position error of the robot manipulator is less than 1 mm after
being calibrated by the photogrammetry system. In order to improve the accuracy of the robot pose, we
propose two kinds of data fusion methods to fuse the redundant information gathered from the multiple
sensors. Through comparing with the simulation and lab experimental results, KF possesses a predicted
function of the next moment that is suitable for real-time measurement and compensation. However, its
predicted error would be enlarged with an increasing measurement range, since it is a kind of linear filter.
On the other hand, MOIFA possesses the stable accuracy of fusion, but it is not capable of the predicting
function. This will cause hysteresis in the feedback control system of the robot. Therefore, both of the
methods can reduce the pose error of the robot by 38%∼78%. The choice of method is dependent on
the requirements of the measurement. The experimental and theoretical results provided the basis for an
industrial application of the robot pose measurement and compensation. Future works will include the
real-time transferring of data, online control and compensation for the pose of the robot manipulator.
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