

Sensors 2015, 15, 13778-13804; doi:10.3390/s150613778

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Solving Energy-Aware Real-Time Tasks Scheduling Problem with
Shuffled Frog Leaping Algorithm on Heterogeneous Platforms

Weizhe Zhang 1,*, Enci Bai 1, Hui He 1 and Albert M.K. Cheng 2

1 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001,

China; E-Mails: encibai@hit.edu.cn (E.B.); hehui@hit.edu.cn (H.H.)
2 Department of Computer Science, University of Houston, Houston, TX 77004, USA;

E-Mail: cheng@cs.uh.edu

* Author to whom correspondence should be addressed; E-Mail: wzzhang@hit.edu.cn;

Tel.: +86-451-8640-2573.

Academic Editor: Leonhard M. Reindl

Received: 5 March 2015 / Accepted: 5 June 2015 / Published: 11 June 2015

Abstract: Reducing energy consumption is becoming very important in order to keep

battery life and lower overall operational costs for heterogeneous real-time multiprocessor

systems. In this paper, we first formulate this as a combinatorial optimization problem.

Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is

proposed to reduce the energy consumption. Precocity remission and local optimal

avoidance techniques are proposed to avoid the precocity and improve the solution quality.

Convergence acceleration significantly reduces the search time. Experimental results show

that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant

Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm

(GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and

200 times less than ACO and GA, respectively, for finding the optimal solution.

Keywords: energy-aware scheduling; real-time tasks; heterogeneous multiprocessor

systems; shuffled frog leaping algorithm

1. Introduction

Multiprocessor systems can achieve higher performance by thread-level parallelism with a lower

clock frequency, which have advantages over highly superscalar uniprocessor architectures [1].

OPEN ACCESS

Sensors 2015, 15 13779

Multiprocessor systems can be classified into homogeneous and heterogeneous ones. The use of

Heterogeneous Multiprocessor Systems (HMS) can sometimes dramatically improve performance and

energy consumption relative to homogeneous ones [2]. More and more real-time applications are ported to

HMS, such as gaming for Xbox360 and aerospace applications for QorIQ from FreeScale [3,4].

Task scheduling is challenging and complex for real-time applications especially on HMS.

Recently, reducing energy consumption is becoming more and more important in order to lower

cooling requirement and overall operational costs. Also, minimizing the energy consumption can help

to prolong the battery lifetime for battery-driven embedded systems and guarantee the real-time

constraints. Thus, there is a need to shift the focus from solely optimizing multiprocessor resource

management without violating task deadlines to optimizing them for energy efficiency.

The problem of scheduling independent, periodic real-time tasks on HMS without energy

consideration is already NP-hard in the strong case [5]. The additional objective for saving energy

further complicates the problem.

A classical solution for energy-aware real-time task scheduling is to formulate it as an Integer

Linear Programming (ILP) problem [6,7]. Then, a linear relaxation heuristic is introduced to solve the

equivalent ILP problem. Besides, some approximate algorithms are proposed in [8,9], which are

(m + 2)-approximation and 0.5-approximation, respectively, where m is the number of the available

processor types. A dynamic programming method is also proposed to provide certain worst-case

performance guarantee [10]. However, these approximate or heuristic algorithms cannot efficiently

work in practice for large size problems, although these studies enlighten the way. Recently, swarm

intelligence algorithms such as Ant Colony Optimization (ACO) and Genetic Algorithm (GA)

heuristics [11] are introduced. Comparing to the ILP and approximation algorithms, ACO and GA are

more efficient while they are still time-consuming for large-scale problems. Thus, new quick

meta-heuristics for energy-aware real time scheduling need further research.

A meta-heuristic designates a computational method that optimizes a problem by iteratively trying

to improve a candidate solution with regard to a given measure of quality. A particularly successful

meta-heuristic, the Shuffled Frog Leaping Algorithm (SFLA) [12,13] is inspired by the behavior of the

evolution of frog foraging. The frogs are divided into subgroups named as memeplexes, which have

different cultures. Each memeplex performs a local search. The frogs in each memeplex can exchange

ideas. After several evolution steps, memeplexes exchange the ideas in a shuffled process. Until the

convergence criteria are satisfied, the algorithm does not stop. In essence, SFLA combines the benefits

of Particle Swarm Optimization (PSO) and Memetic Algorithm (MA) for mixing information from

parallel local searches to move toward a global solution.

The main objective of this work is to design novel real-time scheduling algorithms based on SFLA,

which can quickly find an optimal solution not only satisfying hard task deadlines but also reducing

energy consumption.

Specifically, our work aims to:

• Formulate the energy-aware real-time taskscheduling problem for HMS by incorporating the

energy consumption into the constraints and optimization objectives.

• Develop SFLA-based energy-aware real-time scheduling algorithms that improve the energy

efficiency of a real-time system without violating the task deadlines under a short decision time.

Sensors 2015, 15 13780

• Perform extensive experiments comparing our approach with traditional and other swarm

intelligence algorithms.

The rest of the paper is organized as follows. Section 2 discusses related work, followed by the

formulation of the energy-aware real-time scheduling problem for HMS presented in Section 3. Section 4

describes the overview and prototype of the shuffled frog leaping algorithm. The proposed

energy-aware real-time scheduling algorithms based on SFLA are discussed in Section 5.

A performance analysis of the proposed energy-aware task scheduling algorithms is presented in

Section 6. Section 7 concludes the paper with summary and future research directions.

2. Related Works

Real-time scheduling algorithms and schedulability analyses have gained extensive studies for

uniprocessor and homogeneous multiprocessor systems [14,15]. In this section, we discuss related

works mainly focusing on heterogeneous multiprocessor systems (HMS) for real-time tasks, which are

the most relevant to our research. First, we survey research results of real-time scheduling on HMS

without considering energy consumption. Then, existing studies of energy-aware real-time scheduling

on HMS are summarized.

2.1. Real-Time Scheduling on HMS

We classify existing real-time scheduling studies for HMS into two categories based on task

dependencies, namely, independent tasks and tasks with precedence constraints.

Independent tasks do not have any control or data dependency. In 2004, to our best knowledge,

Baruah first proves that the real-time scheduling problem of independent periodic tasks on HMS is

NP-hard in the strong case [5]. Also, [16,17] model the same problem as an Integer Linear Programming

(ILP) problem. Polynomial time-complexity can be attained by the relaxation of the ILP formulation to

Linear Programming (LP) although neither attains linear polynomial time-complexity. Thus, many

combinatorial optimization algorithms are applied to this problem, which can lead to good solutions in a

comparatively short time. Chen et al. [18] propose an Ant Colony Optimization (ACO) heuristic and a

Genetic Algorithm (GA) heuristic to solve the problem. Extensive experiments prove that the ACO

heuristic has better performance than the GA heuristic and the LP approximation algorithm in [16,17].

The task model in [19,20] is more complicated, which considers the tasks’ divisibility. A divisible

task means that its load can be partitioned into an arbitrarily large number of load fractions. Based on

divisible load theory (DLT) [21], a DLT and (Earliest Deadline First) EDF mixed scheduling approach

is proposed. On the contrary, recent works in [22,23] argue that the types of HMS should be simplified

as two unrelated types of processors because most HMS only have two types of processors.

Tasks with precedence constraints are often described by a task graph, more formally a weighted

Directed Acyclic Graph (DAG). DAG scheduling is usually based on list scheduling, clustering

scheduling and task duplication heuristics. The list scheduling algorithm for real-time task mapping on

HMS includes the task selection phase and the processor selection phase [24,25]. Tasks are scheduled

based on their priorities. The clustering scheduling algorithm maps nodes of the DAG onto labeled

clusters. All tasks of the same cluster run in the same processor [26]. The task duplication algorithm

Sensors 2015, 15 13781

uses selective task duplication to increase the guarantee ratio of real-time tasks. Auluck et al. [27]

propose a scalable duplication-based algorithm for scheduling real-time tasks with precedence

constraints on HMS. Recently, several swarm intelligence algorithms such as genetic algorithms are

introduced. Yoo et al. [28,29] combine a simulated annealing (SA) and a multi-objective genetic

algorithm to minimize the tardiness and completion time for real-time tasks.

Our research in this paper shares the same real-time task model (independent, periodic task with

hard deadlines) and processor model (preemptive, heterogeneous multiprocessor) with the related

works in [5,16–18]. However, the key difference is that the above studies [5,16–29] do not consider

energy consumption while our work not only guarantees the satisfaction of the task deadlines but also

reduces their energy consumption.

2.2. Energy-Aware Real-Time Scheduling on HMS

Energy-aware real-time scheduling can be classified into two categories: (1) Dynamic Voltage and

Frequency Scaling (DVFS-based), which allows processors to run at different energy levels by

adjusting the voltage or clock frequency; and (2) Non-DVFS-based means that processors are not

equipped with the DVFS technique. Chen et al. [30] summarize the non-DVFS research on

energy-aware real-time scheduling. Li et al. [31] survey the DVFS-based energy-aware real-time

scheduling on homogeneous multiprocessor systems. Thus, we only focus on recent advances in

DVFS-based energy-aware real-time scheduling on HMS, which are closest to our research.

Independent tasks: Yu et al. [6] formulate the energy-aware real-time scheduling on HMS as an ILP

problem. A linearization heuristic (LR-heuristic) is proposed to minimize the energy consumption and

guarantee the satisfaction of the task deadlines. Chen et al. [8] introduce a (m + 2)-approximation

polynomial-time algorithm tackling the same multiprocessor allocation problem for energy-constrained

real-time scheduling. Hung et al. [9] present a 0.5-approximation algorithm by allowing the non-DVFS

processors to be involved. Based on partition scheduling, a dynamic programming method with state

pruning [10] and an approximation algorithm based on ILP relaxation [7] provide fully

polynomial-time approximation schema to schedule the energy-aware tasks. More recently, swarm

intelligence algorithms such as ACO and GA [11] are introduced to save energy for the same task and

processor models.

Tasks with precedence constraints: Related studies are relatively rare for energy-aware

real-time scheduling with precedence constraints on HMS. Schmitz et al. [32] introduce the genetic list

scheduling and a mapping algorithm to reduce the energy consumption. Luo et al. [33] propose a

combined static and dynamic algorithm for ensuring soft aperiodic tasks’ service quality and energy

consumption reduction.

Our research in this paper has similar task, processor and energy models (DVFS-based) as in the related

works [6–11]. Similarly, minimizing the energy consumption and guaranteeing the task deadlines are also

our optimization objectives. However, the approximation algorithms or heuristics in [6–11] are

time-consuming and difficult to work in practice. Our shuffled frog leaping algorithm not only can

obtain many feasible solutions in a shorter time but also save more energy than the related works

in [6–11].

Sensors 2015, 15 13782

3. Formulation

This section first provides the models of the real-time tasks and HMS to ease further discussion.

After that, a DVFS-enabled energy model is given. Then, the energy-aware real-time tasks scheduling

problem and its linear programming formulation are presented. Finally, we prove the equivalency of

this problem and its ILP formulation.

3.1. Real-Time Task and Processor Models

Let T = {T1, T2, ..., Tn} denote a real-time task set with n tasks Ti (i = 1, 2, ..., n). Each task Ti is

independent, periodic and indivisible with hard deadlines. A real-time task Ti is described by a 4-tuple

(ai, ci,j, di, pi), where ai denotes its initial arrival time, ci,j denotes the worst case execution time

(WCET) of Ti when it is assigned to processor Mj, di denotes its relative deadline, and pi denotes its

arrival interval between two consecutive instances of the task. We assume that all of the tasks are

released at the same time 0, which means ai = 0. The deadlines of tasks are considered to be implicit,

which means the relative deadline of task Ti is assumed to be equal to its period, i.e., di = pi. Each task

can only be assigned to a unique processor and task migration is forbidden. After the task, Ti is

assigned to a processor, we simply use the earliest-deadline-first (EDF) policy for task scheduling

because it is an optimal uniprocessor scheduling policy for independent real-time tasks.

Let M = {M1, M2, …, Mk} denote a heterogeneous platform, where each Mj (j = 1, 2, …, k) is a

preemptive processor. Mj executes only one instruction in a clock cycle. We use fj to denote the clock

frequency and ci,j to denote the running time for Ti on processor Mj. If we define cyclei as the number

of clock cycles for Ti, ci,j and fj can be formulated as follows: ci,j = cyclei/fj. The utilization of task Ti
assigned to processor Mj is denoted by ui,j, which is a real number in (0, 1) ∪ +∞ . If ci,j > di, we set ui,j to

+∞ , which means Ti cannot execute on Mj. Otherwise, ui,j = ci,j/di. Let the utility matrix n kU × denote the

computing costs when n tasks run on k processors. Each element ui,j in n kU × indicates the computing

costs when Ti runs on Mj.
Let matrix n kX × denote a scheduling (mapping) of n tasks to k processors. Each element xi,j in the matrix

denotes whether Ti is assigned to Mj. As the tasks are indivisible, each xi,j has only two kinds of values,

either 0 or 1. xi,j = 1 indicates that Ti is assigned to Mj and xi,j = 0 indicates that Ti is not assigned to Mj.

3.2. Energy Model

The HMS is DVFS-enabled, where processors can run at different power settings. The energy

consumption of a processor is mainly contributed by the dynamic energy consumption resulting from

the charging and discharging of gates on the DVS CMOS circuits [8].

Let Ei,j denote the energy consumption of Ti on Mj in one period. The energy consumption accounts

for the energy consumption of the CPUs, which dominates the overall energy consumption including

the memory access, I/O, etc. It can be formulated as follows:

3
2

, , , ,2 2
()j ef

i j i j i j i j i jef

Cf
E Power c C c cycle f

l l
= × ≈ × × = × × (1)

where Cef and l are constants [34,35].

Sensors 2015, 15 13783

Let Energy denote the total energy consumption of n tasks on k processors, which is formulated

as follows:

, ,
1 1

n k

i j i j
i j

Energy E x
= =

= × (2)

Let Max_Energy denote the theoretical maximum energy consumption of n tasks on k processors,

formulated as follows:

,11
_ ()

n k

i jji
Max Energy MAX E

==
= (3)

Note that the tasks have different periods, their total energy consumption is calculated based on the

least common multiple of periods of all tasks, denoted by LCM.

3.3. Problem Definition and Formulation

Problem Definition: We have the following Energy-aware Real-time Tasks Scheduling Problem

(e-RTSP) for HMS. The objective of the energy-aware real-time scheduling is to minimize the energy

consumption by partitioning the task set T of n tasks into several disjoint subsets, in which all the tasks

in a partition of tasks are executed on an allocated processor in M. Meanwhile, the execution time of

the tasks should satisfy the constraints of their hard deadlines and the cumulative computing

consumption should be under the computing utility bound of each processor. A feasible solution is

optimal if its energy consumption is minimal among all feasible solutions.

The e-RTSP problem can be formulated as an integer linear programming problem as follows:

Definition 1. ILP formulation for e-RTSP: Given T = {T1, T2, …, Tn} and M = {M1, M 2, …, Mk},
find the optimal scheduling n kX × to minimize Energy, which is subject to the following constraints:

(1) ,i jx is either 0 or 1, (i=1,2,…,n; j=1,2,…,k)

(2) ,
1

 1
k

i j
j

i x
=

∀ = , (i=1,2,…,n; j=1,2,…,k)

(3) , ,
1

n

i j i j
i

j x u U
=

∀ × ≤ , (i=1,2,…,n; j=1,2,…,k)

(4) ei,j ≤ di, (i=1,2,…,n; j=1,2,…,k)

where U is the maximum computing capacity that each processor can undertake. We set U = 1 without

loss of generality.

There are four constraints above. The first one defines the xi,j = 1 or 0 when the task i is assigned to

processor j or not, respectively. The second constraint ensures every task should be assigned to one

and only one processor. The third one ensures that the total computing consumption of processor Mj

should not overtake the maximum computing capacity U. The last constraint ensures that the hard

deadline of the real-time tasks can be guaranteed.

Sensors 2015, 15 13784

3.4. Equivalency of e-RTSP and Its ILP Formulation

The problem of e-RTSP is formulated as an ILP problem. In this section, we will prove (Theorem 1)

the equivalency of the two problems.

Lemma 1. If the ILP problem in Definition 1 has a feasible solution when U = 1, then the feasible

solution is mapped to a feasible schedule of the e-RTSP problem.

Proof. If the linear programming problem in Definition 1 has a feasible solution when U = 1, then

every constraint is satisfied. Constraints (1) and (2) mean that each task in T = {T1, T2, ..., Tn} is

assigned to a processor completely without decomposition and migration, which correspond to the

restricted conditions in our task scheduling model. Constraint (4) indicates that the hard deadline of

each task Ti must be met on the heterogeneous platform. Constraint (3) means that for each processor

Mj (j = 1, 2, …, k) we have , ,
1

1
n

i j i j
i

x u
=

× ≤ . Therefore, if a task set {
1j

T ,
2j

T , ...,
lj

T } is assigned to Mj,

then ,
1

/ 1
i

l

j j i
i

c d
=

≤ can be set up. If a uniprocessor has ,
1

/ 1
i

l

j j i
i

c d
=

≤ , a proper scheduling algorithm can

find a feasible schedule, which meets the deadlines of all the periodic tasks’ instances, which is proven

in [36]. We complete the proof of Lemma 1. □

Lemma 2. If the e-RTSP problem has a feasible schedule, then the ILP problem in Definition 1 has a

feasible solution when U = 1.

Proof. According to the task model, processor model, scheduling model and utility model described

earlier, if the problem of assigning real-time tasks onto HMS has a feasible schedule, it is obvious that

the constraints (1), (2) and (4) in Definition 1 are satisfied. Next, we will show that the constraint (3) is

satisfied as well. It is assumed that every instance of each task arrives instantly.

For a feasible schedule, a uniprocessor Pj is selected, and it is assumed that h tasks Ti (i = 1, 2, ..., h)

are assigned to Mj in the scheme, without loss of generality. For all these h tasks Ti (i = 1, 2, ..., h), let

D denote the least common multiple of their periods. Let ni denote the number of the instances of each

task Ti (i = 1, 2, ..., h) arriving in the time interval [0, D). Since the schedule is feasible, it can be seen

that the total execution time is not more than D, namely ,
1

h

i i j
i

n c D
=

× ≤ . Because we have i in d D× = for

each task Ti (i = 1, 2, ..., h), so the following derivation is tenable and the constraint (3) in Definition 1

is satisfied. ,
, , ,

1 1 1

(1,...,) 1 1
h h n

i j
i i j i i i j i j

i i ii

c
n c n d i h x u

d= = =

× ≤ × = ⇔ ≤ ⇔ × ≤   We complete the proof of Lemma 2. □

Theorem 1. The e-RTSP problem is equivalent to its ILP problem in Definition 1.

Proof. Lemma 1 and Lemma 2 have proved the necessity and sufficiency. Thus, Theorem 1 is proven. □

4. Overview of Shuffled Frog Leaping Algorithm

The Shuffled Frog Leaping Algorithm (SFLA) was proposed by Eusuff et al. in 2003 [12]. SFLA is

a novel meta-heuristic algorithm for combinatorial optimization problems. It paves a new way to solve

the energy-aware real-time task scheduling problems.

Sensors 2015, 15 13785

The basic idea of SFLA is inspired by the frog foraging behavior. A lot of frogs live in the wetlands

where many stones are discretely placed. The frogs try to find a place with more food by jumping

to different stones. Every frog has its own culture, and the frogs in the same population can exchange

their food information through communication. The frogs in the wetlands are divided into several

sub-populations according to a certain strategy and each sub-population has its own culture.

The sub-population conducts a local search. When the sub-populations’ local search is satisfied,

the information exchange between different sub-populations will begin to complete the global search.

The local search and the global search will be conducted alternately until a frog finds the food or the

alternating times reach the maximum. Figure 1 shows the process of SFLA. The parameters of SFLA

are shown in Table 1.

Figure 1. Flow chart of shuffled frog leaping algorithm.

Table 1. The parameters of Shuffled Frog Leaping Algorithm (SFLA).

Number Parameter Description
1 F The total number of the frogs in the population
2 m The number of sub-populations
3 n The number of the frogs in a sub-population
4 Px The global best frog
5 Pb The local best frog
6 Pw The local worst frog
7 Ls The iterations of local search
8 Sf The iterations of global search
9 Fitness The quality evaluation standard of frog

10 Smax The frog’s maximum jump step

Start

Divide sub-populations

Exchange information in sub-populations

Exchange information between sub-
populations

Find the food
or reach the maximum iterations

End

Yes

No

Sensors 2015, 15 13786

In order to balance the search ability of each sub-population, a sub-population division strategy

needs to be conducted. The sub-population division strategy is: calculate the fitness value of each frog,

sort them in descending (or ascending) order according to the fitness, and finally divide them into

sub-populations according to the strategy shown in Figure 2.

Figure 2. The sub-population division strategy.

The information transferred in the sub-population is realized through the influence of Pb on Pw. It is

given by:

(1) Calculate the jump step of Pw

maxmin{int[()], }b wS rand P P S= × − , for a positive step

maxmax{int[()], }b wS rand P P S= × − − , for a negative step (4)

(2) Evolve Pw

w wP P S′ = + (5)

GA, ACO, PSO, MA and SFLA are all meta-heuristics. GA begins with numbers of stochastic

individuals and searches the solution space through mutation and crossover between individuals. ACO

is a probability-type algorithm to construct an optimal path in a graph. It begins with numbers of

empty individuals and gradually constructs them by randomly choosing paths according to their

pheromone; a parameter indicates the quality of each path. PSO begins with numbers of stochastic

individuals just like a genetic algorithm, but it finds the global optimal solution by iteratively

following the best solution it has found ever before. MA is a combination of population-based global

search and individual-based local heuristic search. SFLA combines population-based global search and

sub-population-based local search. During the local search stage, SFLA moves on by the influence of

its local and global best solutions.

Note that SFLA combines the search strategy of PSO and MA. It conducts population-based global

search like MA and sub-population-based local search by iteratively following the local and global

best solutions like PSO. Therefore, SFLA has both the benefits of PSO and MA. Compared with GA,

SFLA moves to the aim solution more quickly because it has higher search directivity.

As a swarm intelligent optimization algorithm, SFLA combines the advantages of the Particle

Swarm Optimization and the Memetical Algorithm. It is simple and easy to realize. It has fewer

parameters, fast convergence speed and a strong global search capability. The SFLA mainly focuses on

continuous optimization problems, so it has fewer outcomes in the discrete combinatorial optimization

Sensors 2015, 15 13787

problems. In [13], a discrete SFLA is proposed to solve the Traveling Salesman Problem, but SFLA’s

application in real-time task scheduling problems cannot be found currently.

5. Applying SFLA to e-RTSP

In this section, SFLA is applied to solve the energy-aware real-time task scheduling on HMS.

As SFLA is originally designed for continuous optimization problems, while e-RTSP is a discrete

optimization problem, thus our main aim is to redesign SFLA and apply it to discrete optimization

problem. Also, the following optimization procedures are proposed to quickly obtain the feasible

solution with the minimal energy consumption. First, the encoding scheme and the fitness function are

defined. Then, the information transfer mode between frogs is designed. Next, the local and global

search strategies of SFLA are applied to schedule real-time tasks. Finally, a novel optimization scheme

is presented to avoid the premature and local optimal solution.

5.1. Encoding

Encoding is the first step to modify SFLA for e-RTSP, a discrete optimization problem. An

encoding scheme is designed and it maps a scheduling scheme to a frog of SFLA. The real-time
task-scheduling scheme mapped to a frog is realized by compressing the scheduling matrix n kX × . The

compression method is shown as follows: remove the elements with value 0, retain the elements with

value 1 and replace these elements with their column numbers, finally a one-dimensional array
1 2{ , ,..., }i j nlFrog P P P= (where i, j, l = 1, 2, …, k, i ≠ j ≠ l, k is the number of processors , n is the number

of tasks) is attained. In the one-dimensional array, the index denotes the task number and the element

denotes the processor number the task is assigned to. It can be seen that each frog is a solution of the

scheduling problem. According to whether the frog satisfies the constraints (4), it may have two states,

namely feasible or infeasible. The feasible frog is the target of SFLA.

Table 2 shows a scheduling matrix of assigning 10 tasks to four processors. The corresponding

encoding frog is {2,1,2,0,3,3,0,1,3,0}.

Table 2. Scheduling matrix X10×4.

Processors
Tasks

P0 P1 P2 P3

T0 0 0 1 0
T1 0 1 0 0
T2 0 0 1 0
T3 1 0 0 0
T4 0 0 0 1
T5 0 0 0 1
T6 1 0 0 0
T7 0 1 0 0
T8 0 0 0 1
T9 1 0 0 0

Sensors 2015, 15 13788

5.2. Fitness Function

Defining the fitness function is the second step to modify SFLA for e-RTSP. In the original SFLA,

the fitness function is usually a consecutive function, which is not suitable for e-RTSP. However,

a feasible choice to define the fitness function is to seek information from the effect of the fitness

function. The fitness function is a specific type of objective function, which is used to summarize how

close a given scheduling solution is to achieving the optimal aim. In e-RTSP, the goal is to quickly find

a scheme, which is schedulable and consumes less energy. Therefore, the fitness function is designed

as classical fitness and energy-aware fitness, respectively.

As for the classical real-time scheduling problem, the fitness function is defined to optimize the

number of feasible solutions, which is shown as follow:

Fitness nSchedulable= (6)

where nSchedulable is the number of the processors whose assigned computing capacity have not

exceeded its maximum computing capacity.

However, the aim of e-RTSP is to minimize the energy consumption. The energy-aware fitness is

defined as Fitness_Energy, whose calculation equation is:

_ / _Fitness Energy Energy Max Energy= (7)

where the definitions of Energy and Max_Energy are from Equations (2) and (3).

5.3. Information Transfer Modes

Designing the information transfer mode is the third step as well as the most important step to

modify SFLA for e-RTSP. In this step, the core of the original SFLA is modified to realize the search

in the solution space of e-RTSP. It can be seen from Equations (4) and (5) that when SFLA is applied

to solve discrete combinatorial optimization problems, the information transfer mode between frogs

should be changed flexibly. According to the basic idea of SFLA and Equations (4) and (5), it can be

seen that the essence of SFLA’s information transfer is that the high fitness individual influences the

low fitness individual’s mind. From this perspective, two kinds of discrete information transfer modes

are designed.

(1) Divergent Information Transfer

A one-dimensional array R[n] is used to realize the divergent information transfer. Every element of

R[n] is calculated by rand()%2. If R[i] = 1, replace Pw’s current element with Pb’s current element. Smax

denotes the maximum number of the replacement elements between two frogs. Whether to set up Smax

or not depends on the algorithm’s performance. We take a scheduling problem with 10 tasks and

four processors as an example. In a sub-population, Pb = {1,0,0,3,2,0,1,2,1,3} and

Pw = {0,1,0,1,3,2,2,3,1,0}. If R[n] = {1,0,0,1,1,0,1,0,0,0}, then the Pw’ = {1,1,0,3,2,2,1,3,1,0}.

(2) Concentrated Information Transfer

An inherited culture ration λ and a starting point r are used to realize the concentrated information
transfer. r is in [0, (1 λ))n × −   , where n is the number of the tasks. Smax can be described as max λS n= ×   .

The concentrate information transfer can be realized by replacing Pw’s elements with Pb’s elements

Sensors 2015, 15 13789

from index r to (max 1r S+ −). We also take a scheduling problem with 10 tasks and four processors as an

example. In a sub-population, Pb = {1,0,0,3,2,0,1,2,1,3} and Pw = {0,1,0,1,3,2,2,3,1,0}. If λ 0.40= and

3r = , then Smax = 4 and Pw’ = {0,1,0,3,2,0,1,3,1,0}.

These two information transfer modes both realize the information exchange between Pb and Pw.

SFLA using a divergent information transfer mode is called D-SFLA and that using a concentrate

information transfer mode is called C-SFLA.

5.4. SFLA Algorithm for e-RTSP

Having modified for discrete optimization problem e-RTSP, SFLA is ready to be applied to assign

real-time tasks to heterogeneous processors. First, the whole process of applying SFLA to e-RTSP is

given. Next, the sub-population information transfer process of applying SFLA to e-RTSP is described

in detail.

(1) Applying SFLA’s Whole Process

According to the basic idea of SFLA, the whole process of applying SFLA to assign real-time tasks

to heterogeneous processors is shown as follows:

Step 1 Initialize parameters. Initialize the number of scheduling schemes F in the population, the

number of sub-populations m, the number of the scheduling schemes n in each

sub-population. Initialize the iterations of the sub-population and the maximum iterations

when Px cannot be improved. Initialize the parameters of e-RTSP, include the number of tasks,

the number of processors, the heterogeneity of tasks, processors and the utilization matrix.

Step 2 Generate the original scheduling scheme set. Generate F scheduling schemes randomly in

the solution space, namely generating F frogs.

Step 3 Divide the scheduling scheme set into m sub-populations. Calculate the fitness of each frog

and sort them in descending order according to their fitness. Divide them into m

sub-populations. Determine Px of the population, Pb and Pw of each sub-population.

Step 4 Transfer information in each sub-population. Conduct the information transfer mode in each

sub-population according to the iterations of the sub-population. The information transfer

process searches the solution space of the scheduling problem and the frogs will jump to the

better scheduling schemes.

Step 5 Transfer information between sub-populations. Combine the frogs in each sub-population

back to the population and sort them in descending order according to their fitness.

Update Px.

Step 6 Check the termination conditions. If SFLA finds a feasible scheduling scheme or the

iterations where Px cannot be improved to reach the maximum, then stop the operation of

SFLA. Else return to Step 3.

(2) Information Transfer Process in Sub-Populations

In the whole process of SFLA, Step 4 is the core. To ensure that the frogs to jump towards the

feasible scheduling schemes, the information transfer in each sub-population needs to obey a certain

rule. The information transfer rule in each sub-population is: transfer information from Pb to Pw,

Sensors 2015, 15 13790

and obtain a Pw’. If the fitness of Pw’ is better than that of Pw, replace Pw with Pw’. Else replace Pb with

Px to transfer information to Pw and obtain a new Pw’. If the fitness of Pw’ is better than that of Pw,

replace Pw with Pw’. Else generate a new frog randomly and replace Pw with the new frog. The pseudo

code of the information transfer process in sub-population is shown in Algorithm 1.

Algorithm 1. Sub-Population Information Transfer Algorithm.

Input: an original scheduling scheme set.
Output: an updated scheduling scheme set.
1. Determine Px;
2. for each memeplex i{
3. for each iteration j{
4. Determine Pb, Pw;
5. Pw’ = Pw applies Equations (4) and (5) with Pb;
6. Evaluate the fitness of Pw’;
7. if (Pw’ is better than Pw)
8. Replace Pw with Pw’;
9. else{
10. Pw’ = Pw applies Equations (4) and (5) with Px;
11. Evaluate the fitness of Pw’;
12. if (Pw’ is better than Pw)
13. Replace Pw with Pw’;
14. else{
15. Generate a new frog Pw’;
16. Evaluate the fitness of Pw’;
17. Replace Pw with Pw’;}}}}

For a sub-population, Px and Pb influence Pw alternately, leading the frogs to jump towards the

feasible scheduling schemes. If Pw cannot be improved, a new frog is generated to replace it to ensure

the activeness of the population.

5.5. Precocity Remission

One of SFLA’s drawbacks applied to e-RTSP is precocity. With little diversity in the population,

SFLA may become less improvable before it has fully searched the solution space of the e-RTSP

problem. This phenomenon is called precocity. In the process of the sub-population information

transfer, Equations (4) and (5) are applied to Pw frequently, leaving the structure of Pw similar to that

of Px and Pb. We imported an algorithm to remit the precocity. Its pseudo code taking Px for example

is shown in Algorithm 2.

In Algorithm 2, the structure of Px is disturbed without reducing its fitness. The diversity of the

whole population is guaranteed by applying Algorithm 2. Pb is disturbed after every information

transfer iteration in the sub-population and Px is disturbed after every information transfer iteration

between sub-populations. Thus, it will not add much computing overhead to SFLA.

Sensors 2015, 15 13791

Algorithm 2. Px Disturbance Algorithm.

Input: Px.
Output: a new Px whose structure is disturbed.
1. for each task i{
2. for each processor j{
3. t = the number of the processor that task i is assigned in Px;
4. if (j is equal to t)
5. Go to Line 2;
6. else{
7. temp_solution = Px replaces t with j;
8. Evaluate the fitness of temp_solution;
9. if (the fitness of temp_solution is larger than that of Px)
10. Px = temp_solution;}}}

5.6. Local Optimal Avoidance

Another drawback of SFLA applied to e-RTSP is that it is easy to fall into a local optimal solution.

A local optimal solution is a scheme in which tasks are assigned to processors extremely unevenly.

Namely the fitness of the local optimal solution is quite high, but the assigned computing capacity of

the processor exceeds its maximal computing capacity. Construction of a sub-population in each

sub-population can prevent the occurrence of such a situation to a certain extent. To prevent local

optimal solutions, several frogs in a sub-population will be selected into the sub-population. As the

convergence speed of SFLA cannot be slowed down, the frogs with higher fitness should be assigned a

higher selected probability. As in [13–32], the selected probability of each frog is defined as follows:

2(1)
()

(1)

n j
p j

n n

+ −=
+

, j = 1,2, …, n (8)

where n is the number of the frogs in a sub-population.

As the frogs in a sub-population are sorted in descending order according to their fitness, so

Equation (8) gives higher selected probability to the frogs with higher fitness.

5.7. Convergence Acceleration

As the original population is generated randomly when applying SFLA’s whole process to e-RTSP,

the overall qualities of these scheduling schemes are low. We apply the neighborhood search to the

original population to improve the fitness of each frog. It consists of two parts: (1) migrate a task from

a processor to a different one if the energy consumption becomes less without lowering the fitness; and

(2) exchange two tasks between two processors if the energy consumption becomes less without

lowering the fitness. A frog becomes a better solution in its neighborhood by applying the

neighborhood search. The overall quality of the population is improved with this preprocessing and so

SFLA can find a feasible scheduling scheme more quickly.

5.8. Summary of the SFLA Applied to e-RTSP

In this section, Figure 3 concludes the above procedures.

Sensors 2015, 15 13792

Figure 3. Flow chart of SFLA for e-RTSP.

6. Experiment

Extensive experiments are conducted to estimate SFLA’s performance for the energy-aware

real-time task-scheduling problem. Our task and processor sets are not only generated from synthetic

data for simulation but also from real data of benchmarks. The synthetic data are generated following

the same setting in [11]. The real data are from the Embedded System Synthesis Benchmarks Suite

(E3S) [37].

First, we generate the synthetic data sets for simulation. Then, the parameter tests are conducted to

determine the optimal parameters for SFLA. After that, SFLA is compared with several familiar

scheduling algorithms with synthetic and real data of benchmarks. Their performance is analyzed

in detail.

6.1. Generation of Synthetic Data Sets for Simulation

First, the generating method of the utilization matrix is introduced. φP denotes the heterogeneity of

multiprocessors P and φT denotes the heterogeneity of real-time tasks T. To make the experiment more

practical, the utilization matrix must reflect φP and φT . The utilization matrix can be generated by the

following steps, where n is the number of tasks, m is the number of processors, i is in the interval [1, n]

and j is in the interval [1, m].

Start

Initialize parameters F, m

Randomly generate F scheduling schemes, namely F frogs, and
evaluate their fitness

Apply neighborhood search to each frog and update their fitness

Sort the frogs according to their fitness and determine the global
best individual Px

Terminational criteria satified? End

Construct m sub-populations according to the sub-population
division strategy

For each sub-population, construct a sub-sub-population according
to Equation (8) and apply Algorithm 1 to the sub-sub-population.
Do this iteratively until reach the maximum iterations. After each

iteration, apply Algorithm 2 to Pb

Shuffle the sub-populations and apply Algorithm 2 to Px

Yes

No

Sensors 2015, 15 13793

Step 1 Generate a one-dimensional integer array cycle[n] randomly. Each cycle[i] is in [100, 1000]

and is equal to the number of the clock cycles that Ti needs.
Step 2 Generate a one-dimensional floating-point array TB[n] randomly. Each TB[i] is in [1, φT].

It is a task baseline vector.

Step 3 Calculate the one-dimensional array period[n]. period[i] is the period of Ti and is calculated

from cycle[i]/TB[i].

Step 4 Generate a two-dimensional integer array speed[n][m] randomly. For each Ti, generate a
one-dimensional array speed[i][m]. Each speed[i][j] is limited in [φT , φ φT P×].

Step 5 Calculate the two-dimensional array exe[n][m]. Each exe[i][j] is equal to the executing time

that Ti needs on Pj. The elements are given by cycle[i]/speed[i][j].
Step 6 Calculate the utilization matrix n mU × . The calculation equation is given by

,i ju = exe[i][j]/period[i].

Next, the generating method of the test data set is given. A utilization matrix is consistent if a task

runs faster on a processor than on the other processors when the other tasks also run faster on them.
This test data set contains all 8 combinations of Pϕ , Tϕ and the consistency, namely Consistent, High

Tϕ , High Pϕ ; Consistent, High Tϕ , Low Pϕ ; Consistent, Low Tϕ , High Pϕ ; Consistent, Low Tϕ , Low

Pϕ ; Inconsistent, High Tϕ , High Pϕ ; Inconsistent, High Tϕ , Low Pϕ ; Inconsistent, Low Tϕ , High Pϕ ;

and Inconsistent, Low Tϕ , Low Pϕ , where High Tϕ is 100, Low Tϕ is 5, High Pϕ is 20, and Low

Pϕ is 5. They are, respectively, represented by C_HT_HP, C_HT_LP, C_LT_HP, C_LT_LP,

IC_HT_HP, IC_HT_LP, IC_LT_HP, and IC_LT_LP. For each combination 15 test instances are

generated, so the SFLA experiment is run on 120 test instances in total. Each test instance runs 10

times. Table 3 shows the utilization matrix scale of SFLA’s parameter test.

Table 3. The utilization matrix scale of SFLA’s parameter test.

No. Config. Size No. Config. Size

N1 C_HT_HP U90×4 N5 IC_HT_HP U140×5
N2 C_HT_LP U50×8 N6 IC_HT_HP U50×8
N3 C_LT_HP U70×4 N7 IC_LT_HP U90×4
N4 C_LT_LP U40×8 N8 IC_LT_LP U50×8

6.2. Parameter Setting for SFLA

Since SFLA is a new combinatorial optimization algorithm, there are few references to determine

the values of its parameters. In order to find better parameter values for SFLA, four kinds of parameter

tests were conducted. The influences of three factors on D-SFLA’s performance were tested with

control variants. They are the number of the sub-population iterations, the sub-populations size and

the population size. The influence of λ on C-SFLA’s performance was also tested. In the experimental

results, Avg. stands for the average time that D-SFLA needs to process a problem instance and

Feas. stands for the times that D-SFLA can find a feasible schedule in the total 150 times running.

We also provide the median for each plotted value by running every test for 20 times.

Sensors 2015, 15 13794

In Figure 4, we fix the population size as 200 and the sub-population size as 20. The iteration

number of sub-population is varied from 10, 20 to 30 times. The average time of 10 times is shorter

than the others and the feasible solution numbers of 10 times are much more than the others.

(a)

(b)

Figure 4. The influence of sub-population iterations on (a) average time and (b) feasible

solution number.

In Figure 5, we fix the population size as 200 and the sub-population iteration number as 10.

The sub-population size is varied from 10, 20 to 30 frogs. The average time of 20 sub-populations is

shorter than that of 30 sub-populations and the feasible solution numbers of 20 sub-populations are

much higher than that of 30 sub-populations. Although the average time of 10 sub-populations is

slightly shorter than that of 20 sub-populations, the feasible solution numbers of 20 sub-populations

are much higher than that of 10 sub-populations.

In Figure 6, we fix the sub-population size as 20 and the iteration number of sub-population as 10 times.

The population size is varied from 100, 200 to 400 frogs. The results show that the average time of

population size 200 is shorter than the others and the feasible solution numbers of population size 200 are

much higher than the others. Therefore, the optimal parameters of D-SFLA are set in Table 4.

In Figure 7, we fix the population size as 200, the sub-population size as 20 and the sub-population

iteration number as 10. The influence of λ is varied from 0.2, 0.4 to 0.6. The average time of λ = 0.4 is

shorter than the others and the feasible solution numbers of λ = 0.4 are much higher than the others.

Thus, we determine the λ = 0.4 for the C-SFLA.

0
500

1000
1500
2000
2500
3000
3500

N1 N2 N3 N4 N5 N6 N7 N8Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t
He

ur
is

tic
s (

m
s)

Types of data set

10 times

20 times

30 times

0

50

100

150

200

N1 N2 N3 N4 N5 N6 N7 N8

Fe
as

ib
le

 S
ol

ut
io

n
N

um
be

r

Types of data set

10 times

20 times

30 times

Sensors 2015, 15 13795

(a)

(b)

Figure 5. The influence of sub-population size on (a) average time and (b) feasible

solution number.

(a)

Figure 6. Cont.

0
200
400
600
800

1000
1200
1400
1600
1800

N1 N2 N3 N4 N5 N6 N7 N8

Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t
He

ur
is

tic
s (

m
s)

Types of data set

100 frogs

200 frogs

400 frogs

Sensors 2015, 15 13796

(b)

Figure 6. The influence of population size on (a) average time and (b) feasible

solution number.

(a)

Figure 7. Cont.

(b)

Figure 7. The influence of λ on (a) average time and (b) feasible solution number.

0
20
40
60
80

100
120
140
160

N1 N2 N3 N4 N5 N6 N7 N8

Fe
as

ib
le

 S
ol

ut
io

n
N

um
be

r

Types of data set

100 frogs

200 frogs

400 frogs

0
200
400
600
800

1000
1200
1400
1600

N1 N2 N3 N4 N5 N6 N7 N8

Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t
He

ur
is

tic
s (

m
s)

Types of data set

λ=0.20

λ=0.40

λ=0.60

0
20
40
60
80

100
120
140
160

N1 N2 N3 N4 N5 N6 N7 N8

Fe
as

ib
le

 S
ol

ut
io

n
N

um
be

r

Types of data set

λ=0.20

λ=0.40

λ=0.60

Sensors 2015, 15 13797

Table 4. The parameters of SFLA.

No. Parameter Value

1 Population Size 200
2 Sub-population Size 20
3 Sub-population Iterations 10

6.3. Performance Comparison with Synthetic Data

In order to estimate SFLA’s performance on e-RTSP, the simulation was implemented in Visual

C++ and in a server with a Pentium(R) Dual-Core CPU (E6700@3.20 GHz) and 1 GB memory.

The simulation compares the performance of the algorithms like ACO, GA and ILP. The parameters

of GA and ACO for the comparison test are shown in Tables 5 and 6. In the comparison test, D-SFLA

did not set a Smax and C-SFLA set λ to 0.40. The other parameters of D-SFLA and C-SFLA are given

in Table 4.

Table 5. The parameters of Genetic Algorithm (GA).

No. Parameter Value

1 Population Size 200
2 Crossover rate 60%
3 Mutation rate 40%

Table 6. The parameters of Ant Colony Optimization (ACO).

No. Parameter Value

1 Population Size 10
2 ρ 0.02
3 ω 20.00

Table 7 shows the utilization matrix scale for the algorithms. Section 6.1 describes its generation.

Table 7. The utilization matrix scale.

No. Config. Size No. Config. Size

N1 C_HT_HP U75×4 N5 IC_HT_HP U115×5

N2 C_HT_LP U40×8 N6 IC_HT_HP U55×8
N3 C_LT_HP U60×4 N7 IC_LT_HP U65×4
N4 C_LT_LP U40×8 N8 IC_LT_LP U45×8

Figure 8 shows: (1) Average time: ILP is the most time-consuming to acquire feasible solutions,

which is nearly 1000 times more than the D-SFLA and C-SFLA algorithms. GA and ACO also cost

more time than D-SFLA and C-SFLA, which are 200 times and 20 times more, respectively, than the

SFLA ones. The D-SFLA and C-SFLA algorithms can acquire the feasible solution in less than 20 ms

in all the conditions. (2) Feasible solution number: The ACO algorithm can acquire all the 150

solutions, which has the best performance. The feasible solution numbers of ILP, GA and D-SFLA are

almost the same, which is 7% less than that of the ACO algorithm. However, the feasible solution

Sensors 2015, 15 13798

number of the C-SFLA algorithm is 20% less than that of the other algorithms. Thus, we choose the

GA, ACO and D-SFLA to compare the energy consumption.

(a)

(b)

Figure 8. The average runtime and feasible solution numbers of for ILP, GA, ACO,

D-SFLA and C-SFLA algorithms: (a) average time; and (b) feasible solution number.

Figure 9 shows the energy consumption of the solutions provided by GA, ACO and D-SFLA

algorithms for e-RTSP. According to Equation (1), energy consumption Ei,j is determined by the clock

frequency fj and the number of clock cycles cyclei of Ti. Thus, energy consumption of each feasible

solution can be calculated based on Equations (1)–(3). The metric is the ratio of the Energy to

Max_energy of a feasible solution, which is defined in Equations (2) and (3). We can see that D-SFLA

uses 30% and 60% less energy than ACO and GA algorithms, respectively.

0

2000

4000

6000

8000

10000

N1 N2 N3 N4 N5 N6 N7 N8Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t
He

ur
is

tic
s (

m
s)

Types of data set

ILP

GA

ACO

D-SFLA

C-SFLA

0
20
40
60
80

100
120
140
160

N1 N2 N3 N4 N5 N6 N7 N8

Fe
as

ib
le

 S
ol

ut
io

n
N

um
be

r

Types of data set

ILP

GA

ACO

D-SFLA

C-SFLA

Sensors 2015, 15 13799

Figure 9. The energy consumption of GA, ACO and D-SFLA for e-RTSP.

6.4. Performance Comparison with Real Data from Benchmarks

In the experiments, the Embedded System Synthesis Benchmarks Suite (E3S) is used [37]. E3S is

built based on the Embedded Microprocessor Benchmark Consortium (EEMBC) benchmarks

suite [38], which has 20 kinds of processors. Each processor has records of real data with code sizes,

speeds and task execution times. There are five kinds of benchmarks: Automotive/Industrial

Benchmarks (16 tasks), Networking Benchmarks (5 tasks), Consumer Benchmarks (5 tasks), Office

Automation Benchmarks (3 tasks) and Telecomm Benchmarks (16 tasks). E3S also gives the

parameters of a task. In our experiments, we choose the following four kinds of processors:

AMD ElanSC520-133 MHz, AMD K6-2E 400 Mhz/ACR, AMD K6-2E+ 500 Mhz/ACR and

AMD K6-IIIE+ 550 Mhz/ACR because the code size of each task on these processors is the same.

In our experiments, we assign the 46 tasks to the four processors. The number of clock cycles for

each task can be calculated by the product of the processor speed and task execution time. We

determine the deadline for each task in regarding to the schedulability of the problem. According to the

structure of the heterogeneous platform, two kinds of test data sets (Real Data Set 1 and

Real Data Set 2) can be picked up from E3S. For each kind of test data set, we run the four algorithms

(ILP, GA, ACO, and D-SFLA) 10 times. The parameters of the four algorithms are set as shown in

Tables 4–6. The results are shown in Figures 10 and 11.

Note that ILP does not obtain the optimal solution for the energy consumption. The reason is shown

as follows: The feasibility of the scheduling scheme is the primary goal of the real-time task

scheduling algorithm and then the optimization of energy consumption. As is well-known, if the linear

programming algorithm finds a feasible solution, then this solution must be an optimal solution.

Therefore, if the objective function of linear programming is to minimize the energy consumption,

then the computing capacity of each processor will be occupied completely in the solution. In that way,

the tasks divided and assigned to more than one processor in the solution won’t be able to be assigned

again, which means that the linear programming algorithm with this objective function cannot find a

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8
0 .3 0

0 .3 5

0 .4 0

0 .4 5

0 .5 0

0 .5 5

0 .6 0

0 .6 5

0 .7 0

0 .7 5

0 .8 0

0 .8 5

0 .9 0

0 .9 5
R

at
io

 o
f E

ne
rg

y
to

 M
ax

_E
ne

rg
y

N u m b e r

 G A
 A C O
 D -S F L A

Sensors 2015, 15 13800

feasible solution. Considering this fact, when applying the linear programming algorithm to our

real-time task-scheduling problem, we hold the primary goal and give the second up. So we set the

objective function of linear programming as minimizing the computing consumption. Obviously, this

objective function will make the solution with the highest energy consumption. On the other hand,

every task in our problem model is forbidden to be divided, so the linear programming algorithm is

modified to deal with integer variable problem by assigning the tasks divided and assigned to more

than one processor in the solution again. The modified linear programming algorithm is called integer

linear programming (ILP). Therefore, the solution of ILP may be not the solution with the highest

energy consumption. This also gives an explanation of the reason why the performance of ILP in

energy optimization is better than GA, but worse than ACO and D-SFLA.

(a)

(b)

Figure 10. The average runtime and energy consumption of real data set 1 for different

heuristics: (a) average time and (b) energy consumption.

Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t H
eu

ris
tic

s(
m

s)

Testing Number

ILP

GA

ACO

DSFLA

En
er

gy
/M

ax
_E

ne
rg

y

Testing Number

ILP

GA

ACO

DSFLA

Sensors 2015, 15 13801

(a)

(b)

Figure 11. The average runtime and energy consumption of real data set 2 for different

heuristics: (a) average time and (b) energy consumption.

7. Conclusions

The Energy-Aware Real-Time Tasks Scheduling Problem for heterogeneous processor systems

named e-RTSP is formulated as a combinatorial optimization problem. A new meta-heuristic

algorithm for real-time task scheduling based on the SFLA paradigm is presented, not only satisfying the

task deadlines but also reducing the energy costs. An extensive experiment shows that this algorithm has

much better performance than GA and ACO approximation algorithms. The D-SFLA algorithm provides

solutions, which use 30% and 60% less energy than those given by the ACO and GA algorithms. Also,

the time of D-SFLA for the feasible solutions is 20 and 200 times less than ACO and GA, respectively.

Current research mainly focuses on modeling independent and periodic real-time applications.

However, more complicated and irregular applications should be considered. In the future, we plan to

relax our restrictions on the task set by considering task precedence and inter-task communication.

Also, our energy consumption model puts emphasis on the energy consumption of CPUs. The

additional energy consumption of the memory access and I/Os will be investigated in future.

Av
er

ag
e

Ti
m

e
of

 D
iff

er
en

t H
eu

ris
tic

s(
m

s)

Testing Number

ILP

GA

ACO

DSFLA

En
er

gy
/M

ax
_E

ne
rg

y

Testing Number

ILP

GA

ACO

DSFLA

Sensors 2015, 15 13802

Acknowledgments

Weizhe Zhang is supported in part by the National Grand Basic Research Program (973 Program)

of China under grant No. 2011CB302605, National Natural Science Foundation of China (NSFC)

under grant No. 61173145. Albert M.K. Cheng is supported in part by the US National Science

Foundation under Awards No. 0720856 and No. 1219082.

Author Contributions

Weizhe Zhang and Enci Bai conceived, designed and performed the experiments; Hui He analyzed

the data; Weizhe Zhang and Albert Cheng wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hamutal, M. Power and Energy-Aware Architectural Techniques for High-Performance

Uniprocessor and Multiprocessor Systems. Ph.D. Thesis, Brown University, Providence, RI,

USA, 1 January 2006.

2. Kumar, R.; Tullsen, D.M.; Jouppi, N.P. Core architecture optimization for heterogeneous chip

multiprocessors. In Proceedings of the 15th International Conference on Parallel Architectures

and Compilation Techniques, Seattle, WA, USA, 16–20 September 2006; ACM: New York, NY,

USA; pp. 23–32.

3. Chantem, T.; Hu, X.S.; Dick, R.P. Temperature-Aware scheduling and assignment for hard real-time

applications on MPSoCs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 1884–1897.

4. Lin, J.; Cheng, A.M.K.; Kumar, R. Real-Time task assignment in heterogeneous distributed

systems with rechargeable batteries. In Proceedings of the International Conference on Advanced

Information Networking and Applications, AINA’09, Bradford, UK, 26–29 May 2009; pp. 82–89.

5. Baruah, S. Feasibility analysis of preemptive real-time systems upon heterogeneous

multiprocessor platforms. In Proceedings of the 25th IEEE International on Real-Time Systems

Symposium, Lisbon, Portugal, 5–8 December 2004; pp. 37–46.

6. Yu, Y.; Prasanna, V.K. Power-Aware resource allocation for independent tasks in heterogeneous

real-time systems. In Proceedings of the Ninth International Conference on Parallel and

Distributed Systems, Taiwan, China, 17–20 December 2002; pp. 341–348.

7. Chen, J.J.; Schranzhofer, A.; Thiele, L. Energy minimization for periodic real-time tasks on

heterogeneous processing units. In Proceedings of the IEEE International Symposium on Parallel

& Distributed Processing, IPDPS 2009, Rome, Italy, 23–29 May 2009; pp. 1–12.

8. Chen, J.J.; Kuo, T.-W. Allocation cost minimization for periodic hard real-time tasks in

energy-constrained DVS systems. In Proceedings of the 2006 IEEE/ACM International

Conference on Computer-Aided Design, San Jose, CA, USA, 5–9 November 2006; pp. 255–260.

Sensors 2015, 15 13803

9. Hung, C.-M.; Chen, J.-J.; Kuo, T.-W. Energy-Efficient real-time task scheduling for a DVS

system with a non-DVS processing element. In Proceedings of the 27th IEEE International

Real-Time Systems Symposium, RTSS’06, Rio de Janeiro, Brazil, 5–8 December 2006;

pp. 303–312.

10. Yang, C.-Y.; Chen, J.-J.; Kuo, T.-W.; Thiele, L. An approximation scheme for energy-efficient

scheduling of real-time tasks in heterogeneous multiprocessor systems. In Proceedings of the

Conference on Design, Automation and Test in Europe, Nice, France, 20–24 April 2009;

pp. 694–699; European Design and Automation Association: Nice, France, 2009.

11. Chen, H.; Cheng, A.M.K.; Kuo, Y.-W. Assigning real-time tasks to heterogeneous processors by

applying ant colony optimization. J. Parallel Distrib. Comput. 2011, 71, 132–142.

12. Eusuff, M.M.; Lansey, K.E. Optimization of water distribution network design using the shuffled

frog leaping algorithm. J. Water Resour. Plan. Manag. 2003, 129, 210–225.

13. Luo, X.-H.; Yang, Y.; Li, X. Solving TSP with shuffled frog-leaping algorithm. In Proceedings of

the Eighth International Conference on Intelligent Systems Design and Applications, ISDA’08,

Kaohsiung, Taiwan, 26–28 November 2008; Volume 3, pp. 228–232.

14. Cheng, A.M.K. Real-Time Systems: Scheduling, Analysis, and Verification; John Wiley & Sons:

Hoboken, NJ, USA, 2003.

15. Davis, R.I.; Burns, A. A survey of hard real-time scheduling for multiprocessor systems.

ACM Comput. Surv. (CSUR) 2011, 43, doi:10.1145/1978802.1978814.

16. Baruah, S.K. Partitioning real-time tasks among heterogeneous multiprocessors. In Proceedings of

the International Conference on Parallel Processing, ICPP 2004, Montreal, QC, Canada,

15–18 August 2004; pp. 467–474.

17. Baruah, S.K. Task Partitioning upon Heterogeneous Multiprocessor Platforms. In Proceedings of

the IEEE Real-Time and Embedded Technology and Applications Symposium, Toronto, ON,

Canada, 25–28 May 2004; pp. 536–543.

18. Chen, H.; Cheng, A.M.K. Applying ant colony optimization to the partitioned scheduling problem

for heterogeneous multiprocessors. ACM SIGBED Rev. 2005, 2, 11–14.

19. Lin, X.; Lu, Y.; Deogun, J.; Goddard, S. Real-Time divisible load scheduling for cluster

computing. In Proceedings of the 13th IEEE Real Time and Embedded Technology and

Applications Symposium, RTAS’07, Bellevue, Washington, WA, USA, 3–6 April 2007;

pp. 303–314.

20. Lin, X.; Lu, Y.; Deogun, J.; Goddard, S. Real-time divisible load scheduling with different

processor available times. In Proceedings of the International Conference on Parallel Processing,

ICPP 2007, Xi’an, China, 10–14 September 2007; pp. 20.

21. Bharadwaj, V.; Ghose, D.; Robertazzi, T.G. Divisible load theory: A new paradigm for load

scheduling in distributed systems. Clust. Comput. 2003, 6, 7–17.

22. Wiese, A.; Bonifaci, V.; Baruah, S. Partitioned EDF scheduling on a few types of unrelated

multiprocessors. Real-Time Syst. 2013, 49, 219–238.

23. Andersson, B.; Raravi, G.; Bletsas, K. Assigning real-time tasks on heterogeneous

multiprocessors with two unrelated types of processors. In Proceedings of the 2010 IEEE 31st

Real-Time Systems Symposium (RTSS), San Diego, CA, USA, 30 November–3 December 2010;

pp. 239–248.

Sensors 2015, 15 13804

24. Stavrinides, G.L.; Karatza, H.D. Scheduling real-time DAGs in heterogeneous clusters by

combining imprecise computations and bin packing techniques for the exploitation of schedule

holes. Future Gener. Comput. Syst. 2012, 28, 977–988.

25. Qin, X.; Jiang, H. A dynamic and reliability-driven scheduling algorithm for parallel real-time

jobs executing on heterogeneous clusters. J. Parallel Distrib. Comput. 2005, 65, 885–900.

26. Kianzad, V.; Bhattacharyya, S.S. Efficient techniques for clustering and scheduling onto

embedded multiprocessors. IEEE Trans. Parallel Distrib. Syst. 2006, 17, 667–680.

27. Auluck, N.; Agrawal, D.P. A scalable task duplication based algorithm for improving the

schedulability of real-time heterogeneous multiprocessor systems. In Proceedings of the 2003

International Conference on Parallel Processing Workshops, Kaohsiung, Taiwan, 6–9 October

2003; pp. 89–96.

28. Yoo, M.; Gen, M. Scheduling algorithm for real-time tasks using multiobjective hybrid genetic

algorithm in heterogeneous multiprocessors system. Comput. Oper. Res. 2007, 34, 3084–3098.

29. Yoo, M. Real-Time task scheduling by multiobjective genetic algorithm. J. Syst. Softw. 2009, 82,

619–628.

30. Yang, C.Y.; Chen, J.-J.; Kuo, T.-W.; Thiele, L. Energy reduction techniques for systems with

non-DVS components. In Proceedings of the IEEE Conference on Emerging Technologies &

Factory Automation, ETFA 2009, Majorca, Spain, 22–25 September 2009; pp. 1–8.

31. Li, D.; Wu, J. Energy-Aware Scheduling on Multiprocessor Platforms; Springer: New York, NY,

USA, 2012.

32. Schmitz, M.T.; Al-Hashimi, B.M.; Eles, P. Energy-Efficient mapping and scheduling for DVS

enabled distributed embedded systems. In Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, Paris, France, 4–8 March 2002; pp. 514–521.

33. Luo, J.; Jha, N.K. Static and dynamic variable voltage scheduling algorithms for real-time

heterogeneous distributed embedded systems. In Proceedings of the 2002 Asia and South Pacific

Design Automation Conference, Bangalore, India, 7–11 January 2002; pp. 719–726.

34. Burd, T.D.; Brodersen, R.W. Energy efficient CMOS microprocessor design. In Proceedings of

the Twenty-Eighth Hawaii International Conference on System Sciences, Wailea, HI, USA,

3–6 January 1995; Volume 1, pp. 288–297.

35. Zhu, D.; Melhem, R.; Childers, B.R. Scheduling with dynamic voltage/speed adjustment using

slack reclamation in multiprocessor real-time systems. IEEE Trans. Parallel Distrib. Syst. 2003,

14, 686–700.

36. Liu, C.L.; Layland, J.W. Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM (JACM) 1973, 20, 46–61.

37. Embedded System Synthesis Benchmarks Suite (E3S). Available online: http://ziyang.eecs.umich.

edu/~dickrp/e3s/ (accessed on 5 June 2012).

38. Embedded Microprocessor Benchmark Consortium. Available online: http://www.eembc.org

(accessed on 5 June 2012).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

