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Abstract: The mass sensing superiority of a micro-/nano-mechanical resonator sensor over 

conventional mass spectrometry has been, or at least is being firmly established. Because 

the sensing mechanism of a mechanical resonator sensor is the shifts of resonant 

frequencies, how to link the shifts of resonant frequencies with the material properties of 

an analyte formulates an inverse problem. Besides the analyte/adsorbate mass, many other 

factors, such as position and axial force, can also cause the shifts of resonant frequencies. 

The in situ measurement of the adsorbate position and axial force is extremely difficult if 

not impossible, especially when an adsorbate is as small as a molecule or an atom. Extra 

instruments are also required. In this study, an inverse problem of using three resonant 

frequencies to determine the mass, position and axial force is formulated and solved. The 

accuracy of the inverse problem solving method is demonstrated, and how the method can 

be used in the real application of a nanomechanical resonator is also discussed. Solving the 

inverse problem is helpful to the development and application of a mechanical resonator 

sensor for two reasons: reducing extra experimental equipment and achieving better mass 

sensing by considering more factors. 
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1. Introduction 

Mass spectrometry is a widely-used analytical tool in biology and chemistry, which is also expected 

to play an important role in proteomics [1,2]. However, whether mass spectrometry can be the 

mainstay instrument in proteomics is questionable [2,3]. Although mass spectrometry has been used to 

identify protein species, the typical application involves the measurement of approximate 810  

molecules [3], which corresponds to several hundred kilodaltons (1 Dalton ≈ 1.65 × 10−24 g is 

approximately the mass of a proton or a neutron). To accelerate the identification of proteins, disease 

biomarkers and, thus, new drug development, the current demand is to characterize the proteome at the 

single-cell or single-molecule level [4,5], which is often beyond the mass range of conventional mass 

spectrometry [3]. In comparison, the nanoelectromechanical systems (NEMS)-based mechanical mass 

resonator has recently achieved the capability of detecting the mass of one Dalton [6]. Furthermore, 

mass spectrometry does not directly measure the mass of an analyte; it measures the mass-to-charge 

ratio (m/z) of the ionized analytes and the number of ions at each m/z value [1]. Therefore, during the 

application of mass spectrometry, there are three stages: ionization, separation and detection [7]. The 

structural change of a protein [3] or the damage of fragile biological macromolecules [8] caused by 

ionization is a serious problem in the application of mass spectrometry. Mass spectrometry also has the 

problem when being applied to small and thermostable compounds, because of the difficulty of 

ionization and transferring ionized analytes from the condensed phase into the gas phase [2]. On the 

other hand, the sensing mechanism of a mechanical mass resonator is the shifts of resonant 

frequencies, which can work with electrically-neutral analytes. The first two stages of ionization and 

separation are thus unnecessary for a mechanical mass resonator [4]. 

Moore’s law, which states that the number of components in integrated circuits doubles every  

year [9] and chip performance doubles every eighteen months, has successfully and succinctly 

predicted/summarized the revolutionary development of computer science and technology since the 

1960s. In 2005, the researchers from the Oak Ridge National Laboratory asserted that the development 

of a micro-/nano-electromechanical systems (MEMS/NEMS)-based mechanical mass resonator/sensor  

“is poised for such a revolution” (as described by Moore’s law) [10]. The rapid development of a 

mechanical mass resonator sensor even causes Moore’s law underestimate its progress in performance: 

the mass sensing resolution has been steadily improving by approximately an order of magnitude per 

year [4]. The ultimate goal of any detection method is to achieve the level of resolving a single 

quantum of a measured entity [11]. This goal is also a major driving force for the development of a 

mechanical mass resonator sensor as reflected by the following observation: many approaches 

emphasize the minimum number of target species or labels that can be detected, the  

“single-molecule” detection is often the implicit goal [12]. An essential idea of improving the mass 

sensing resolution of a mechanical resonator sensor is to increase its resonant frequencies, and 

therefore, a small fractional change in large resonant frequency is still absolutely large enough to be 

detected [8]. Because the resonant frequency of a beam is proportional to 2/ /h L E× ρ  ( h  and L  are 

the thickness and length; E  and ρ  are Young’s modulus and mass density) [13–15], there are two 

major approaches to increase the resonant frequencies of a mechanical resonator sensor: The first is to 

reduce the structure dimensions, which makes the factor of 2/h L  larger, and at the same time, the 

fractional change in mass is also larger in a smaller resonator for the same analyte. The second is to 
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use materials with large /E ρ , such as carbon nanotube (CNT) [6,16,17] and graphene [14]. The 

miniaturized mechanical resonator can vibrate with a resonant frequency of 2 GHz (1 GHz = 910  Hz) [6] 

or even higher. For a mechanical resonator with a sub-micron length scale and GHz resonant 

frequency, measuring its motion and maintaining the frequency resolution at the level of parts-per-billion 

(ppb) are extremely challenging, because the thermal fluctuation effect stands out [18]. Although 

cryogenically cooling the nanomechanical resonator at liquid helium temperature is always effective 

for reducing/suppressing thermal noise, huge efforts are still needed to refine the read-out circuitry 

design [6,19]. Micro-/nano-mechanical mass resonators with the mass sensing resolution of detecting 

the presence of a cell [20], a virus [21], a protein [3,4], a molecule [6,22] and an atom [16,17] have been 

developed. Despite those marvelous achievements, the mechanical mass resonator actually has the 

problem of measuring the mass of an analyte, even though it has the capability of detecting the smaller 

resonant frequency shift induced by a molecule/atom [3,17]. 

The reason is that the analyte mass and its position on a resonator are the two convolving factors 

determining the shifts of resonant frequencies [3,8,17]. For any given shift of resonant frequency, there 

are infinite possible combinations of mass and position [14]. To know the mass, the position must be 

known (as for a forward problem). For an analyte as small as a molecule/atom, detecting the position is 

extremely difficult, which has been deemed as the most important problem for a nanomechanical 

resonator sensor [8]. In addition, the fact that adsorption not only adds mass, but also changes stiffness 

further complicates the problem [23]. The stiffness change mainly results from the following three 

mechanisms: (1) the adsorbate stiffness: when adsorbates form a layer with a finite thickness, the 

stiffness of the resonator-adsorbate layer composite structure is dependent on Young’s modulus and 

the thickness of the adsorbate layer [23,24]; (2) the change of mechanical properties: because chemical 

bonds or others can form or break during adsorption, mechanical properties, such as Young’s modulus 

and Poisson’s ratio, change correspondingly; for example, the formation of an amalgamation in the 

mercury adsorption test [25,26] and the formation of hydride in the hydrogen adsorption test [27,28]; the 

partial dissolution of the polymer coated on a silicon resonator owing to the adsorption and diffusion 

of analytes [29]; and (3) the change of stress, which finally leads to the change of the resonator axial 

force. When adsorbates stay on the resonator surface, the electrostatic [30] or Lennard–Jones [31] 

interactions of adsorbate–adsorbate and adsorbate–resonator surface atom result in surface stress, 

which generates both the effects of axial loading and bending moment [32]. The axial loading effect is 

responsible for the stiffness change [32]. The chemical reaction inside a microfluidic channel 

embedded in a silicon nitride-based resonator alters the surface stress at the solid-liquid interface [33]. 

Because the adsorbates and resonator material absorb light differently [34,35], thermal (axial) stress 

under laser irradiation is induced. When adsorbates diffuse into the resonator material, the interactions 

between adsorbates-resonator atoms can also cause the stress change. For example, after adsorption on 

a gold-palladium alloy surface, the hydrogen molecule dissociates into atomic hydrogen, which then 

diffuses into the lattice of the alloy and forms an interstitial phase; the formation and expansion of 

interstitial hydrogen in the alloy lattice are believed to relieve the built-in tensile stress and, thus, 

reduce the resonant frequencies dramatically [36]. Similarly, the adsorption of water ions on a silicon 

resonator is believed to hydroxylate the surface, which relaxes the surface stress and is responsible for 

the decrease of resonant frequency [37]. In general, the stiffness change should be taken into account 

together with the mass loading effect. Otherwise, the experimental data will be wrongly interpreted or 
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even uninterpretable [23,26]. Two vivid examples are that in the acetylene adsorption test on a silicon 

resonator [38] and the pentacene adsorption test on a graphene resonator [39], the resonant frequencies 

of both resonators increase. Because mass loading decreases the resonant frequency, the increase of 

resonant frequency can only mean that the stiffness change is the dominant effect. 

The resonator with an adsorbate is often studied as a forward/direct problem, in which the mass and 

position of an adsorbate are given to see how the resonant frequencies vary [40–43]. In the real 

application of a mass resonator, the resonant frequencies are the measured quantities; the mass and 

position of an adsorbate are unknown. Therefore, an inverse problem arises naturally: how to use the 

resonant frequencies to determine the mass and position? There are very few studies on this inverse 

problem. Hanay et al. [3] and Jensen et al. [17] solved the inverse problem by building the histograms 

of event probability versus frequency shift for the ensembles of sequential single protein/atom 

adsorption; the mass of the adsorbed protein/atom can be told with a certain confidence level. To 

accurately “decouple” the mass and position of an adsorbate, the statistics method requires tens or 

hundreds of adsorption events to build the histogram [3,17]. In comparison, a rather straightforward 

method was presented to solve the inverse problem of determining the mass and position of an 

adsorbate on a beam [44] and a string [45] by the shifts of resonant frequencies. The inverse problem is 

approximately solved by the Rayleigh–Ritz method by assuming that the beam/string strain energy 

does not change after mass loading/adsorption and is (approximately) equal to the kinetic energy of the 

unloaded beam/string [44,45]. Although it can be a good approximation in certain circumstance, the 

assumption in general is not valid, which could be the very reason why the method does not work 

when an adsorbate is (very) close to the cantilever clamped end or its mass is (very) small [44].  

An improved method, which incorporates damping and is capable of handling the scenario when an 

adsorbate is close to the clamped end, was thus proposed [46]. Furthermore, as a result of the 

assumption, the beam bending stiffness [44] and the string tension [45] do not appear at all; their 

inverse problem method thus cannot be used to solve the stiffness change case. Tension is incorporated 

as an important parameter in the inverse problem of an adsorbate on a circular membrane, and the 

inverse problem is solved by assuming the adsorbate-induced tension is very small compared with the 

original one [14]. In the above inverse problem solving methods [3,14,17,44–46], the very key 

assumption is that an adsorbate only causes the mass-loading effect. In this study, the effect of stiffness 

change (due to axial load) is added; the mass, position and axial load are the three unknowns in a beam 

resonator. More importantly, a systematic method of formulating and solving the inverse problem is 

presented. Because solving the inverse problem can be very difficult and time consuming, most 

nanomechanical resonators cannot perform real-time mass sensing [3]. The general method presented 

in this study provides a straightforward and relatively fast way of solving the inverse problem, which 

should be of some help to mass sensing in real time. 

2. Model Development 

Figure 1a is the schematic of an adsorbate on a carbon nanotube (CNT)-based resonator with  

a length of L . The governing equation of the resonator, which is modeled as a beam, is given  

as follows [15,40,41]: 
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where m  is the resonator mass per unit length; oM  and ox  are the mass and position of the adsorbate, 

which is modeled as a concentrated mass by the Dirac delta function of δ  [15,40,41]. w  is the beam 

displacement; T  is the axial load; T  > 0 is tension; and T  < 0 is compression. T  can vary due to 

adsorption. D  is the beam bending stiffness, and D EI=  ( E  and I  are the beam’s Young’s modulus 

and the moment of inertia, respectively). 

 

Figure 1. (a) Schematic diagram of an adsorbate on a carbon nanotube-based resonator; 

(b) the first three modes of a uniform clamped-clamped beam. 

By introducing /x Lξ = , 4/ ( )EI mL tτ =  and /W w L=  [15,40], Equation (1) is  

non-dimensionalized as follows: 

2 2 4

2 2 4
[1 ( )] 0o

W W W∂ ∂ ∂+ αδ ξ − ξ −β + =
∂τ ∂ξ ∂ξ

 (2)

where the dimensionless parameter / ( )oM mLα =  is the ratio of the adsorbate mass to that of  

the resonator; 2 /TL Dβ =  is the ratio of the axial load to the beam transverse stiffness; /o ox Lξ =  is 

the adsorbate location. When the compressive axial load reaches a critical value, the beam buckles. 

Equation (2) is a linear equation, which cannot describe the beam vibration in the post-buckling region. 
For Equation (2) to apply, 24β > − π  for the clamped-clamped beam and 2 / 4β > −π  for the cantilever 

beam [47] are required. 

The Galerkin method is an efficient method for the eigenfrequency computation of a beam with 
small concentrated masses [40], which assumes the following form for ( , )W ξ τ : 

(a)

(b) 

L

1st mode
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3rd mode
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W a
=

ξ τ = τ φ ξ  (3)

where N  is the mode number and ( )ja τ  is the unknown j-th modal amplitude. ( )jφ ξ  is the j-th mode 

of a uniform clamped-clamped beam [47]; the first three mode shapes of the clamped-clamped beam 
are presented in Figure 1b. Substitute Equation (3) into Equation (2), time ( )iφ ξ  and integrate from 0 

to 1; the following governing equations are derived: 

0+ =Mq Kq  (4)

Here, () /
•

= ∂ ∂τ , and q  is a vector given as 1 2( , , , )T
Na a a=q  . M  and K  are the N N×  

matrices of mass and stiffness, respectively, which are given as the following by using both the 
orthonormality property of ( )jφ ξ  and the integration property of the Dirac function [15,40]: 

2
14

20

( )
( ) ( ), ( ) j

ij ij i o j o ij j ij i d
∂ φ ξ

= δ + αφ ξ φ ξ = κ δ −β φ ξ ξ
∂ξM K  (5)

where ijδ  is the Kronecker delta function, and it is noticed that the presence of the concentrated mass  

( α ) makes the mass matrix non-diagonal; 2
jκ  is the j-th (dimensionless) eigenfrequency of a uniform 

undamped beam with no axial load. Clearly, the presence of the axial load (β ) has a direct impact on 

the stiffness matrix K , which also leads to the variation of the resonant frequencies.  
The first three 2

jκ  of a clamped-clamped beam are given as follows [48]:  

2 2 2 2 2 2
1 1 2 2 3 34.73 22.3733, 7.8532 61.6728, 10.9956 120.9034o o oω = κ = = ω = κ = = ω = κ = =  (6)

To find out the resonant frequencies of the beam with the concentrated mass and axial load, 
( ) i

j ja b e ωττ =  ( jb  is the unknown constant and ω  is the resonant frequency) is assumed and 

substituted into Equation (4), which leads to the following α  eigenvalue problem: 

2 0− ω =K M  (7)

To find the eigenfrequency/resonant frequency of ω , the adsorbate mass ( α ), location ( oξ ) and 

axial load (β ) are needed. Here, up to three resonant frequencies are calculated; 3N ≥  is required.  

By carefully choosing the lower and upper bounds for each resonant frequency, different ω  are solved 

one by one by the Newton–Raphson method [40,49]. 

3. Results and Discussion 

Many mechanical resonators are the clamped-clamped (C-C) beam structure [3,4,6,19], which has 

the highest resonant frequencies among all beam structures. Here, the C-C beam is studied. Figure 2 
examines how the first three resonant frequencies vary as the axial load (β ) changes. In Figure 2, there 

is no adsorbate, i.e., α  = 0 is set. Clearly, all of the resonant frequencies increase monotonically as β  

increases. At 24β = − π , the first resonant frequency ( 1ω ) is zero, which indicates buckling.  

If a closer look is taken, we can find that the different resonant frequencies vary differently as the axial 
load changes. For example, when β  = 0, the three resonant frequencies are given by Equation (6) as  

1
oω  = 22.3733, 2

oω  = 61.6728 and 3
oω  = 120.9034; at β  = 10, the three resonant frequencies are  
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1ω  = 24.9591, 2ω  = 65.2996 and 3ω  = 124.9291. The corresponding frequency change (defined as 
o

i i iΔω = ω − ω ) and its percentage (defined as / o
i iΔω ω ) are: 1Δω  = 2.5858 (11.56%), 2Δω  = 3.6268 

(5.88%) and 3Δω  = 4.0257 (3.33%). That different resonant frequency has different sensitivity to  

the axial load has been noticed [50] and used as a mechanism to detect the surface stress inside  

a micro-/nano-structure [13]. 

 

Figure 2. The variations of the first three resonant frequencies as the axial load (β ) varies 

and 0α = . At 24β = − π , the first resonant frequency ( 1ω ) becomes zero, which  

indicates buckling. 

 

Figure 3. The variations of the first three resonant frequencies as an adsorbate moves from 
one clamped end to the other. Here, the mass and axial load are fixed as 0.1α =  and 10β = .  

1A , 2A  and 3A  are the amplitudes of the three resonant frequencies, which indicate the 

difference between the maximum and minimum of those frequencies.  
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Figure 3 examines the variations of the first three resonant frequencies as the adsorbate moves from 
one end to the other. In Figure 3, α  = 0.1 and β  = 10 are fixed; oξ  varies from zero to one. Again, the 

three resonant frequencies respond differently as the adsorbate moves from one end to the other. As 
seen in Equation (5), the adsorbate actual mass ( α ) and its location ( oξ ) are the two intricate factors 

determining the effective mass for the system. The variation patterns of the three resonant frequencies 
are actually based on the mode shapes, as presented in Figure 1b. At the boundaries of ξ  = 0, 1 and 

node(s) (i.e., ( )jφ ξ  = 0), the effective mass is zero, and the resonant frequencies are thus the 

maximum. For the first mode, there is no node, and its modal displacement reaches the maximum at 

oξ  = 0.5, which corresponds to the maximum effective mass and, thus, minimum resonant frequency. 

For the second mode, which has one node at ξ  = 0.5 and is marked as a solid circle in both Figures 1b 

and 3, the resonant frequency reaches its maximum because 2 (0.5)φ  = 0, and the effective mass is 

zero. At the same time, the modal displacement of the second mode reaches the maximum at ξ  = 0.27 

and ξ  = 0.73, which are marked as two solid triangles in Figures 1b and 3; the effective mass becomes 

maximum, and the second resonant frequency thus reaches its minimum. The node at ξ  = 0.5 and  

the two maximum modal displacements at ξ  = 0.27 and ξ  = 0.73 are responsible for the variation of  

the second resonant frequency, as presented in Figure 3. A similar analysis can be applied to explain 
the variation of the third resonant frequency. Here, iA  is defined as the difference of the maximum and 

minimum of the i-th resonant frequency, and 1A  = 2.6437, 2A  = 5.8863 and 3A  = 9.8944. The fact  

that 3A  > 2A  > 1A  indicates that a higher mode has higher mass sensitivity, which has been used as  

a mechanism to detect the mass and location of an accreted particle on a micromechanical resonator [51]. 

In summary, Figures 2 and 3 demonstrate two things: (1) that the axial load and mass have different 

impacts on different resonant frequencies; (2) that for given axial load and mass (including its 

position), different resonant frequencies respond differently. These two things are the very physical 

mechanism to solve the inverse problem. 

Now, let us present how to use the mechanism to solve the inverse problem. Here, the computation 
example of α  = 0.1, oξ  = 0.3 and β  = 10 is given, which results in the following three resonant 

frequencies, as given by Equation (7): 

1ω  = 23.5217, 2ω  = 59.5752, 3ω  = 121.8384 (8)

As shown in Figure 2, tension stiffens the beam and, thus, increases the resonant frequencies; on the 

other hand, the adsorbate mass always reduces the resonant frequencies. Compared with the three 
resonant frequencies of α  = β  = 0 as given in Equation (6), the competition between tension and mass 

leads to the decrease of the second resonant frequency and the increase of the first and third ones.  
In both Figures 2 and 3, the eigenfrequencies are solved as a forward problem by supplying α , oξ  and 

β  to Equation (7). However, in the real application of the resonator sensor, the resonant frequencies 

are the measured quantities, which in this computation example, are given in Equation (8); α , oξ  and 

β  in general are the unknowns to be determined. In order to present a better and graphic illustration of 

how the inverse problem is solved, we start with the simpler case of two variables. In this case, β  = 10 

is known, and α  and oξ  are the two unknowns to be determined. Because the original axial load  

(or surface stress) can be determined during an experimental calibration process by measuring the shift 
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of a resonant frequency [52], this inverse problem solving technique for two variables can 

correspondingly be applied to the case that adsorption induces no surface stress. 
Figure 4 presents the variation of the first resonant frequency ( 1ω ) as the function of α  and oξ . 

Here, α  varies from zero to 0.2; oξ  varies from zero to 0.5. Because the C-C beam is a symmetric 

structure, the adsorbate at oξ  and 1 − oξ  results in the same change for any arbitrary resonant 

frequency. Therefore, only half of the beam span is examined here. The level plane is the one with  

1ω  = 23.5217. The intersection of the two planes are marked with a solid line, which indicates the 

combinations of α and oξ  resulting in the same first resonant frequency of 1ω  = 23.5217. This solid 

line also indicates that the combinations are infinite. Figure 5 presents the variation of the second 
resonant frequency ( 2ω ) as the function of α  and oξ . The level plane is the one with 2ω  = 59.5752. 

Again, the intersection of the two planes is the combination of α  and oξ  resulting the same second 

resonant frequency of 2ω  = 59.5752, which is marked as a dashed line. Once again, the dashed line 

indicates that the infinite combinations of α  and oξ  result the same second resonant frequency of  

2ω  = 59.5752. When α , oξ  and β  are given, each eigenfrequency is uniquely determined by  

Equation (7) as a forward problem. In comparison, in this two-variable case of the inverse problem, for 
a given eigenfrequency, there are infinite combinations of α  and oξ . However, when these two curves 

obtained in Figures 4 and 5 are projected into the oξ −α  plane, they intersect, and in Figure 6, the 

intersection point is marked as a circle, which is exactly (α , oξ ) = (0.1, 0.3). Physically, the reason for 

the two curves to intersect is that the mechanism mentioned above: α  and oξ  have different impacts 

on different resonant frequencies; different resonant frequencies respond differently to the given α  
and oξ . Mathematically, as seen in Equation (5), α  is a coefficient, and oξ  is embedded in the 

function of the mode shape in the mass matrix. 

 

Figure 4. The variation of the first resonant frequency ( 1ω ) as a function of α  and oξ . The 

level plane is the one with the constant of 1ω  = 23.5217. The intersection of the two planes 

is marked with a solid curve. Here, the axial load is fixed as β  = 10. 
  



Sensors 2015, 15 14880 
 

 

 

Figure 5. The variation of the second resonant frequency ( 2ω ) as a function of α  and oξ . 

The level plane is the one with the constant of 2ω  = 59.5752. The intersection of the  

two planes is marked with a dashed curve. Here, the axial load is fixed as β  = 10. 

 

Figure 6. The projections of the two intersection curves obtained in Figures 4 and 5 into 
the α  − oξ  plane. The intersection of the two curves is marked with a circle, which 

corresponds to ( α , oξ ) = (0.1, 0.3) exactly. 

The above graphic solution is carried out by using Equation (7) to compute two eigenfrequencies  
in the possible regions of 0 ≤ α  ≤ 0.2 and 0 ≤ oξ  ≤ 0.5. There is a more succinct way of  

summarizing this solution process. Equation (7) actually has the function form of 
2( , , , ) ( ) ( , ) 0o oω α ξ β = β − α ξ ω =K MF , which is a transcendental equation. In the forward problem,  
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α , oξ  and β  are given; ω  are then computed one by one. In the above inverse problem solving 

process, two resonant frequencies ( 1ω , 2ω ) and an axial load of β  = 10 are known, which in essence 

gives the following two equations: 

1

2

( , , , ) (23.5217, , ,10) 0

( , , , ) (59.5752, , ,10) 0
o o

o o

ω α ξ β = α ξ =
 ω α ξ β = α ξ =

F F
F F

 (9)

Here, Equation (9) offers two (nonlinear) equations to solve the two unknowns of α  and oξ . Again, 

the Newton–Raphson method [49] is used, and the exact solution of ( α , oξ ) = (0.1, 0.3) is also 

obtained. To solve the two unknowns, their two initial values need to be guessed [49], and here, the 

Newton–Raphson method is not sensitive to the initially guessed values. The first two resonant 
frequencies ( 1ω , 2ω ) are used in Equation (9). An alternative is to use the first and third resonant 

frequencies ( 1ω , 3ω ), which gives the following two equations: 

1

3

( , , , ) (23.5217, , ,10) 0

( , , , ) (121.8384, , ,10) 0
o o

o o

ω α ξ β = α ξ =
 ω α ξ β = α ξ =

F F
F F

 (10)

Equation (10) also obtains the exact solution of α  and oξ . The second and third resonant 

frequencies ( 2ω , 3ω ) can also be used as another alternative. 

As for the case in which adsorption induces axial load, there are three unknowns of α , oξ  and β . 

Similarly, the following three equations can be given to solve the three unknown: 

1

2

3

( , , , ) (23.5217, , ,10) 0

( , , , ) (59.5752, , ,10) 0

( , , , ) (121.8384, , ,10) 0

o o

o o

o o

ω α ξ β = α ξ =
 ω α ξ β = α ξ =
 ω α ξ β = α ξ =

F F
F F
F F

 (11)

The Newton–Raphson method now shows the sensitivity to the initial guess. Here, our initial guess 
is ( α , oξ , β ) = (0.069, 0.23, 5.1), which leads to the (almost) exact solution of  

( α , oξ , β ) = (0.1, 0.3, 10). However, if the initial guess significantly deviates from the real one, the 

Newton–Raphson method cannot find the solution. It is possible that for the given three resonant 
frequencies of Equation (8) there are other solutions than ( α , oξ , β ) = (0.1, 0.3, 10). However, it is 

extremely difficult to use the Newton–Raphson method to scout out and find all of the possible 

solutions, because it is hard to get a proper initial guess. The method used in Figures 4 and 5 can help 

to find the solution with a high computational price to pay. In Figures 4 and 5, α  increases from zero 
to 0.2 by 50 steps, and oξ  increases from zero to 0.5 by 50 steps. To obtain the two resonant 

frequencies, the total 2 × 50 × 50 = 5000 times eigenvalue computations of Equation (7)  
were conducted. For three variables, if β  increases from zero to 20 by 50 steps, the total  

3 × 50 × 50 × 50 = 3.75 × 105 times eigenvalue computations are now required. In the range (of  
0 ≤ α  ≤ 0.2, 0 ≤ oξ  ≤ 0.5 and 0 ≤ β  ≤ 20), no solution other than ( α , oξ , β ) = (0.1, 0.3, 10) can be 

found. More hunting for the solution can be done by enlarging the ranges of α  and β , which also 

requires many more computations. However, it should not be surprising that such difficulty is 

encountered in the three-variable case. An analogy is that even the complex approaches based on 

pattern recognition algorithms and sensor arrays failed to detect a mixture of three unknown chemical 

vapors [34]. Mathematically speaking, the essential difficulty results from that the nonlinear equation 



Sensors 2015, 15 14882 
 

 

set of Equation (11) can have more than one solution set of α , oξ  and β  for three given resonant 

frequencies, especially when the adsorbate position ( oξ ) is close to a clamped end. Physically, when 

an adsorbate is close to an end, its mass effect become small; as seen in Figure 3, there is only a tiny 

change of resonant frequency, which also causes the computation accuracy issue. Schmid et al. [45] 

also observed the similar problem that the model error becomes larger when an adsorbate is closer to a 
string end, and their computation excluded all cases of oξ  < 0.2 to ensure accuracy. The  

Newton–Raphson method seems insensitive to the initial guess of α  and β . Besides the adsorbate 

position, the experimental measurement error is also a major source determining the accuracy of the 

above inverse problem solving method. 
In Equation (11), the three measured resonant frequencies of 1ω , 2ω and 3ω  are input as the  

exact values. 

In a real experiment, the measurement error is unavoidable. To study the impact of the experimental 

measurement error on the results, the following three resonant frequencies are given (arbitrarily): 

1ω  = 24.4626, 2ω  = 61.3624, 3ω  = 124.2752 (12)

Compared with the exact ones of Equation (8), the errors of 1ω , 2ω and 3ω  are 4%, 3% and 2%, 

respectively. Now, these three erroneous resonant frequencies are used as the input, and Equation (11) 

changes correspondingly as follows: 

1

2

3

( , , , ) (24.4626, , ,10) 0

( , , , ) (61.3624, , ,10) 0

( , , , ) (124.2752, , ,10) 0

o o

o o

o o

ω α ξ β = α ξ =
 ω α ξ β = α ξ =
 ω α ξ β = α ξ =

F F
F F
F F

 (13)

To solve the above equation, the same initial guess of ( α , oξ , β ) = (0.069, 0.23, 5.1) is used, and 

Equation (13) yields the result of ( α , oξ , β ) = (0.09161, 0.30819, 14.03073). In comparison with the 

exact values of ( α , oξ , β ) = (0.1, 0.3, 10), the corresponding errors of α , oξ  and β  are −8.39%, 

2.73% and 40.31%, respectively. Clearly, the tension (β ) error is significantly larger compared with 

the other two. Because the three resonant frequencies as given in Equation (12) are consistently higher, 
a larger β  is a natural compensating mechanism. Physically, because β  = 10 is a rather small tension 

whose magnitude is about one fourth of the buckling load, as seen in Figure 2, it has to increase 

dramatically for the higher input “measured” resonant frequencies. Mathematically, the relation of 

resonant frequencies with these three parameters is highly nonlinear, which is responsible for the 

different errors and sensitivities to the measurement errors. To further demonstrate this sensitivity 

issue, the following example is presented, which gives different “measured” resonant frequencies 

1ω  = 24.2273, 2ω  = 60.7667, 3ω  = 123.0568 (14)

Now, the errors of 1ω , 2ω  and 3ω  are 3%, 2% and 1%, respectively. Compared with those of 

Equation (12), each decreases by 1%. Again, by substituting these “newly measured” resonant 

frequencies into Equation (11), the following equation is obtained: 

1

2

3

( , , , ) (24.2273, , ,10) 0

( , , , ) (60.7667, , ,10) 0

( , , , ) (123.0568, , ,10) 0

o o

o o

o o

ω α ξ β = α ξ =
 ω α ξ β = α ξ =
 ω α ξ β = α ξ =

F F
F F
F F

 (15)
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Now, by using the same initial guess, Equation (15) gives ( α , oξ , β ) = (0.09283, 0.30015, 

12.69567), and the corresponding errors are −7.17%, 0.05% and 26.96%, respectively. The errors of 
these three parameters all decrease, and the significant error reduction of β  is also noticed. In many 

mass resonator sensor applications [3,4,6,16,17,39], mass ( α ) is actually the only target quantity to be 

measured. Therefore, it is also important to mention that the error of α  is much smaller and less 
sensitive to the errors of the measured resonant frequencies as compared with that of β . 

Because the model is for the one adsorbate case, we briefly discuss how this method can be used in 

a real application scenario. Firstly, the nanomechanical resonator can be cleaned by simply passing a 

large electrical current, which generates ohmic heating and boils off adsorbates [6,39]. Secondly, the 

nanomechanical resonator has achieved the sensitivity of detecting the shift of resonant frequency 

induced by the adsorption of a protein [3,4], a molecule [6] and an atom [16,17]. The step-wise 

resonant frequency variation physically indicates the discrete nature of the adsorbates arriving on the 

surfaces of a nanomechanical resonator one by one [3,4,6,16,17], which is also the hallmark of sensing 

an individual adsorption event [3]. 

4. Conclusions 

That the inverse problem can be solved is based on the following two facts: (1) mass, position and 

axial load have different impacts on a given resonant frequency; (2) for a given mass, position and 

axial load, different resonant frequencies vary differently. By incorporating axial load, better mass 

sensing based on the model presented in this study is expected. The equation set as presented in 

Equation (11) gives a general formulation of the inverse problem. The first three lowest resonant 

frequencies are used to solve the inverse in this study. Because a higher mode has higher mass 

sensitivity, Equation (11) can be easily reformulated by simply supplying three other resonant 

frequencies. Although it has some numerical difficulties in some cases, the Newton–Raphson method 

offers a relatively fast solution to the inverse problem, which should be helpful to the real-time sensing 

application. The graphic solution procedure for the two-variable case is presented, and it can provide 

valuable information to guess the initial values for the Newton–Raphson method in the  

multiple-variable case. The trade-off is that much more computation is required. 
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