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Abstract: Terahertz (THz) spectroscopy and multivariate data analysis were explored  

to discriminate eight wheat varieties. The absorption spectra were measured using THz  

time-domain spectroscopy from 0.2 to 2.0 THz. Using partial least squares (PLS), a 

regression model for discriminating wheat varieties was developed. The coefficient of 

correlation in cross validation (R) and root-mean-square error of cross validation (RMSECV) 

were 0.985 and 1.162, respectively. In addition, interval PLS was applied to optimize the 

models by selecting the most appropriate regions in the spectra, improving the prediction 

accuracy (R = 0.992 and RMSECV = 0.967). Results demonstrate that THz spectroscopy 

combined with multivariate analysis can provide rapid, nondestructive discrimination of 

wheat varieties. 

Keywords: terahertz time-domain spectroscopy; wheat varieties; absorption spectrum; 

interval partial least squares 
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1. Introduction 

Wheat is one of the most important agricultural products in the world. Due to increasing free trade, 

wheat varieties from diverse origins are widely available in the markets. However, the nutrition and 

processing quality of wheat varieties differ, and false wheat seeds can cause great losses for farmers. 

Thus, there is a demand for rapid analytical methods to discriminate the material properties of wheat. 

Traditional methods such as morphology analysis, physics, chemical methods, machine vision, and DNA 

molecular marker analysis enable sensitive classification of wheat varieties [1–4]. However, these 

methods are time-consuming and require complex operation. Spectroscopic methods such as near infrared, 

mid-infrared, and Raman spectroscopy are adequate analytical tools that have been used largely for 

material classification [5–7]. However, few studies have utilized the far infrared or terahertz (THz) band 

for discriminating wheat varieties. 

Terahertz radiation, which occupies frequencies between 0.1 and 10 THz, lies between microwaves 

and infrared bands in the electromagnetic spectrum. Due to the rapid advances in generating, detecting, 

and analyzing THz radiation, THz spectroscopy has been recently developed as an analytical method [8,9]. 

Because many molecules have unique spectral fingerprints in THz band as a result of the vibrational 

transitions of the molecules, THz spectroscopy can be used for discriminating materials. Furthermore, THz 

radiation is non-destructive and can penetrate many nonpolar materials. As a result, THz spectroscopy 

has been successfully applied in detecting explosives [10] and drugs [11], in the field of biological 

sciences [12], and in food safety control [13]. 

The aim of the present study is to investigate the potential of THz spectroscopy as a non-destructive 

method to discriminate wheat varieties. The THz spectra of wheat varieties were measured and analyzed 

in the frequency of 0.2–2 THz. In addition, chemometric methods were used to evaluate wheat varieties 

based on THz spectra. The partial least squares (PLS) and interval PLS (iPLS) methods were used to 

obtain better discrimination results. 

2. Materials and Methods 

2.1. Experimental Setup 

A conventional terahertz transmission spectroscopy system was used in the experiment.  

The mode-locked Ti-sapphire femtosecond laser, which provided 100-fs pulses at a wavelength of  

800 nm and a repeating frequency of 80 MHz, was divided into two beams (pump beam and  

probe beam) using a polarization beam splitter (PBS). The THz pulses were generated from the  

low-temperature-grown GaAs photoconductive antenna with an attached silicon hyperhemispherical 

lens. The THz radiation from the emitter was collected and focused on the sample by a pair of parabolic 

mirrors (PM). Electro-optic (EO) detection was employed to observe the THz signal. The transmitted 

THz radiation was focused and collimated by PM onto the ZnTe EO detector crystal.  

A detailed description of THz-TDS can be found in Ref. [14]. The THz beam path was filled with 

nitrogen gas to remove absorption of atmospheric water vapor [15]. The samples were placed at the focal 

point of the THz beam spectroscope, and the measurements were performed at an ambient temperature 

of 294 K with a relative humidity of approximately 3%. 
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Using THz-TDS, we can measure both the phase and amplitude of the THz pulses propagating 

through the sample and reference (nitrogen gas). A reference pulse signal, Eref(t), in the absence of wheat 

and a sample pulse signal, Esam(t), are recorded. Comparing the sample pulse and reference pulse using 

a fast Fourier transform, the complex refractive index N(ω) can be expressed as follows: 

( ) ( ) ( )N n ikω = ω − ω  (1)

where n(ω) and k(ω) are the real refractive index and extinction coefficient, respectively, describing  

the dispersion and absorption characteristics of the sample. Here, ω is the cyclic frequency, and i is the 

imaginary unit. The complex transmittance function H(ω) of sample is given by [16–18]: 
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where Esam(ω) and Eref(ω) are the complex amplitudes of the Fourier transform of Eref(t) and Esam(t), 

respectively, c is the speed of light, and ρ(ω) and ϕ(ω) are the amplitude ratio and related phase difference 

of the reference and sample, respectively. 

The n(ω) and absorption coefficient a(ω) were obtained by: 
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2.2. Sample Preparation 

In this study, eight wheat varieties were prepared for the analysis. Samples were supplied by Henan 

University of Technology, Zhengzhou, China, and were harvested in 2013. The collection of samples is as 

diverse as possible and representative of the main production areas. These wheat grains are mixtures with 

different components and complex structures and can have different chemical and physical properties. The 

sample properties are shown in Table 1. 

Table 1. The Properties of the eight wheat varieties under consideration. 

No. Wheat Variety 
Bulk Density 

(g/L) 
Crude Protein 
Content (%) 

Water 
Content (%) 

Imperfect 
Grain (%) 

Gluten 
Content (%) 

1 Zhengmai 9023 756 14.6 12.5 3.2 27.9 
2 Zhouyuan 9369 790 14.9 12.5 3.4 33.0 
3 Aobiao 845 14.0 11.5 1.0 26.0 
4 DNS 840 14.5 11.9 1.6 38.0 
5 Jiamai 830 13.8 12.2 1.8 39.0 
6 Jinan 17 wheat 773 15.6 11.5 3.0 34.0 
7 Zhoumai 27 798 13.2 12.1 3.8 33.0 
8 Yunong 416 787 14.3 12.5 4.0 32.5 

The eight wheat samples are identified as Zhengmai 9023, Zhouyuan 9369, Aobiao, DNS, Jiamai, 

Jinan17 wheat, Zhoumai 27, and Yunong 416 wheat. For each variety of wheat, 20 samples were prepared 
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without further purification before grinding. Generally, the wheat samples can transform to more stable 

form during the storage and manufacture process, such as grinding and compaction. To form thin, circular 

slices samples, wheat samples were ground into fine powder for 2 min, which was subsequently sieved by 

filtering laws using 200-eye sieves; then, the sieved powder was pressed into pellets with a thickness of 

approximately 1 mm and a diameter of 13 mm under a pressure of 5 tons for 5 min. All sample preparation 

processes were implemented at room temperature. 

2.3. Chemometrics Methods 

A chemometric analysis was performed to investigate the THz spectral data of wheat varieties using  

a partial least squares (PLS) regression. The PLS regression is based on latent variables, which are 

constructed to identify the maximal covariance between two matrices [19]. In particular, PLS was applied 

to find the best correlation between the spectral data X and measured parameter designating the class of 

interest Y. The model is formulated as follows: 

X TP EΤ= +  (5)

Y UQ FΤ= +  (6)

where X and Y are the input and output matrices, T and U are the score matrices, P and Q are the loading 

matrices that can be regarded as the covariance between X and Y and between Y and U, respectively, and 

E and F are the residual matrices. In this paper, the absorption coefficient and refractive index of a 

selected frequency range are used as the input matrix X, while the wheat varieties of samples are used as 

the output matrix Y, which can be regarded as the number for each wheat variety sample, and the 

corresponding wheat variety can be described using number 1–8 given in Table 1. 

The interval partial least squares (iPLS) method is a variable selection technique [20] used for identifying 

the important spectral regions and removing interference from other regions. The iPLS method divides 

the whole spectrum into subintervals of equal width and develops the PLS model for each subinterval 

spectrum. The prediction performance of PLS and iPLS is compared by the root-mean-square error of 

cross-validation (RMSECV) values, and the best subinterval can be selected by the lowest model 

RMSECV [21]. The quality of the calibration model is evaluated using the correlation coefficient 

between the reference and predicted value (R), the root-mean-square error (RMSE) of the calibration set 

(RMSEC), and the root mean square error of the prediction set (RMSEP) [22]. A better model has a 

better prediction accuracy that provides higher R and lower RMSECV values. The parameters are 

calculated as follows: 
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where n is the number of samples in the calibration sample set, yi 
r is the reference value of the ith sample, 

yi 
p is the predicted value of the ith sample, ry  is the average of the sample reference values, and py  is 

the average of the predicted values of samples. 

3. Results and Discussion 

3.1. Spectra of Wheat Samples 

To remove the random error and increase the signal-to-noise ratio (SNR), each sample is measured 

three times; the sample spectrum was the average of three scanning spectra in the range of 0.2–2.5 THz, 

and the reference was measured between every three samples. Figure 1a,b show the time-domain spectra 

of the eight wheat samples and the corresponding frequency-domain spectra obtained using a fast Fourier 

transform algorithm. Furthermore, the refractive indices and the absorption coefficients of the eight wheat 

samples are calculated using Equations (3) and (4), respectively, and the calculated results are shown in 

Figure 2a,b. 

Figure 1. (a) Time-domain THz spectra of the eight wheat samples and reference; and  

(b) the frequency spectra of the eight wheat samples and the reference in the range of  

0.2–2.5 THz. 

Figure 2. (a) The absorption coefficient and (b) refractive index for the eight wheat samples 

in the range of 0.2–2.0 THz. 
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As shown in Figure 1, the effective measurement range is 0.2–2.5 THz, and the sample spectra have 

narrow bandwidths. Although there is a minor difference in the shift among the samples, there is 

remarkable shift between the samples and the reference, which indicates that the refractive indices of the 

samples are different. Moreover, the amplitude changes of the samples indicate that the sample absorption 

coefficients differ. 

Because of the similar components in the samples and the chemical complexity of wheat, the optical 

parameters of the measured wheat samples are very similar, as shown in Figure 2. In order to represent 

the variation in measurement effectively, the average absorption coefficients of 20 samples of eight 

wheat samples are shown in Figure 3. The average absorption coefficients are 37.1492 (zhengmai9023), 

39.4354 (zhouyuan9369), 35.3358 (aobiao), 42.1133 (DNS), 37.5468 (jiamai), 42.2520 (jinan17), 

39.8226 (zhoumai27) and 39.9409 (yunong416), respectively. In addition, the spectra of wheat samples 

at higher frequencies (above 1.5 THz) produce lower SNR due to the limitation of the dynamic range of 

the measurement system. Because there are no obvious absorption peaks in the spectra and because the 

differences in the absorption spectra for the eight wheat samples are not significant, we employ PLS 

regression to investigate the relationship between the minor spectral differences and the measured wheat 

varietal properties. 

 

Figure 3. The average absorption coefficient of eight wheat samples. 

3.2. PLS Analysis 

The PLS analysis was performed on THz spectral data with the MATLAB software package (Version 

2012a, Mathworks Inc., Natick, MA, USA) using the PLS toolbox (Version 4.0, Eigenvector Research 

Inc., Wenatchee, USA) and user-written scripts. The original spectra with 128 frequency variables were 

analyzed to establish the correlation between the spectral data and relevant wheat varieties. The eight 

wheat samples were set as output variables using numbers 1 through 8 (Table 1). The PLS calibration 

model was developed using a leave-one-out cross-validation calculation. In this study, both the absorption 

spectra and the refractive spectra of wheat samples from 0.2 to 1.5 THz were applied to obtain the best 

model. Then, the models were employed to predict the eight varieties of samples. A set of eight varieties 

of wheat (160 samples in total) was used in this experiment. All the samples were divided into two sets 

randomly, the calibration set (96 samples) and the prediction set (64 samples). The performance of the 

cross-validation models is shown in Table 2. 
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Table 2. Calibration and validation results obtained with the effective spectrum PLS Model. 

Input Variable Frequency Range (THz) Factors
Calibration Cross Validation 

R RMSEC R RMSECV

Absorption coefficient 0.2–1.5 THz 5 0.987 0.759 0.983 1.028 
Refractive index 0.2–1.5 THz 5 0.982 1.472 0.979 1.684 

The absorption coefficient, which has a higher R-value and lower RMSE and RMSECV values, 

demonstrates better performance than the refractive index for the full-spectrum PLS model. Thus, this 

indicates that the absorption spectrum-based PLS model is a better model for prediction of wheat 

varieties compared to the refractive index-based PLS model in the frequency range of 0.2–1.5 THz. 

Figure 4 shows the calibration and validation results for wheat varietal discrimination using the absorption 

spectrum PLS regression model. In the model, the reference line indicates the zero residuals between the 

predicted and the actual values. Figure 4 shows that the predicted values for all varieties of samples agree 

with the actual values, indicating that the PLS model can identify wheat varieties. 

 

Figure 4. The calibration and validation results for wheat discrimination using the PLS model. 

3.3. iPLS Analysis 

For comparison, iPLS analysis was also performed using the same absorption spectral data sets to 

improve the model performance. First, the full spectrum was divided into 16 equal subintervals with  

eight variables. Calibration models were developed for each of the 16 intervals. Then, cross-validation 

was performed for each of the 16 models. Figure 5 presents the iPLS variable selection results for the 

discrimination of wheat varieties.  
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Figure 5. The iPLS results for the THz spectra data. The columns indicate the RMSECV in 

each subinterval, and the mean absorption spectrum of the wheat samples is overlaid on  

the plot. 

From Figure 5, the width of each column is the same, while the height of each column indicates the 

RMSECV value calculated by the subinterval PLS model. The eighth column with the interval 57–64, 

corresponding to the frequency range of 787.5–900 GHz, shows the lowest RMSECV and is selected for 

developing the model. Therefore, the resulting model should have more precision in discriminating the 

wheat varieties. 

In addition, iPLS selects the most relevant part of the spectrum, which can improve the performance 

of the model by removing the noise and interference from other regions. In the experiment, a different 

number of intervals were used to explore the best spectral region by the lowest RMSECV. The interval 

widths of 4 and 16 were also employed to construct the regression model, dividing the spectrum into 32 

and 8 subintervals, respectively. Table 3 shows the calibration and validation results of the optimal iPLS 

models on THz absorption spectra. 

Table 3. Calibration and validation results obtained with the optimal iPLS regression model. 

Interval Variables Frequency Range Rcal RMSEC RMSECV 

4 0.731–0.956 THz 0.991 0.768 1.260 
8 0.787–0.900 THz 0.992 0.573 0.967 

16 0.675–1 THz 0.984 0.837 1.237 

As shown in Table 3, the iPLS model with eight interval variables has the lowest RMSECV value 

(0.967), the lowest RMSEC value (0.573), and the highest R value (0.992), compared to those of the full 

spectrum PLS model (Table 2). It is clear that the performance of the subinterval PLS model was better 

than the full-spectrum PLS model.  

Figure 6 shows plots of the actual values compared to the values predicted by the PLS models based 

on the full THz absorption spectra and the optimal interval in the 0.787–0.9 THz range. The RMSEP of 

the full-spectrum PLS model is 0.845, while the RMSEP of the iPLS model is improved to 0.642. 
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Figure 6. Scatter plots of the actual value vs. the predicted value for the discrimination of 

wheat varieties using (a) the full-spectrum PLS calibration model and (b) the iPLS calibration 

model based on the selected subinterval in the range 0.787–0.9 THz. 

In Figure 6, the eight subintervals along the X-axis represent the eight wheat varieties as follows: 

intervals from 0.5–1.5, 1.5–2.5, 2.5–3.5, 3.5–4.5, 4.5–5.5, 5.5–6.5, 6.5–7.5, and 7.5–8.5 represent 

samples 1–8, respectively. The Y-axis represents the predicted model value for each wheat variety. The 

maximum range of values predicted by the PLS model for the discrimination wheat grains is  

0.67–1.28, while that for the iPLS model is 0.70–1.15, which produces satisfactory results in the evaluation 

of the wheat varietals. The dispersion degree of the predicted value for Aobiao wheat and Zhengmai 9023 

wheat is relatively high, as shown in Figure 6a, but both varieties can be discriminated correctly. 

Comparing Figure 6a,b, improved prediction accuracy of the optimized PLS model for the discrimination 

of wheat varieties is observed, and the relative prediction error in the full-spectrum model is reduced. 

These results indicate that both the PLS and iPLS models can obtain good predictions for discriminating 

wheat varieties using THz spectroscopy; however, the iPLS model improves the prediction accuracy 

through optimal spectral region selection technology. 

3.4. Discussion 

Compared with other spectroscopic methods, such as NIR, MIR, and Raman, THz spectroscopy is a 

non-destructive rapid method to discriminate wheat varieties. The authors of [6] report that both MIR 

and NIR techniques can be applied in the industry as a rapid analytical tool to measure the quality 

parameters. In our experiment, the total time required for preparation, measurement, and analysis of wheat 

samples was within 5 min, which is also equal to that in [6,7] using data fusion with multiple analytical 

measurements to increase the model performance and decrease the modeling error for the prediction of 

quality parameters of crude oil, and the average RMSEP for the fully fused model (which included the 

IR, Raman, and NMR data) was calculated to be 0.307%. However, few studies compare the iPLS and 

PLS methods on the spectroscopic data of sample for the improvement in model performance. 

Due to complex compositions in the wheat, the proportion of the characteristic components is small, 

and the overlapping signals obscure the THz absorption spectra. The absorption spectra for the wheat 

samples obtained in this experiment are featureless. In fact, featureless spectral absorption in the THz range 

that increases with increasing frequency is expected for many disordered amorphous materials [23–25]. 

Even though the characteristic absorption peaks are lacking, variations in the composition of different 
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wheat samples generate changes in the THz absorption curves. The absorption spectra of various samples 

have markedly different THz spectra. Thus, chemometric analysis was employed using PLS regression 

to discriminate the eight wheat samples. 

To obtain the best prediction model, both PLS and iPLS analysis methods were applied to construct 

regression models for discriminating the wheat varieties based on the THz absorption spectra. The 

above-mentioned analysis indicates that the model performance is primarily affected by the selection of 

the subinterval range. An appropriate interval width can provide the best prediction results. If the 

subinterval width is too large, noise and irrelevant information as well as the input sample spectra cause 

the model to predict the wheat varieties with lower accuracy.  

Furthermore, correlations between neighboring regions in the spectrum cannot be obtained by the iPLS 

model [26]. In particular, the PLS model has only one subinterval (the full spectrum), which includes all 

spectral information without removing the noise or irrelevant intervals. Thus, the PLS performance is 

not better than the iPLS model performance. If the interval width is too low, and the corresponding 

subinterval is too broad, high prediction error will be caused by the loss of small signature information 

in the spectrum. 

Moreover, the prediction accuracy of the constructed model is also affected by the THz absorption of 

sample. The measured THz spectra of sample are dependent on the experimental environment, experimental 

setup, background noise, uncertainty of the time-domain signal system [27], and sample preparation 

process. Moreover, the chemical constituents of wheat grains are determined by many factors [28], such 

as the wheat variety, plant environment, climate, harvest year, and so on. Even though wheat samples from 

different harvest years are prepared, the absorption spectra of samples are likely different from each 

other due to the difference between the chemical compositions of samples. To construct an accurate PLS 

regression model for wheat varietal discrimination using THz absorption spectra, the influencing factors 

of the spectra, such as wheat samples from different harvest years in the same plant area and wheat 

samples from different harvest years and different plant areas, will need to be considered and explored 

in further systemic studies.  

In our work, to avoid the influence of these factors on the performance of the prediction model, the 

average spectra of the samples were produced by repeated measurements under the same conditions. The 

PLS regression model was developed to discriminate the wheat varieties based on the THz spectra, and 

iPLS was used to remove irrelevant information from the spectra. The RMSECV and RMSEC values 

were used to evaluate the performance of the PLS model. The best subinterval in the iPLS model, which 

was determined using the lowest RMSECV, was selected for the PLS calibration model. The prediction 

results for the wheat varieties were improved by using the iPLS model with eight interval variables and 

the lowest RMSECV value of 0.967. 

4. Conclusions 

In this study, the potential of THz spectra as a new, non-destructive technology for wheat varietal 

discrimination has been demonstrated. First, the THz spectra from 0.2 to 2 THz were measured and 

analyzed for eight wheat varieties using the transmission configuration. Then, PLS regression was 

employed to obtain a prediction model for wheat varieties. For comparison, iPLS was also employed to 

improve the performance of the calibration model using the proper subinterval in the spectrum. The 
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results showed that good prediction models could be obtained with lower RMSECV and higher  

R-values in the two regression methods. In particular, the prediction accuracy for wheat grain varieties 

was improved with the iPLS calibration model (R = 0.992 and RMSECV = 0.967). As a result, THz 

spectroscopy associated with chemometric techniques showed useful measurement and discrimination 

of wheat varieties. However, further studies should be considered to account for the large number of 

mixed varieties and for varieties harvested in different years. 
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