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Abstract: This paper deals with the problem of multi-target tracking in a distributed camera
network using the square-root cubature information filter (SCIF). SCIF is an efficient and
robust nonlinear filter for multi-sensor data fusion. In camera networks, multiple cameras
are arranged in a dispersed manner to cover a large area, and the target may appear in
the blind area due to the limited field of view (FOV). Besides, each camera might receive
noisy measurements. To overcome these problems, this paper proposes a novel multi-target
square-root cubature information weighted consensus filter (MTSCF), which reduces the
effect of clutter or spurious measurements using joint probabilistic data association (JPDA)
and proper weights on the information matrix and information vector. The simulation results
show that the proposed algorithm can efficiently track multiple targets in camera networks
and is obviously better in terms of accuracy and stability than conventional multi-target
tracking algorithms.
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1. Introduction

With the rapid development of image processing, sensor and semiconductor technology, the
availability of inexpensive hardware, such as CMOS cameras, that are able to ubiquitously capture video
content from the environment has fostered the development of camera networks [1]. Cameras have been
widely used in smart homes, wide-area surveillance, intelligent transportation, medical care, industrial
control, etc.

Multiple cameras can cover a large area, communicate with each other through the network and
then fuse all of their measurements to achieve robust scene understanding. However, factors, such as
weather, illumination and shadow, make the measurements suffer noise easily. At the same time, there
are multiple targets in the scene, which increases the difficulty of targets tracking. In this paper, we focus
on the problem of tracking multi-targets through a camera network. In many application scenarios of
camera networks, the observation is a nonlinear function of the target state. Consequently, we propose a
novel algorithm for these complicated application scenarios.

A camera network is a set of resource-constrained camera-equipped sensor nodes that are spread over
a large area. The limit of the centralized architecture is obvious. When there are large volumes of data
that need to be transmitted, processed and interpreted by resource-constrained nodes to deliver to the
fusion center, the network may easily fail because of the energy consumption and communication burden.

One way of addressing this issue is through the novel paradigm of distributed algorithms. Recently,
distributed algorithms have witnessed a surge in interest that has enabled a wide range of cooperation
and information fusion in bandwidth-limited sensor networks. They are advantageous for target tracking
in camera networks due to their scalability and high fault tolerance [2,3].

In a distributed estimation scheme, the system must adopt certain strategies to share information.
In recent years, many researchers have proposed linear consensus protocols to deal with this problem
through multiple iterations of communication between the local node and its neighboring nodes. For
example, Olfati-Saber et al. [4] provided a theoretical framework for consensus and cooperation
in multi-agent systems. In their paper, they made a detailed analysis of a consensus algorithm for
multi-agent networked systems with an emphasis on the role of directed information flow, robustness
to changes in the network topology due to link/node failures, time delays and performance guarantees.
Ren et al. [5] considered the problem of information consensus among multiple agent exchange
with dynamically changing interaction topologies and gave conditions for asymptotic consensus under
dynamically changing interaction topologies and the weighting factors using update schemes.

Combining with the above-mentioned consensus algorithm and then using a filter algorithm, such as
Kalman filter, one can achieve the goal of target tracking. Olfati-Saber introduced a novel distributed
Kalman consensus filtering (KCF) algorithm for sensor networks [6]. The KCF algorithm works under
the assumption that every sensor has the ability to sense all targets. However, in a realistic camera
network, a target could usually be seen by none or only a few of the cameras. In [7], Olfati-Saber et al.
considered the case mentioned above. However, the solution is a hybrid P2P/hierarchical architecture,
not fully distributed and not suitable for large-scale networks. Kamal et al. [2] proposed an information
weighted consensus filter (IWCF) to deal with this problem by proper weights on the prior state and the
measurement information. In camera networks, the measurement model does not evolve linearly. Hence,
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tracking algorithms depending on linear filters, such as the traditional Kalman filter and the information
filter, cannot be applied. Katragadda et al. [8] proposed two consensus-based distributed algorithms for
nonlinear systems using the extended information filter (EIF). However, this filter adopts multivariate
Taylor series expansions to linearize a model. The accuracy may not meet the requirements when they
are used in the case of camera networks.

To solve these problems, this paper proposes a novel consensus filter based on the square-root
cubature Kalman filter (SCKF) [9]. The SCKF adopts a third-degree spherical-radial cubature rule
that provides a set of cubature points scaling linearly with the state-vector dimension. The SCKF can
provide a robust and systematic solution for high-dimensional nonlinear filtering problems. Meanwhile,
compared with the unscented Kalman filter (UKF) [10], the SCKF can preserve two properties of the
error covariance matrix: symmetry and positive definiteness in each update cycle [9]. In the UKF, due to
errors introduced by arithmetic operations performed on finite word-length digital computers, these two
properties are often lost.

One advantage of the information filter over the Kalman filter arises from its natural fit for multi-agent
problems. Multi-agent problems often involve the integration of sensor data collected decentrally. Such
integration is commonly performed using Bayes’ rule. When represented in logarithmic form, Bayes’
rule becomes an addition. Information integration is achieved by summing up information from multiple
sensors. Addition is commutative. Because of this, information filters often integrate the information in
an arbitrary order, with arbitrary delays and in a completely decentralized manner [11]. In this paper, we
use the information form of SCKF, which is called the square-root cubature information filter (SCIF) [12].

Multi-target tracking is the combination of data association and estimation. However, the
above-mentioned methods do not consider the measurement-to-track association. Among many
algorithms that are available for data association, the multiple hypothesis tracking (MHT) [13] and joint
probabilistic data association (JPDA) [14] are two popular schemes. JPDA achieves reasonable results
at a much lower computational cost than MHT and can be easily integrated into a distributed system.

The main contribution of this paper is proposing data association with a square-root cubature
information filter, taking special care of the issues of nonlinearity and finite word-length digital
computers and using the proposed algorithm to track multi-targets in a camera network. In Section 2
the state-of-the-art in distributed multi-target tracking in camera networks is described. Section 3
presents preliminaries for this paper, such as the model, average consensus and JPDA. In Section 4,
the distributed square-root cubature information weighted consensus filter (DSCIWCF) is proposed.
We describe the JPDA with DSCIWCF for the multi-target tracking algorithm, called the multi-target
square-root cubature information weighted consensus filter (MTSCF), in Section 5. In Section 6, the
proposed method is compared against others experimentally. The simulation results show that the
proposed algorithm can efficiently track multiple targets in camera networks. Finally, we will give the
conclusion of this paper in Section 7.

2. Related Work

This section discusses consensus-based distributed multi-target tracking in camera networks, focusing
on the problems of nonlinearity, redundancy and robustness.
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There are many research papers on multi-target tracking under sensor networks [15–20]. However,
most of these methods do not consider the problem of naive nodes [2] and numerical difficulties resulting
from the finite word-length of computers. Now that computers have become so much more capable, we
do not have to worry about numerical problems as before. Nevertheless, numerical issues still arise in
finite-word-length implementations of algorithms, especially in sensor networks.

In [15], a distributed data association for multi-target tracking in sensor networks was proposed by
Sandell et al. In their paper, they considered that each sensor node can make noisy measurements of the
target state. In this situation, data association techniques must be employed. Therefore, they used the
JPDA algorithm to deal with the data association. Although their proposed method is distributed, their
method is based on KCF, which is used in a linear system and does not consider naive nodes.

In [18], Roy-Chowdhury et al. extended the method proposed in [15] to deal with nonlinear problems.
Although it can be used in nonlinear camera networks, their method is based on EKCF, and thus, naive
nodes have not been considered.

Kamal proposed extended multi-target information consensus to deal with the problems of
nonlinearity and naive nodes [20]. Their method is based on IWCF [2], which is more robust and
accurate than the KCF algorithm. However, their method has the problem of numerical difficulties
mentioned above in resource-constrained camera networks.

As described above, this paper uses JPDA with the SCIF-based tracking algorithm at each camera
node to track multi-targets in a camera network. Our algorithm can not only overcome the numerical
difficulties mentioned above, but also gets much more accurate results at the same time.

3. Basic Theories

3.1. System Model

The general nonlinear system model for camera networks is the form:

xjk,i = f(xjk−1,i) + vjk−1,i (1)

zjk,i = h(xjk,i) + wj
k,i (2)

where the system equation f(·) and the measurement equation h(·) are time-varying nonlinear functions.
At time k, xjk,i ∈ Rnx is the state vector of the j-th target. Each camera Ci gets mi(k) measurements
denoted as {zjk,i}

mi(k)
j=1 , and zjk,i ∈ Rnz is the nonlinear measurement from the j-th target measured by

the node Ci at time k. Cameras do not know the relationship between measurements and targets. That
is to say, they do not know which measurement is generated from which target. vjk−1,i ∈ Rnx is the
process noise of the node Ci on time k − 1, wj

k,i ∈ Rnz is the measurement noise of node Ci at time k.
The noise sequences vik−1 and wi

k are assumed to be independent and white with vik−1 ∼ N(0, Qi
k−1) and

wi
k ∼ N(0, Ri

k), respectively.
Given a camera network with NC cameras, there are no specific assumptions about the overlap

among the FOVs of these cameras. In the FOV, there are NT moving targets. In this paper, we assume
that all cameras have been calibrated, so we can get the target position corresponding to the same
reference plane. The communication in the network can be represented using an undirected connected
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graph G(τ) = (C,E(τ), A(τ)) [21,22]. The set of vertices C = {C1, C2, · · · , CNC
} represents the

cameras. The set E ⊆ C × C contains the edges of the graph, which represents the available
communication channels between different cameras. A(τ) = [aij]NC×NC

is an adjacency matrix, which
is a symmetric 01−matrix. Because the graph has no loops, the diagonal entries of A(τ) are zero
(aii = 0, i = 1, · · · , NC). Ωi = {j ∈ C | (i, j) ∈ E} is an adjacency set of node Ci. (i, j) represents the
direct communication channel between node Ci and node Cj . The degree of node Ci is the number of its
neighbors 4i =

∑
j aij . The degree matrix is an NC × NC matrix defined as ∆(τ) = diag{A(τ) · 1}.

The Laplacian of graph G(τ) is defined by L(τ) = ∆(τ)− A(τ).
In this paper, we use the “+” superscript to denote the a posteriori estimate and the “–” superscript

to denote the a priori estimate. For example, x̂j−k,i (and its covariance P j−
k,i ) represents the prior/predicted

state estimate (and covariance) of xjk,i.

3.2. Average Consensus

To compute the average, average consensus [23,24] is a popular distributed algorithm. Suppose, each
node i holds an initial scalar value ai(0) ∈ R, and a(0) = {ai}NC

i=1 denotes the vector of the initial node
values on the network. We are interested in computing the average of the initial values, 1

NC

∑NC

i=1 ai, via
a distributed algorithm, in which the nodes only communicate with their neighbors.

In the average consensus algorithm, at the beginning of iteration τ, a node Ci sends its previous
state ai(τ − 1) to its direct network neighbors Cj ∈ Ωi and also receives the neighbors’ previous
states aj(τ − 1). Then, the iterative form of the average consensus algorithm can be stated as follows
in discrete-time:

ai(τ) = ai(τ− 1) + ε
∑
j∈Ωi

(aj(τ− 1)− ai(τ− 1)) (3)

By several iterations, a consensus is asymptotically reached for all initial states. The rate parameter ε
should be chosen in 0 ∼ 1/∆max, where ∆max is the maximum degree of the network graphG. Choosing
a larger value of ε will result in faster convergence, but choosing values equal or more than 1/∆max will
render the algorithm unstable. The paper [24] provided a good choice of ε using Metropolis weights.
The Metropolis weight matrix is defined as:

Wij =


1

1+max{∆i,∆j} , if {i, j} ∈ E
1−

∑
{i,k}∈E Wik, if i = j

0, otherwise

(4)

Arranging the local consensus states into the vector a[τ] = [aT1 [τ], · · · , aTNC
[τ]], the update

Equation (3) can be written in the matrix form as:

a[τ + 1] = (Ψ[τ]⊗ I)a[τ] (5)

where Ψ[τ] = I − εL(τ), I is the appropriate size identity matrix and ⊗ denotes the matrix Kronecker
product; Ψ[τ] is a stochastic matrix.
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3.3. Joint Probabilistic Data Association

In the real world, in addition to the data originating from the target, a set of measurements are
clutter, which correspond to no targets. A direct measurement to target assignment may lead to poor
performance. Thus, a data association algorithm is needed. In this paper, we use JPDA for data
association [14,15]. Here, we briefly review this algorithm.

The idea of JPDA is to compute the smoothing property of expectations. In other words,
the conditional mean of the state is obtained by averaging over all of the association events. Let
βt
ij = P [χt

ij | Zk
i ] and βt

i0 = 1 −
∑mi(k)

j=1 P [χt
ij | Zk

i ]. βi0 denotes the probability that no measurement
is associated with target t for node Ci, and χt

ij denotes the event that the measurement j on node i
originated from target t. See [14] for details about computing βij’s values. The JPDA filter (JPDAF)
state estimate is:

x̂t+i = E[xt | Zk
i ]

= x̂t−i +Kt
i (z

t
i − (1− βt

i0)H t
i x̂

t−
i )

(6)

where x̂t+i and x̂t−i denote the a posteriori estimate and prior estimate of the state of target t by node
i at time k, respectively. zti and Kt

i denote the mean measurement and the Kalman gain for target
t, respectively. H t

i is the observation matrix for node Ci for target t. Zi(k) = {zi1(k), zi2(k), · · · }
denotes the set of mi(k) measurements obtained by node i at time k, and we define Zk

i =

{Zi(1), Zi(2), · · · Zi(k)}.
From Equation (6), the mean measurement innovation z̃ti for target t is defined as:

z̃ti = zti − (1− βt
i0)H t

i x̂
t−
i (7)

where zti =
∑mi(k)

j=1 βt
ijzij .

The covariance estimate for JPDAF is given by:

P t+
i = P t−

i − (1− βt
i0)Kt

iW
t
i (Kt

i )
T +Kt

i P̃
t
i (Kt

i )
T (8)

where:

P̃ t
i =

mi(k)∑
j=1

βt
ij(zij −H t

i x̂
t−
i )(zij −H t

i x̂
t−
i )T − (z̃ti)(z̃

t
i)

T (9)

The JPDAF is based on the Kalman filter, which is the best linear estimator. However, in this paper,
the camera model is a nonlinear system. The JPDAF needs to be modified to fit the nonlinear system.
Details will be discussed in Section 5.

4. Square-Root Cubature Information Weighted Consensus Filter

The square-root cubature Kalman filter (SCKF) algorithm [9] was proposed by Arasaratnam et al. It
is a more accurate nonlinear filter that could be applied to solve high-dimensional nonlinear filtering
problems with minimal computational effort. In multi-sensor data fusion applications, because of
the advantages of the information filter mentioned above, this paper uses the information square-root
cubature information filter (SCIF) [12]. Firstly, we will give a brief review of SCIF of node i as follows;
thus, in order to facilitate the description, the sensor index i will be dropped in this review.
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4.1. Square-Root Cubature Information Filter: A Brief Review

The information filter propagates the inverse of P , rather than propagating P . The state estimate and
its corresponding covariance in the Kalman filter are replaced by the information vector and information
matrix, respectively, in the information filter. The updated information vector and information matrix
can be written as:

Yk|k−1 = P−1
k|k−1 = Sy,k|k−1S

T
y,k|k−1 (10)

ŷk|k−1 = P−1
k|k−1x̂k|k−1 = Yk|k−1x̂k|k−1 (11)

where Sy,k|k−1 is the square-root information matrix. The information update at time k is given by:

Yk|k = Yk|k−1 + Ik (12)

ŷk|k = ŷk|k−1 + ik (13)

Here, Ik and ik are defined as follows, respectively [12]:

Ik = (Yk|k−1Pxz,k|k−1)R−1
k (Yk|k−1Pxz,k|k−1)T (14)

ik =(Yk|k−1Pxz,k|k−1)R−1
k (zk − ẑk|k−1 + P T

xz,k|k−1ŷk|k−1) (15)

In matrix theory, an covariance matrix P can be written as:

P = AAT (16)

where P ∈ Rn×n, A ∈ Rn×m,m ≥ n. Equation (16) can be considered as the square-root of P .
For a simple calculation, in this paper, A is transformed into a n×m triangular matrix S using a
triangularization decomposition algorithm, as follows:

S = Tria(A), S ∈ Rn×m (17)

Tria denotes a triangularization decomposition algorithm. If we use QR decomposition, AT will
be decomposed into an orthogonal matrix Q ∈ Rm×m and an upper triangular matrix R ∈ Rm×n,
AT = QR; then, Equation (16) can be written as:

P = AAT = RTQTQR = RTR = SST (18)

then S = RT . S is a lower triangular matrix, which is a sparse matrix. The sparsity of S will benefit
calculations and reduce storage space. The steps involved in the square-root cubature information filter
algorithm are summarized in the following:

In the time update, at time k, assume that (ŷk−1|k−1, Sy,k−1|k−1) is known; we compute the square-root
of the predicted information matrix Sy,k|k−1 and the predicted information vector ŷk|k−1.

In the measurement update, we will compute the updated information vector ŷk|k and the square-root
of the updated information matrix Sy,k|k according to the results of the time update step. See [15] for
details about these two steps.
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4.2. Centralized Square-Root Cubature Information Filter

Multi-sensor fusion is the process by which information from many sensors is combined to yield
an improved description of the observed system. In this section, we will give a brief introduction of the
centralized square-root cubature information filter (CSCIF), which is the base of the proposed algorithm.
A centralized camera network system comprises a fusion center with connections to all other cameras.
In order to distinguish between the information state contribution i and node index, we use the s to
denote the node index in the rest of paper. Each camera Cs obtains data about the environment, which is
forwarded to the fusion center, where s = (1, 2, · · · , Nc). The global estimate in the fusion center can be
computed from NC sensor measurements at time k by simple summing of the local information vectors
and matrices (the “c” superscript denotes “centralized”):

Y c
k|k = Y c

k|k−1 +
Nc∑
s=1

Isk (19)

ŷck|k = ŷck|k−1 +
Nc∑
s=1

isk (20)

In Equation (20), the isk can be computed using the equation isk = Ss
i,kS̄

s
R,k(zsk − ẑsk|k−1) +

Ss
i,k(Ss

i,k)T x̂sk|k−1 [15], where Isk = Ss
i,k(Ss

i,k)T , S̄s
R,k = (Ss

R,k)−T and (Rs
k)−1 = S̄s

R,k(S̄s
R,k)T . The

square-root of Y c
k|k can be computed using Equation (17) as follows:

Sc
y,k|k = Tria([Sc

y,k|k−1 S1
i,k S2

i,k · · · SNc
i,k ]) (21)

Then, we compute the square-root of the predicted information matrix Sc
y,k+1|k and the predicted

information vector ŷck+1|k using the standard time update step of SCIF.
Although the centralized camera network system is an improvement over a single camera system,

it has a number of disadvantages. These include severe computational loads imposed on the fusion center,
the possibility of catastrophic failure and high communication overheads.

4.3. Distributed Square-Root Cubature Information Weighted Consensus Filter

Generally, there are no fusion centers in large-scale camera networks, and the capabilities of all
cameras are equal in the network. In this scenario, a distributed approach is required. The average
consensus algorithm, which has been introduced in Section 3 of this paper, meets the needs of this
scenario. In this section, we propose a novel DSCIWCF algorithm for target tracking in camera networks.

In the average consensus algorithm, node Cs only communicates with its direct neighbors Cj ∈ Ωs,
then the values of the states at all of the nodes converge to the average of the initial values.

In [2], a distributed state estimation framework was proposed by Kamal et al. They used a value
1/Nc as weights on the information matrix and information vector. This algorithm can overcome the
naivety issue and information redundancy in camera networks. In this paper, we use a similar strategy to
deal with the square-root cubature information matrix and information vector. Here, we summarize the
DSCIWCF algorithm as follows.
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(1) Compute the square-root form of the local information vector ŷsk|k and the information matrix Y s
k|k:

Ss
y,k|k = Tria([

1√
NC

Ss
y,k|k−1 Ss

i,k]) (22)

ŷsk|k =
1

Nc

ŷsk|k−1 + isk (23)

Ss
i,k = Ss

y,k|k−1(Ss
y,k|k−1)TPs,xz,k|k−1S̄

s
R,k (24)

where Y s
k|k−1 = Ss

y,k|k−1(Ss
y,k|k−1)T and Ps,xz,k|k−1 = T21T

T
11 can be computed using Equation (A5) (see

Appendix A). Equation (22) is equivalent to the equation below.

Y s
k|k =

1

Nc

Y s
k|k−1 + Isk (25)

(2) Let νs0 = ŷsk|k and V s
0 = Ss

y,k|k, then perform average consensus on νs0 and V s
0 independently for

K iterations:

For k = 1 to K:
Broadcast (νsk−1, V

s
k−1) to neighbors Cj, Cj ∈ Ωs and receive (νjk−1, V

j
k−1) from neighbors.

Run average consensus on νsk−1, V
s
k−1:

V s
k = Tria([

√
1− εNs,EV

s
k−1

√
εV s

1,k−1 · · ·
√
εV s

Ns,E ,k−1]) (26)

νsk = νsk−1 + ε
∑
j∈Ωs

(νjk−1 − ν
s
k−1) (27)

END for:
where Ns,E is the number of the direct neighbors of node s, Ns,E =

∑
j asj .

If V ′s0 = 1
Nc
Y s
k|k−1 + Isk , the equivalent square form of the Equation (26) is as follows:

V
′s
k = V

′s
k−1 + ε

∑
j∈Ωs

(V
′j
k−1 − V

′s
k−1) (28)

(3) Compute the a posteriori information vector and information matrix for time k:

ŷsk|k = Ncν
s
K

Ss
y,k|k =

√
NcV

s
K

(29)

(4) Compute the predicted information matrix Ss
y,k+1|k and the predicted information vector ŷsk+1|k

using the standard time update step of SCIF.

In practice, due to errors introduced by arithmetic operations (such as matrix square-root, matrix
inversion, etc.) performed on finite word-length digital computers, the symmetry and positive
definiteness of the error covariance matrix are often lost [9]. A square root filter is the best choice
to deal with these problems. In this paper, we use the square-root cubature information filter for target
tracking in camera networks. At the same time, we use Equations (26) and (27) for average consensus
iterations. Therefore, the whole algorithm runs under the condition of the square-root filter.
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5. Multi-Target Data Association

The JPDA algorithm has been introduced in Section 3. However, the traditional JPDA algorithm
is often used for linear sensing models. In this section, we will extend the JPDA algorithm to handle
nonlinear sensing models. The main contribution of this section is that we propose the algorithm derived
from the combination of JPDA and the information filter mentioned in the last section. The JPDAF is a
single sensor algorithm; thus, we firstly introduce the algorithm of the single node s.

5.1. Joint Probabilistic Data Association With Square-Root Cubature Information Filter

In the SCIF, in order to make the information contribution equations compatible with those of the
Kalman filter, a pseudo-measurement matrix H t

s [25] is defined as (at target t, similarly hereinafter):

H t
s = P tT

s,xz,k|k−1Y
t
s,k|k−1 (30)

where the subscript s denotes the terms from the s-th node.
In the cubature Kalman filter (CKF), the Kalman gain Kt

s,k gives:

Kt
s,k = P t

s,xz,k|k−1(P t
s,zz,k|k−1)−1 (31)

where Kt
s,k = T t

21T
t−1

11 can be computed using Equation (A5) (see Appendix A).
The innovation covariance matrix is given by W t

s = H t
sP

t−
s (H t

s)
T + Rt

s [15], and substituting
Equation (30) into the innovation covariance matrix, we can get:

W t
s = P tT

s,xz,k|k−1Y
t
s,k|k−1P

t
s,xz,k|k−1 +Rt

s,k

= Φt
k|k−1ΦtT

k|k−1 +Rt
s,k = P t

s,zz,k|k−1

(32)

where Y t
s,k|k−1 = (P t

s,k|k−1)−1 is a symmetric positive definite matrix, and P t
s,xz,k|k−1, P

t
s,zz,k|k−1, P

t
s,k|k−1

and Φt
k|k−1 come from Equation (A1). P t

s,zz,k|k−1 can be computed using T t
11T

tT

11 (see Appendix A). Now,
we can rewrite Equation (31) as follows:

Kt
s,k = P t−

s (H t
s)

T (W t
s)−1 (33)

where H t
s,k and W t

s are defined by Equations (30) and (32); P t−
s is the short form of P t

s,k|k−1.
In the CKF, the measurement innovation term of Equation (7) becomes,

z̃ts = zts − (1− βt
i0)ẑs,k|k−1 (34)

where ẑs,k|k−1 = 1
m

∑m
j=1 Zsj,k|k−1 and Zsj,k|k−1 denotes one of the propagated cubature points; see [15]

for details about computing Zsj,k|k−1. Substituting Equation (34) into Equations (6) gives:

x̂t+s = x̂t−s +Kt
s,k[zts − (1− βt

s0)ẑs,k|k−1] (35)

The JPDA state update Equation (35) has a similar form as the standard Kalman filter update, and it
can be converted to the information form using uts = H tT

s R
t−1

s zts and U t
s = H tT

s R
t−1

s H t
s. We get (see

Appendix B):

x̂t+s = (Y t−
s + U t

s)
−1{Y t−

s x̂t−s + uts + U t
sx̂

t−
s − (1− βt

s0)H tT

s R
t−1

s ẑs,k|k−1} (36)
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where Rt
s is the measurement noise covariance of node s for target t and Y t−

s = (P t−
s )−1 = (P t

s,k|k−1)−1.
The information matrix is denoted as follows (see Appendix B):

Y t+
s = Y t−

s +Gt
s (37)

where Gt
s = Y t−

s Kt
s[(M

t
s)
−1 − (Kt

s)
TY t−

s Kt
s]
−1(Kt

s)
TY t−

s , M t
s = (1 − βt

s0)W t
s − P̃ t

s and P̃ t
s (see

Equation (B4) in Appendix B). Equations (36) and (37) form the JPDA-SCIF algorithm.

5.2. Joint Probabilistic Data Association With Centralized Square-Root Cubature Information Filter

In Equations (12) and (13), the information filter form has the advantage that the update equations for
the estimator are computationally simpler than the equations for the Kalman filter. Here, we rewrite I ts
and its using H t

s from Equation (30) as follows:

I ts = H tT

s R
t−1

s H t
s (38)

its = H tT

s R
t−1

s (zts − ẑt−s +H t
sx̂

t
s,k|k−1) (39)

where the measurement innovation term z̃ts = zts − ẑt−s and x̂ts,k|k−1 represents the prior/predicted state
estimate. In the JPDAF, z̃ts can be written as Equation (34). Therefore, Equation (39) can be rewritten
as follows:

its = H tT

s R
t−1

s (z̃ts +H t
sx̂

t
s,k|k−1) (40)

From Equations (38) and (40), we rewrite Equations (12) and (13) as follows:

Y t+
c = Y t−

c +

NC∑
s=1

I ts

= Y t−
c +

NC∑
s=1

H tT

s R
t−1

s H t
s

(41)

Y t+
c x̂t+c = Y t−

c x̂t−c +

NC∑
s=1

its

= Y t−
c x̂t−c +

NC∑
s=1

H tT

s R
t−1

s (z̃ts +Hsx̂
t−
s )

(42)

Substituting Equation (34) into Equation (42), we can extend Equations (36) and (37) into the
multi-sensor centralized estimate in the information form as follows:

x̂t+c = (Y t−
c +

NC∑
s=1

U t
s)
−1{Y t−

c x̂t−c +

NC∑
s=1

[uts + U t
sx̂

t−
s − (1− βt

s0)H tT

s R
t−1

s ẑs,k|k−1]} (43)

Y t+
c = Y t−

c +

NC∑
s=1

Gt
s (44)

where Gt
s = Y t−

s Kt
s[(M

t
s)
−1 − (Kt

s)
TY t−

s Kt
s]
−1(Kt

s)
TY t−

s , uts = H tT

s R
t−1

s zts, U
t
s = I ts, M

t
s = (1 −

βt
s0)W t

s − P̃ t
s , and P̃ t

s is defined as follows:

P̃ t
s =

ms(k)∑
j=1

βt
sj(zsj − ẑs,k|k−1)(zsj − ẑs,k|k−1)T − (z̃ts)(z̃

t
s)

T (45)
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5.3. Multi-Target Square-Root Cubature Information Weighted Consensus Filter

In the MTSCF, if all nodes have reached consensus on the previous time step, we will have x̂t−s = x̂t−c
and Y t−

s = Y t−
c for all s. That is to say, Y t−

c =
∑NC

s=1
Y t−
s

NC
, and Y t−

c x̂t−c =
∑NC

s=1
Y t−
s

NC
x̂t−s . Thus, we

can write,

x̂t+s =

NC∑
s=1

(
Y t−
s

NC

+ U t
s)
−1

NC∑
s=1

{Y
t−
s

NC

x̂t−s + uts + U t
sx̂

t−
s −H tT

s R
t−1

s (1− βt
s0)ẑs,k|k−1} (46)

Y t+
s =

NC∑
s=1

(
Y t−
s

NC

+Gt
s) (47)

Thus, for the MTSCF algorithm, the consensus variables are initialized as,

νts[0] =
Y t−
s

NC

x̂t−s + uts + U t
sx̂

t−
s − (1− βt

s0)H tT

s R
t−1

s ẑs,k|k−1 (48)

V t
s [0] =

Y t−
s

NC

+ U t
s (49)

M t
s[0] =

Y t−
s

NC

+Gt
s (50)

The MTSCF algorithm is summarized in Algorithm 1.

5.4. Computing the Square-Root of the Information Matrix

The algorithms of this section that were mentioned above are based on information matrix. However,
in order to be consistent with the algorithms proposed in this section, we need to transform the
information matrix into the square-root form.

Illustrated by the case of the MTSCF algorithm, we will describe how to compute the square-root of
the information matrix and other algorithms using similar methods.

Let J t
sJ

tT

s = M t
s[0]; because of the positive definite matrix of M t

s[0], we can use the Cholesky
decomposition to compute J t

s. The square-root form of Equation (50) is as follows:

SMt
s[0] = Tria(J t

s) (51)

It is easy to get SUt
s

and SY t−
s

; then, the square-root form of Equation (49) is as follows:

SV t
s [0] = Tria([

1√
NC

SY t−
s

SUt
s
]) (52)

where SY t−
s

and SUt
s

are the square-root form of Y t−
s and U t

s, respectively. They can be computed using
U t
s = SUt

s
ST
Ut
s

and Y t−
s = SY t−

s
ST
Y t−
s

.
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Algorithm 1 MTSCF Algorithm for target t at node Cs at time k.

Input: xt−s (k), SY t−
s

(k) and Rt
s

(1) Compute H t
s using Equation (30)

(2) Get measurements: {zns }
ms(k)
n=1

(3) Compute W t
s , K

t
s,β

t
s0,M

t
s, z

t
s, ẑs,k|k−1, Y

t−
s (k)

(4) Compute information vectors and matrices (using Equation (24)):

uts = H tT

s R
t−1

s zts (53)

SUt
s

= SY t−
s

(k)SY t−
s

(k)TPs,xz,k|k−1S̄s,R,k (54)

(5) Broadcast message to neighbors and receive neighbors’ messages
(6) Compute inter-camera track-to-track matchings
(7) Initialized consensus data

νts[0] =
Y t−
s

NC

x̂t−s + uts + U t
sx̂

t−
s − (1− βt

s0)H tT

s R
t−1

s ẑs,k|k−1 (55)

SV t
s [0] = Tria([

1√
NC

SY t−
s

SUt
s
]) (56)

SMt
s[0] = Tria(J t

s) (57)

(8) Perform average consensus on νts[0], SV t
s [0] and SMt

s[0] independently for K iterations
(9) Estimate:

x̂t+s (k) =
1

(SV t
s [K]S

T
V t
s [K])

νts[K]

SY t+
s

(k) =
√
NcSMt

s[K]

(58)

(10) Compute the predicted state St
s,k+1|k and the predicted error covariance x̂t−s (k + 1) [12],

respectively, then compute the square-root of the predicted information matrix and information vector

SY t−
s

(k + 1) = St−T

s,k+1|k (59)

Output: x̂t+s (k), SY t+
s

(k), x̂t−s (k + 1), SY t−
s

(k + 1)

5.5. Inter-Camera Association

In distributed tracking of multiple targets, every node has a set of information from each of its
neighbors about the targets and its own set of estimated tracks. Therefore, it is necessary to use an
assignment algorithm to form a set of optimal matchings gsj , where gsj matches the tracks of node s
with the tracks of node j. We can use the Hungarian algorithm [26] to find the maximum matching. The
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matching cost between two track estimates from different cameras can be defined as the Mahalanobis
distance as follows [15]:

D(x̄t1s , x̄
t2
j ) = (x̄t1s − x̄t2j )T (P t1

s + P t2
j )−1(x̄t1s − x̄t2j )

6. Experimental Evaluation

In this section, we evaluate the performance of the proposed MTSCF algorithm in a nonlinear
simulated environment and compare it with other methods: JPDA-EKCF [18] and EMTIC [20]. Our
experiments are performed on an Intel 3.4 GHz PC with 4 G memory and implemented in MATLAB.

Four simulated targets (NT = 4) moving in a 500 m × 500 m area under the observation of nine
cameras (NC = 9) with overlapping FOVs is considered. To simplify the simulation, the FOV of each
camera is assumed to be a square region of 200 m × 200 m around the camera. The target’s state vector
is a 5D vector, which includes the target’s position (xk, yk) at discrete time instant k, its velocity (vx, vy)
and the time interval δk between the two consecutive measurements. Accordingly, the state vector is
given by xk = [xk yk vx vy δk]T .

The motion model of the targets is described by the nonlinear equation [8]:

xk+1 =


xk + vx,kδk + ax

δ2k
2

yk + vy,kδk + ay
δ2k
2

vx,k + axδk

vy,k + ayδk

δk + e

 (60)

where the target acceleration (ax, ay) is modeled as Gaussian noise. To account for synchronization errors
among cameras, we consider a time uncertainty e, which is also assumed to be a Gaussian variable.
We consider the vector v = (ax, ay, e) as the Gaussian noise vector with zero mean and covariance
Q = diag([5 5 0.01]). The initial speed is randomly obtained from the range 10 ∼ 30 units per time
step and with a random direction uniformly chosen from 0–2π.

The measurement model can be defined as:

zsk =

(
γs
k

φs
k

)
=

(
Hs

11xk+Hs
12yk+Hs

13

Hs
31xk+Hs

32yk+Hs
33

Hs
21xk+Hs

22yk+Hs
23

Hs
31xk+Hs

32yk+Hs
33

)
+ wk (61)

where (γs
k,φ

s
k) is the pixel coordinates of the target in the image plane of camera Cs at time k. The

values Hs
11, · · · , Hs

33 are the elements of homography; wk is the measurement noise, which is considered
to be Gaussian with zero mean and variance R = diag([5 5]). The homography matrix values of each
camera are taken from the camera C6 of the APIDISdataset [27] whose values are:

Hs =

1, 930.8939 −89.8033 −2, 393, 800

117.2530 91.8121 1, 022, 700

0.3485 −0.8720 1, 971.8862

 (62)

The initial prior covariance P t−
s (1) = diag([100, 100, 10, 10, 0.01]) is used at each node for each

target. The initial prior state x̂t−s (1) is generated by adding zero-mean Gaussian noise of covariance
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P t−
s (1) to theinitial ground truth state. The observations are generated using Equation (61). The total

number of consensus iterations per measurement step, K, is set to 20. The parameters for computing
the association probabilities, βt

sj , are set as follows (see [14] for details about computing βt
sj). False

measurements (clutter) are generated at each node at each measurement step using a Poisson process
with λ, where λ is the average number of false measurements per sensor per measurement step. Gate
probability PG is set to 0.99. The probability of detecting a target PD in each camera is set to 0.8.

In this paper, we perform the experiments for a sparse connectivity network with a low average
network degree equal to two (see Figure 1). Therefore, the ∆max = 2; then, the consensus rate parameter
ε is set to 0.65/∆max. In the experiment, four targets’ trajectories are generated (see Figure 2). The
simulation results are averaged over 20 Monte Carlo simulation runs.
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Figure 1. Sparse connectivity of the network.
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Figure 2. Four true trajectories of targets and their geographical positions in the cameras.
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Figure 3 shows the performance comparison by varying the amount of clutter. The average amount
of clutter per sensor per measurement step λ is varied from 1/64–8 (consensus is run for a fixed number
of iterations (eight)). From Figure 3, it can be seen that both EMTIC and MTSCF are very robust, even
to a very high amount of clutter. The amount of clutter is kept at λ = 1 for the other experiments in the
rest of the paper.
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Figure 3. Performance comparison by varying the amount of clutter.

The result of target tracking can be seen in Figure 4 in one experiment from one run (the result is
based on the consensus algorithm, and the number of consensus iterations is eight). As you can see from
Figure 4, the MTSCF algorithm is closer to the ground-truth curves than EMTIC.

 

 

GroundTruth

EMTIC

MTSCF

Clutter

Figure 4. The result of target tracking in one experiment from one run.

To show the convergence of different methods, the total number of iterations per measurement step,
K, is varied. It can be seen from Figures 5 and 6 (Figure 6 shows an enlarged part of Figure 5 focusing on
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MTSCF and EMTIC) that with an increased number of iteration, MTSCF approaches the ground-truth
tracks. It can also be seen that MTSCF outperforms EMTIC for any given K. Meanwhile, It can be seen
that JPDA-EKCF has large mean error, which does not suit nonlinear multi-target tracking in distributed
camera networks.

Our simulation is based on MATLAB. In MATLAB, it handles floating-point numbers in double
precision (default setting) format; while double precision numbers use 64 bits, based on IEEE Standard
754. In the experiment, we convert all double precision numbers to single precision (32 bits) numbers
using the command single (number). Unfortunately, it may be impossible for us to use the single
precision in JPDA-EKCF and EMTIC. The reason is that, when the single precision number is used
to calculate the updated inverse matrix, the resulting matrix may possibly be non-positive definite. In the
simulation, we get the warning “Matrix is close to singular or badly scaled. Results may be inaccurate.”
Hence, errors may occur during the execution of the JPDA-EKCF and EMTIC algorithms in a limited
word-length system. This is not a problem for the MTSCF algorithm.
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Figure 5. The mean errors and the variation of the estimation errors about three algorithms
(joint probabilistic data association (JPDA)-EKCF, EMTICand multi-target square-root
cubature information weighted consensus filter (MTSCF)).
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Figure 6. Zoom of Figure 5 with focus on MTSCF and EMTIC.
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7. Conclusions

In this paper, we propose a novel multi-target square-root cubature information weighted consensus
filter (MTSCF) algorithm, which is a generalized consensus-based distributed multi-target tracking
scheme applicable to a wide variety of sensor networks. MTSCF handles the issue of naivety, which
makes it applicable to sensor networks where sensors may have limited FOV (which is the case for
a camera network). The algorithm is efficient for considering the estimation errors in tracking and
data association, the influence of naivety and the numerical difficulties from the finite word-length of
computers, which makes it resistive to false measurements/clutter. Experimental analysis shows the
strength of the proposed method over existing ones.

In our future work, we will explore applying the MTSCF to a real camera network, which may be a
limited word-length embedded system. Handling out-of-sequence measurements, the unknown number
of targets and asynchronous networks are some other possible future works.
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Appendixes

A. Squared-Matrix Forms of Three Covariance Matrices

Pk|k−1, Pzz,k|k−1, Pxz,k|k−1 may be expressed in squared-matrix forms [28]:(
Pzz,k|k−1 Pzx,k|k−1

Pxz,k|k−1 Pk|k−1

)

=

(
Φk|k−1 SR,k

Ψk|k−1 0

)(
Φk|k−1 SR,k

Ψk|k−1 0

)T (A1)

where SR,k is the square-root of Rk, 0 ∈ Rnx×nz , and:

Ψk|k−1 =
1√
m

[X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1

· · · Xm,k|k−1 − x̂k|k−1]

(A2)
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Φk|k−1 =
1√
m

[Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − ẑk|k−1

· · · Zm,k|k−1 − ẑk|k−1]

(A3)

Applying the triangularization procedure to the square-root factor available on the RHS of
Equation (A1) yields:

Tria

(
Φk|k−1 SR,k

Ψk|k−1 0

)
=

(
T11 0

T21 T22

)
(A4)

where T11 ∈ Rnz×nz , T22 ∈ Rnx×nx are lower triangular matrices, and T21 ∈ Rnx×nz . Equation (A1)
can be rewritten as follows: (

Pzz,k|k−1 Pzx,k|k−1

Pxz,k|k−1 Pk|k−1

)

=

(
T11 0

T21 T22

)(
T11 0

T21 T22

)T

=

(
T11T

T
11 T11T

T
21

T21T
T
11 T21T

T
21 + T22T

T
22

) (A5)

B. JPDA-SCIF: Derivation

Kalman gain can be rewritten as follows [20]. The time index k has been dropped for simplicity.

Ks = P t−
s (H t

s)
T (W t

s)−1

= (P t−−1

s +H tT

s R
t−−1

s H t
s)
−1H tT

s R
t−−1

s

(B1)

The state estimate,

x̂t+s = x̂t−s +Kt
sz̃

t
s

= x̂t−s +Kt
s[z

t
s − (1− βt

s0)ẑs,k|k−1]

= x̂t−s + (P t−−1

s +H tT

s R
t−1

s H t
s)
−1H tT

s R
t−1

s

[zts − (1− βt
s0)ẑs,k|k−1]

= x̂t−s + (Y t−
s + U t

s)
−1(uts − (1− βt

s0)

H tT

s R
t−1

s ẑs,k|k−1)

= (Y t−
s + U t

s)
−1{Y t−

s x̂t−s + uts + U t
sx̂

t−
s

− (1− βt
s0)H tT

s R
t−1

s ẑs,k|k−1}

(B2)

For the covariance, rewrite Equation (8) as follows:

P t+
s = P t−

s − (1− βt
s0)Kt

sW
t
s(Kt

s)
T +Kt

sP̃
t
s(Kt

s)
T

= P t−
s −Kt

s[(1− βt
s0)W t

s − P̃ t
s ](Kt

s)
T

(B3)

where,

P̃ t
s =

ms(k)∑
j=1

βt
sj(zsj − ẑs,k|k−1)(zsj − ẑs,k|k−1)T

− (z̃ts)(z̃
t
s)

T

(B4)
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Let M t
s = (1− βt

s0)W t
s − P̃ t

s , then use the matrix inversion lemma on Equation (B3); we get:

Y t+
s = Y t−

s +Gt
s (B5)

where Gt
s = Y t−

s Kt
s[(M

t
s)
−1 − (Kt

s)
TY t−

s Kt
s]
−1(Kt

s)
TY t−

s .

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Akyildiz, I.F.; Melodia, T.; Chowdhury, K.R. A survey on wireless multimedia sensor networks.
Comput. Netw. 2007, 51, 921–960.

2. Kamal, A.T.; Farrell, J.A.; Roy-Chowdhury, A.K. Information Weighted Consensus Filters and
Their Application in Distributed Camera Networks. IEEE Trans. Autom. Control 2013, 58,
3112–3125.

3. Tron, R.; Vidal, R. Distributed computer vision algorithms. IEEE Signal Process. Mag. 2011, 28,
32–45.

4. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent
systems. IEEE Proc. 2007, 95, 215–233.

5. Ren, W.; Beard, R.W. Consensus seeking in multiagent systems under dynamically changing
interaction topologies. IEEE Trans. Autom. Control 2005, 50, 655–661.

6. Olfati-Saber, R. Kalman-consensus Filter: Optimality, Stability, and Performance. In Proceedings
of the 48th IEEE Conference on Decision and Control, Held Jointly with the 2009 28th Chinese
Control Conference, Shanghai, China, 15–18 December 2009; pp. 7036–7042.

7. Olfati-Saber, R.; Sandell, N.F. Distributed Tracking in Sensor Networks with Limited Sensing
Range. In Proceedings of the 2008 IEEE American Control Conference, Seattle, WA, USA, 11–13
June 2008; pp. 3157–3162.

8. Katragadda, S.; SanMiguel, J.C.; Cavallaro, A. Consensus Protocols for Distributed Tracking
in Wireless Camera Networks. In Proceedings of the 2014 17th International Conference on
Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8.

9. Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54,
1254–1269.

10. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. IEEE Proc. 2004, 92,
401–422.

11. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotic (Intelligent Robotics and Autonomous
Agents); The MIT Press: Cambridge, MA, USA, 2005.

12. Arasaratnam, I. Sensor fusion with square-root cubature information filtering. Intell. Control
Autom. 2013, 4, 11, doi:10.4236/ica.2013.41002.

13. Reid, D.B. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 1979, 24,
843–854.

14. Bar-Shalom, Y.; Daum, F.; Huang, J. The probabilistic data association filter. IEEE Control Syst.
2009, 29, 82–100.



Sensors 2015, 15 10546

15. Sandell, N.F.; Olfati-Saber, R. Distributed Data Association for Multi-target Tracking in Sensor
Networks. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,
9–11 December 2008; pp. 1085–1090.

16. Soto, C.; Song, B.; Roy-Chowdhury, A.K. Distributed Multi-target Tracking in a Self-configuring
Camera Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1486–1493.

17. Ni, Z.; Sunderrajan, S.; Rahimi, A.; Manjunath, B. Distributed Particle Filter Tracking with
Oonline Mmultiple Iinstance Learning in a Camera Sensor Network. In Proceedings of the
2010 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China,
26–29 September 2010; pp. 37–40.

18. Roy-Chowdhury, A.K.; Song, B. Camera networks: The acquisition and analysis of videos over
wide areas. Synth. Lect. Comput. Vis. 2012, 3, 1–133.

19. Kamal, A.T.; Farrell, J.A.; Roy-Chowdhury, A.K. Information Consensus for Distributed
Multi-target Tracking. In Proceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013; pp. 2403–2410.

20. Kamal, A.T. Information Weighted Consensus for Distributed Estimation in Vision Networks.
Ph.D. Thesis, University of California Riverside, Riverside, CA, USA, August 2013.

21. Godsil, C.D.; Royle, G.; Godsil, C. Graduate Texts in Mathematics Algebraic Graph Theory;
Springer: New York, NY, USA, 2001; Volume 207.

22. Olfati-Saber, R.; Murray, R.M. Consensus problems in networks of agents with switching topology
and time-delays. IEEE Trans. Autom. Control 2004, 49, 1520–1533.

23. Olfati-Saber, R. Distributed Kalman filtering for Sensor Networks. In Proceedings of the 2007
46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007;
pp. 5492–5498.

24. Boyd, S.; Diaconis, P.; Xiao, L. Fastest mixing Markov chain on a graph. SIAM Rev. 2004,
46, 667–689.

25. Lee, D.J. Nonlinear estimation and multiple sensor fusion using unscented information filtering.
IEEE Signal Process. Lett. 2008, 15, 861–864.

26. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2,
83–97.

27. Chen, F.; Delannay, D.; de Vleeschouwer, C. An autonomous framework to produce and distribute
personalized team-sport video summaries: A basketball case study. IEEE Trans. Multimed. 2011,
13, 1381–1394.

28. Arasaratnam, I.; Haykin, S.; Hurd, T.R. Cubature Kalman filtering for continuous-discrete systems:
theory and simulations. IEEE Trans. Signal Process. 2010, 58, 4977–4993.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	Basic Theories
	System Model
	Average Consensus
	Joint Probabilistic Data Association

	Square-Root Cubature Information Weighted Consensus Filter
	Square-Root Cubature Information Filter: A Brief Review
	Centralized Square-Root Cubature Information Filter
	Distributed Square-Root Cubature Information Weighted Consensus Filter

	Multi-Target Data Association
	Joint Probabilistic Data Association With Square-Root Cubature Information Filter
	Joint Probabilistic Data Association With Centralized Square-Root Cubature Information Filter
	Multi-Target Square-Root Cubature Information Weighted Consensus Filter
	Computing the Square-Root of the Information Matrix
	Inter-Camera Association

	Experimental Evaluation
	Conclusions
	Squared-Matrix Forms of Three Covariance Matrices
	JPDA-SCIF: Derivation

