
 

Sensors 2015, 15, 15540-15561; doi:10.3390/s150715540 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Improving Localization Accuracy: Successive Measurements 
Error Modeling 

Najah Abu Ali 1,* and Mervat Abu-Elkheir 2 

1 College of Information Technology, United Arab Emirates University, Al-Ain 15551, Abu Dhabi 
2 Faculty of Computer and Information Sciences, Mansoura University, Mansoura 35516, Egypt;  

E-Mail: mfahmy78@mans.edu.eg 

* Author to whom correspondence should be addressed; E-Mail: najah@uaeu.ac.ae;  

Tel.: +971-3-7135543.  

Academic Editor: Felipe Jimenez 

Received: 4 March 2015 / Accepted: 19 June 2015 / Published: 1 July 2015 

 

Abstract: Vehicle self-localization is an essential requirement for many of the safety 

applications envisioned for vehicular networks. The mathematical models used in current 

vehicular localization schemes focus on modeling the localization error itself, and overlook 

the potential correlation between successive localization measurement errors. In this paper, 

we first investigate the existence of correlation between successive positioning 

measurements, and then incorporate this correlation into the modeling positioning error. We 

use the Yule Walker equations to determine the degree of correlation between a vehicle’s 

future position and its past positions, and then propose a ݌-order Gauss–Markov model to 

predict the future position of a vehicle from its past ݌ positions. We investigate the existence 

of correlation for two datasets representing the mobility traces of two vehicles over a period 

of time. We prove the existence of correlation between successive measurements in the two 

datasets, and show that the time correlation between measurements can have a value up to 

four minutes. Through simulations, we validate the robustness of our model and show that 

it is possible to use the first-order Gauss–Markov model, which has the least complexity, 

and still maintain an accurate estimation of a vehicle’s future location over time using only 

its current position. Our model can assist in providing better modeling of positioning errors 

and can be used as a prediction tool to improve the performance of classical localization 

algorithms such as the Kalman filter. 
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1. Introduction 

Vehicle self-localization is an essential requirement for many of the safety applications envisioned 

for vehicular networks. However, to achieve a high degree of localization accuracy, computations that 

involve arrays of sensors and incorporate the physical characteristics of wireless communication 

channels may increase the complexity of the localization system. Accurate and efficient vehicle 

localization mechanisms are essential to the adoption of emerging location-based applications. Global 

Navigation Satellite Systems such as the Global Positioning System (GPS) have been widely used to 

provide localization for mobile nodes. However, it has been established that these systems may not always 

provide dependable position information, due mostly to signal deterioration in urban environments [1,2]; 

contexts in which emerging vehicular applications increasingly require accurate localization.  

Research in localization accuracy is focused on the incorporation of additional data sources in the 

localization process in order to enhance the accuracy of a vehicle’s GPS measurements. Example 

localization techniques are the fusion of data from other sensors [2], the use of anchor landmarks and 

maps [3], and cooperative positioning, the verification and correction of location data among neighbor 

nodes [4,5]. However, deploying these methods may incur additional costs and increase the complexity 

of the localization scheme. 

Current localization schemes focus on modeling the localization error itself. This is translated to 

current literature being interested mainly in calculating the current location of vehicles. Little or no work 

considers time correlation between successive positioning errors in order to account for future 

positioning. The Kalman filter is a commonly used filtering technique for estimating vehicle positions, 

but it needs to be parameterized by the measurement noise, which is unknown and is usually modeled 

as a random variable with Gaussian distribution. Practical implementation of the Kalman Filter is often 

difficult due to the inability of getting a good estimate of the noise covariance matrices. 

Motivated by the above observations, we first investigate the existence of correlation between 

successive measurements, and determine the degree of correlation if it does exist. We proceed to present 

a mathematical model for positioning errors that takes into consideration the time correlation. Since 

vehicles exhibit a predictable and constrained behavior in terms of mobility, we anticipate that the future 

position of a vehicle will be correlated with its previous positions. Verifying this hypothesis via our 

proposed model can help improve the localization accuracy without incurring additional costs  

in terms of complexity. We propose to model the successive positioning errors as a ݌ -order  

Gauss–Markov model, and investigate the order ݌  in the ݌ -order Gauss–Markov model over four 

datasets and verify the existence of time correlation. The proposed model can therefore be used as a 

prediction tool for other localization methods, and can be used for localization whenever the other 

methods fall short. The main benefit of this approach is that it produces vehicle positioning with a high 

level of accuracy with no need for fusion of additional data, making the localization process  

self-contained within the vehicle. By integrating our model into the Kalman filter, we show that the 



Sensors 2015, 15 15542 

 

 

rigorous modeling of positioning errors can assist in designing robust algorithms that predict the future 

locations of mobile node and improve the accuracy of localization. 

The contribution of this paper is three-fold; we establish the time correlation of successive location 

measurement errors, we define a ݌-order Gauss–Markov model that can be used for the prediction of 

future location while taking positioning error into account, and we use this model to enhance the 

accuracy of the prediction step in existing Kalman filter implementations with no need for data fusion. 

The proposed model can be applied to any localization method, given that the consecutive measurements 

are within the time correlation epoch.  

The rest of this paper is organized as follows: Section 2 discusses current approaches to vehicle 

localization. Section 3 describes the p-order Gauss–Markov model used for localization. Section 4 

highlights the potential applications of our proposed model. In Section 5, we outline the simulation setup 

used to verify the proposed model, and discuss the results. Finally, Section 6 concludes the paper. 

2. Related Work 

Current work that is focused on improving measurement accuracy for vehicular networks follows 

four main directions: employing new tools to enhance accuracy, such as machine learning and 

cooperative techniques; data fusion of different sources of information; attempts to provide accurate 

empirical; and theoretical modeling for measurement errors; and measurement uncertainty 

benchmarking and evaluation. We briefly discuss the efforts made in each of those directions. The 

following sections highlight the major research efforts in each of the four directions. 

2.1. Accuracy  

Most proposals that focus on improving the accuracy of vehicular localization rely on cooperative 

positioning. The objective of cooperative positioning is to utilize the network localization resources by 

allowing neighboring nodes to work together to cooperatively improve the accuracy of their location via 

the periodic exchange of location information. The focus of research in this area is centered on three 

main themes: integrating ego measurements with measurements sent by neighbors [2,6,7], assessment 

of neighbors’ location measurements by analyzing the communication message characteristics [4,8–10], 

and integrating ego or neighbor measurements with map information [3]. Cooperative schemes were 

proposed to fuse data pertaining to multiple sensors within the vehicle together with data received from 

other neighbor vehicles in order to obtain relative position estimates [6]. Cameras were used as sensors 

that provide relative distance measurements [2], and those measurements were fused with the location 

information exchanged among vehicles. Some schemes incorporate only GPS information to compute 

inter-vehicle distances for cooperative localization [7]. Local topology information was generated using 

GPS and ranging sensors, and then exchanged among vehicles [4]. Recently, the characteristics of the 

Dedicated Short-Range Communications (DSRC) standard were used to enhance the GPS position 

estimates for vehicles [8]. The concept of centroid localization was expanded by assigning weights to 

vehicles’ positions based on the Signal-to-Interference-plus-Noise Ratio (SINR) values of exchanged 

DSRC messages [9]. The Carrier-to-Noise (CNR) ratio was used to mitigate the errors in exchanged 

GPS pseudorange measurements in order to improve the accuracy of distance ranging [10]. Map 

matching was also used to verify the accuracy of position estimates produced by Particle filters that fuse 
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GNSS and odometer measurements with the Time-of-Arrival of exchanged DSRC packets [3]. Each 

vehicle can then merge the different topologies received from neighbors in order to obtain more accurate 

position estimates. Augmentation systems such as EGNOSS/EDAS were used to mitigate the errors in 

the Global Navigation Satellite System (GNSS) absolute positioning, while car-to-car communication 

coupled with group map matching were used to provide relative positioning [11]. 

2.2. Data Fusion 

Data fusion is used for vehicle localization both in the autonomous [12,13] and cooperative  

modes [6]. While GPS measurements are considered the primary source of location information, 

additional sources of information, such as on-board sensors and cameras as well as digital maps, were 

used to compensate for GPS errors [12]. The use of different flavors of Kalman filters for location 

estimation via the fusion of vehicle sensors and GPS measurements was investigated [13]. 

Landmarks and map information were used as auxiliary information sources to be fused with a 

vehicle’s own motion measurements. Vehicles can communicate with fixed landmarks that are assumed 

to be integrated into the road infrastructure in order to measure the Angle-of-Arrival and the Round-Trip 

Time-of-Flight [14]. Vehicles then couple this information with their own movement dynamics in order 

to produce an extended Kalman filter that estimates the vehicle’s position. A Monte Carlo localization 

scheme was adopted for vehicle position estimation via the fusion of LIDAR and vehicle odometry 

measurements [15]. LIDAR (Light Detection and Ranging) measurements were used to provide  

an abstraction of the environment in order to account for the constrained vehicle movement. Map and 

lane abstractions were also used for vehicle localization, with vision sensors used to extract the lane 

markings [16]. 

Fusion of different localization techniques has been proposed in order to improve localization 

accuracy and provide reliable quantification of the accuracy of estimates made by different sources [17]. 

The authors claim that having enough knowledge about several localization techniques can enable the 

system to choose the best suitable technique or ensemble techniques for the current time, situation, 

application and objective. 

2.3. Modeling of Measurement Errors 

Traditionally, the localization measurement errors are modeled as Gaussian distribution random 

variables. However, several proposals in the literature addressed the problem of modeling localization 

error to provide better models in order to capture the measurement error behavior. Most of the work 

addressing this problem can be categorized into two categories: theoretical, as in the proposal in [18], 

which models the localization error by a uniform random variable distribution; and empirical,  

as in [19], which uses Received Signal Strength Indicators (RSSI) to build a Time of Arrival ranging 

error model. Simulation studies have also been used to analyze localization error in [20]. The 

aforementioned schemes focus on modeling the measurement error. However, no proposals addressed if 

the measurement errors in successive measurements over time are correlated or not, and the time 

correlation among the measurement error time series has not been modeled. 
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2.4. Benchmarking 

There is little work that is focused on the benchmarking of measurement errors. The authors in [1] 

use the International Organization for Standardization Guide to the Expression of Uncertainty in 

Measurement as a reference to their proposed measurement standard for automotive vehicle localization 

and its measurement uncertainty evaluation. The objective of their work is to provide a benchmarking 

tool for evaluating the accuracy and availability of localization systems in the market to provide 

assurance of safety of these localization schemes. 

Even with the proliferation of cooperative positioning proposals, they still fall behind the accuracy 

requirements of safety-oriented vehicular applications. Vehicular safety applications, such as collision 

avoidance and lane-level navigation, need sub-meter positioning accuracy [21]. In addition, cooperative 

positioning depends on message exchange, which can only work well in dense traffic scenarios [22]. 

None of the current research work investigates the time correlation between successive measurement 

errors. Motivated by this observation, in the following section we proceed to investigate the existence of 

such time correlation, and we propose a prediction model that incorporates this correlation in order to 

enhance the prediction accuracy of location information. 

3. Mathematical Model  

The proposed mathematical model incorporates three main steps: establishing the existence of 

correlation for a time series of consecutive position measurements, computing the degree of correlation, 

and defining a model for positioning errors that incorporates correlation of successive measurements. In 

the following sections we detail each of the aforementioned steps. 

3.1. Time Correlation of Measurement Error Time Series 

The autocorrelation of a random stationary process describes the correlation between values of the 

process at different times as a function of the time lag between the two times. Since a mobile node’s 

location is defined over time as it moves, the resulting measurements form a time series. In order to show 

that time correlation exists among the time series elements, we use the Ljung–Box test [23]. The  

Ljung–Box test examines whether a group of autocorrelations of a time series are not zero by testing the 

overall randomness based on multiple lags. The null hypothesis in this test is that the first ݉ 

autocorrelations are jointly zero. 

The autocorrelation between times ݏ and ݐ is defined as:  ܴ௦,௧ = ሾ(ܺ௧ܧ − μ௧)(ܺ௦ − μ௦)ሿσ௧σ௦  (1)

If ܴ is well-defined, its value must be in the range [–1, 1], with 1 indicating perfect correlation and  

–1 indicating perfect anti-correlation. 

When ܺ௧ is stationary, then autocorrelation depends only on the lag between ݐ and ݏ. Therefore, the 

autocorrelation can be expressed as a function of the time lag: ܴఛ = ሾ(ܺ௧ܧ − μ)(ܺ௧ାఛ − μ)ሿσଶ  (2)
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which is an even function that can be stated as ܴఛ = ܴିఛ. 
The Ljung–Box test is applied to the location measurements corresponding to two datasets 

corresponding to the traces of two vehicles chosen at random from the TAPASCologne mobility  

trace [24] and denoted as ݒଵ and ݒଶ for convenience. The null hypothesis was rejected for both sets of 

measurements at multiple increasing time lags, with the hypothesis value ݄ being equal to 1, indicating 

perfect time correlation. For the location measurements of both vehicles, ߬, the correlation time is found 

to be ൎ4 min. 

To find out the time window of autocorrelation, beyond which successive location measurements are 

no longer correlated, we observed when the autocorrelation values approaches zero. Autocorrelation of 

measurements starts to fade after approximately two minutes for the location measurements of vehicle ݒଵ, as shown in Figures 1 and 2. The correlation time is slightly lower for vehicle ݒଶ, becoming less than 

a minute for the longitudinal measurements, as illustrated in Figures 3 and 4. As the figures show, the 

location measurements are correlated over a relatively long time epochs. This observation can be 

attributed to the constrained mobility of vehicles on predictable tracks, with either longitudinal or 

latitudinal measurements changing slowly as the vehicle moves. 

 

Figure 1. Autocorrelation of longitudinal location measurements for vehicle ݒଵ. 

 

Figure 2. Autocorrelation of latitudinal location measurements for vehicle ݒଵ. 
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Figure 3. Autocorrelation of longitudinal location measurements for vehicle ݒଶ. 

 

Figure 4. Autocorrelation of latitudinal location measurements for vehicle ݒଶ. 

3.2. Gauss–Markov Model  

Motivated by the findings in the previous section, we propose a ݌-order Gauss–Markov autoregression 

model [25] that predicts the future position of a mobile node from its previous mobility trace. We use 

the Yule Walker equations [26] to determine the degree of correlation between a node’s future position 

and its past positions. 

The ݌-order Gauss–Markov process is a random process that models the randomness of a practical 

system as a function of time. The order ݌ reflects the contribution of the history of the practical system 

measurements to the current measurement under investigation. For vehicle positioning, we can assume 

that vehicle movement, and hence its successive positions, follow a similar process, where a vehicle ݒ’s 

future position ܺ௡ is a time function of ݒ’s previous positions. This assumption is reasonable because a 

vehicle’s movement is constrained by the road map and its movement dynamics. A ݌ -order  

Gauss–Markov process is defined as: ܺ௡ = ଵܺ௡ିଵܣ + :+ଶܺ௡ିଶܣ : : ௣ܺ௡ି௣ܣ+ + ∅௡ (3)
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where ݊	 = 	1, 2, … , ܰ is the discrete time interval of measurements, ܣ௜, ݅ ൑  is the number of parameters in the model, and ∅௡ represents the independent white Gaussian. The goal	݌ ,are model parameters ,݌
is to predict ܺ௡ based on the linear combination of ܺ௡ିଵ, ܺ௡ିଶ, …ܺ௡ି௣ by estimating the parameters ܣ௜, 
and the variance of ∅௡, ߪ∅ଶ, hence, fully characterize the model. The best linear prediction of ܺ௡෪  with 

minimum mean square error is the one that meets two criterion; ܺ௡෪  can be defined as a linear 
combination of ܺ௡ିଵ, ܺ௡ିଶ, …ܺ௡ି௣  and the prediction error, ∅௡ = ܺ௡ − ܺ௡෪  is uncorrelated with the 

linear combination of ܺ௡ିଵ, ܺ௡ିଶ, …ܺ௡ି௣.  

3.3. Calculating the p-Order Gauss–Markov Model Parameters 

3.3.1. Calculating the Order p ܺ௡ is a stationary process, and is considered autoregressive of an order ݌. There exist several methods 

to estimate the best order ݌ of an autoregressive model such as the Akaike information criterion (AIC), 

Akaike Final Prediction Error (FPE), Minimum Description Length (MDL), and the reflection 

coefficients of a Yule Walker method. We chose to employ AIC method to estimate the best order of the 

autoregressive model. AIC is used to compare different statistical models as a measure of their relative 

quality for a given set of data.  ܥܫܣ = ݌2 – (4) (ܮ)2݈݊

where L is the maximum likelihood of the model given the set of data, and reflects the goodness of fit of 

the model; i.e., smaller values indicate worse fit. AIC is based on balancing the goodness of fit of a 

model with the complexity of the model; i.e., the order ݌. In fact, increasing the order of a model does 

not necessarily provide a more accurate estimation. The AIC method, while giving preference to models 

with a better goodness of fit, it simultaneously penalizes models with higher order ݌, to avoid settling to 

models with larger ݌ and less gain in the goodness of fit. In a nutshell, AIC provides a tradeoff between 

accuracy and complexity.  

 

Figure 5. ܥܫܣ values for different ܴܣ models, compared for five vehicle trips. 

For a set of data and a set of autoregressive models with different values of ݌, the best model is 

identified as the model that has the minimum AIC value. Figure 5 shows the AIC values for different 
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autoregressive models with different orders, calculated for five different vehicles whose location 

information were extracted from the TAPASCologne vehicular mobility trace [24]. We can observe that 

the lowest AIC value for the majority of the vehicles is achieved when the autoregressive model order ݌ 

is equal to 4, and that the model achieves an optimal balance between prediction accuracy and model 

complexity when ݌ = 2. However, we will show through simulation experiments that the simplest order, 

at ݌ = 1 , is sufficient for prediction. The gain in prediction precision that is achieved by an 

autoregression model of order 4 is not large enough to justify the complexity cost incurred.  

3.3.2. Calculating the Parameters 

After estimating the best order ݌ , we can estimate the parameters ܣ௜, ݅ = 1, . . ݌ , and once ܣ௜  is 
estimated, σ∅ଶ  can be estimated in turn. There are several methods to estimate the coefficients of the 	݌ -order Gauss–Markov model (݌)ܴܣ , such as the Markov Chain Monte Carlo, the least square 

optimization method, and the method of moments using Yule Walker equations. We chose to use the 

method of moments through the Yule Walker equations, due to its simplicity and the fact that it produces 
consistent estimators. Following [26], we provide the estimation of ܣ௜ஸ௣ and σ∅ as follows: 

Referring to Equation (3), we proceed to solve for the parameters of (݌)ܴܣ . Multiplying  
Equation (3) by ܺ௡ି௣, we get: 

ܺ௡ି௣ܺ௡ 	=෍ܣ௜ܺ௡ି௣ܺ௡ି௜௣
௜ୀଵ + ܺ௡ି௣∅௡ (5) 

Taking the expectation of Equation (5), we get: 

(௡ି௣ܺ௡ܺ)ܧ 	= ܧ ൭෍ܣ௜ܺ௡ି௣ܺ௡ି௜௣
௜ୀଵ + ܺ௡ି௣∅௡൱ (6)

(௡ି௣ܺ௡ܺ)ܧ 	=෍ܣ௜ܧ൫ܺ௡ି௣ܺ௡ି௜൯௣
௜ୀଵ + (7) (௡ି௣∅௡ܺ)ܧ

(௡ି௣∅௡ܺ)ܧ = ൜ 0, ݌ ≠ 0σ∅ଶ, ݌ = 0  (8)

Equation (8) follows from the observation that ܺ௡ି௣ and	∅௡ are uncorrelated for ݌ ≠ 0, because ∅௡ 

of the current time is unrelated to X୬ି୮ and thus uncorrelated with previous values of the process, hence, 

(௡ି௣ܺ௡ܺ)ܧ =෍ܣ௜ܧ൫ܺ௡ି௣ܺ௡ି௜൯௣
௜ୀଵ  (9)

Dividing Equation (9) by N, the observation window of the process X୬, and using the fact that the 
process is stationary, E(X୬ି୮X୬), is a function of the time lag, ݌, only, and E(X୬ି୮X୬), can be denoted 

by 	c୮, also using c୮ = cି୮, Equation (9) can be written as 

ܿ௣ = ෍ܣ௜ܿ௜ି௣௣
௜ୀଵ  (10)

Dividing ܿ௣ by ܿ଴, we get: 
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௣ݎ = ෍ܣ௜ݎ௜ି௣௣
௜ୀଵ  (11)

where r୮ is the autocorrelation coefficient. Rewriting the equations for all ݎଵஸ௜ஸ௣; i.e., ݎଵ = 	∑ ௜ିଵ௣௜ୀଵݎ௜ܣ ଶݎ , = 	∑ ௜ିଶ௣௜ୀଵݎ௜ܣ ଷݎ , = 	∑ ௜ିଷ௣௜ୀଵݎ௜ܣ ௣ݎ ,.…  = 	∑ ௜ି௣௣௜ୀଵݎ௜ܣ  in matrix form, we have: ࡾ = (12) ࡭ࢼ

ࡾ = ൥	ݎଵ…ݎ௣൩, ࡭ = ൥ ௣൩, and ઺ܣ…ଵܣ = ൦ ଴ݎ ଵݎ ଵݎ… ௣ିଵݎ଴ݎ ⋮ ଵݎ
଴ݎ⋮௣ିଶݎ௣ିଵݎ ൪ (13)

Note that ࢼ is full-rank and symmetric matrix, hence it is guaranteed that its inverse exist. Thus, ࡭ 

can be estimate from Equation (12) as ࡭෩ = ઺ି૚ࡾ. 
Once the model parameters are estimated, the noise variance σ∅ଶ  can be estimated by setting ݌ = 0 in 

Equation (7): 

(௡ܺ௡ܺ)ܧ 	=෍ܣ௜ܧ(ܺ௡ܺ௡ି௜)௣
௜ୀଵ + (14) (௡∅௡ܺ)ܧ

Using the fact that ܺ௡ is a stationary process again, c௜ = 	 cି௜, and σ∅ଶ =  Equation (14) can ,(௡∅௡ܺ)ܧ

be written as: 

ܿ଴ = ෍ܣ௜ܿ௜ + σ∅ଶ௣
௜ୀଵ  (15)

σ∅ଶ = ܿ଴ − ෍ܣ௜ܿ௜௣
௜ୀଵ  (16)

4. Applications of the Time-Correlated Localization Measurement Errors Model 

The proposed time-correlated localization errors model can be beneficial for location prediction when 

GPS is not available due to variations in urban structure (e.g., entry into tunnels). The model can also 

improve the localization accuracy because it incorporates the time dependency of measurements into 

prediction. The model does not need information beyond the initial position measurements of a vehicle. 

This reduces the complexity of processing in terms of data filtering and fusion. The ݌ -order  

Gauss–Markov model can also be used as a prediction tool that enhances the performance of existing 

localization schemes, such as the Kalman filter [27]. In the following section, we illustrate through 

simulations and real vehicle mobility traces how the model can be used standalone as well as a prediction 

tool for the Kalman filter.  
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5. Simulation Results and Discussion 

5.1. Simulation Setup  

The proposed model was evaluated using a two-hour excerpt of the TAPASCologne vehicular 

mobility trace generated for the city of Cologne, Germany [24]. TAPASCologne is an initiative by the 

Institute of Transportation Systems at the German Aerospace Center (ITS-DLR), aimed at reproducing 

realistic car traffic in the greater urban area of the city of Cologne in Germany. Vehicle mobility was 

generated synthetically using the SUMO microscopic vehicular mobility simulator [28], and traffic 

demand was generated using the Travel and Activity PAtterns Simulation (TAPAS) methodology. The 

original trace covers a region of 400 square kilometers of the city of Cologne for a period of 24 h, 

comprising more than 700,000 individual car trips. This dataset is the most standardized dataset we could 

find, with detailed location and speed measurements over a time window that captures most of the traffic 

patterns that can be experienced in a city with urban and suburban areas. The time granularity between 

vehicular location measurements is one second, which is reasonable in capturing vehicles’ mobility over 

time. Vehicle speed varied between 0 km/h and 90 km/h, covering most traffic scenarios. The two-hour 

excerpt was enough to establish autocorrelation and evaluate its effect on location prediction and  

error measurements. 

The two-hour excerpt trace was preprocessed to extract five traces corresponding to five individual 

vehicle trips. The five individual vehicles are chosen at random using a uniform distribution-based 

random number generator, and are labeled ݒଵ to ݒହ throughout the remainder of the paper for ease of 

reference. A single vehicle trip consists of a time-stamped sequence of xy position coordinates in meters 

as well as the vehicle’s speed in meters per second. The selected vehicles’ total trip times are 257 s each. 

The experiments were conducted using Matlab (R2013a). The estimation of the (݌)ܴܣ model order was 

performed using the System Identification Toolbox for ݌	 = 	1: 10, with the location information for one 

vehicle used for cross validation. The AIC values for the estimated model were compared for the five 

vehicles and the majority of them exhibited a best model fit at ݌	 = 	4, as illustrated in Figure 5.  

We chose two of the five vehicles and used their location measurements to generate the model 

parameters and validate its performance. The two vehicles used for model estimation and validation were 

designated ݒଵ and ݒଶ, respectively. The location measurements for vehicle ݒଵ were used to infer the 

model parameters, and the location measurements for vehicle ݒଶ  were used to validate the model 

performance using the parameters generated by ݒଵ’s measurements. We estimated the unknown model 

coefficients and noise variance for ݌	 = 	1, 2, 4 for the location information of both vehicles using the 

Yule Walker equations. 

5.2. Simulation Results  

Three sets of experiments were conducted to investigate two modes of operation for the proposed 

model. First, we investigated the model performance when used as a standalone model for prediction, 

for example when GPS is not available. Second, we investigated the performance of our model when 

integrated into a localization algorithm such as a Kalman filter algorithm. The Kalman filter was chosen 

because of its popularity as a localization scheme, as well as its ease of implementation. Third, we 

applied the Kalman filter that was adjusted by the Gauss–Markov model parameters to a real-life dataset 
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in order to assess the accuracy of the enhanced localization scheme and rule out overfitting. The first 

two sets of experiments study the tradeoff between reducing the complexity of the ݌ -order  

Gauss–Markov model and the location prediction accuracy, as well as assess the increase in accuracy of 

localization when using the model in the prediction step of the Kalman filter. The third experiment was 

used for validation of the model. Each model is designated (݌)ܴܣ for ease of reference. 

The model parameters ܣ௜  that were produced by the Yule Walker equations for the two mobility 

traces for vehicles ݒଵ and ݒଶ are listed in Table 1. For the first set of experiments (standalone prediction), 

the results in Figures 6 and 7 show the errors in the longitudinal (ݔ) and latitudinal (ݕ) position estimates 

made by the Gauss–Markov model for ݌ = 1, 2, 4 for vehicle ݒଵ. The figures show that higher model 

orders correspond to reduced estimation error of the future location coordinates of the vehicle; ݌ = 2 

and ݌ = 4 can predict the vehicle’s location with an average error of 11 m for ݔ and 16 m for ݕ, with 

inconsiderable improvement made by the model with ݌ = 4  compared to the model with ݌ = 2 . 

However, when ݌ = 1, the average error is 55 m for both ݔ and ݕ. This is further corroborated by the 

results produced when applying the same Gauss–Markov model on the location measurements of vehicle ݒଶ, which has been designated for validation, as shown in Figures 8 and 9. We can conclude that ݌ = 2 

is a reasonable compromise between complexity and accuracy and therefore is sufficient for depolyment 

of the error model as a standalone prediction tool. The tradeoff performance provided by the model when ݌ = 2 will make the model’s prediction robust even when used in fast-fading channel scenarios, which 

may exhibit lower correlation windows, since the correlation window in this case is small enough to 

allow for correlation to be manifested, while still producing accurate prediction. This makes the model 

applicable in different scenarios with potentially varying correlation windows. 

Table 1. Autoregression model parameters for the two vehicle mobility traces used for experiments. 

Vehicle Traces Model 
Longitude Latitude ࡭૚ ࡭૛ ࡭૜ ࡭૝ ࡭૚ ࡭૛ ࡭૜ ࡭૝ ࢋࢉࢇ࢚࢘	࢜૚ 

0.9961    0.996 (1)ܴܣ 0.0018 0.9978 (2)ܴܣ      0.9977 0.0018 0 0 0.9978 (4)ܴܣ   0.0016 0.9977  ૛࢜	ࢋࢉࢇ࢚࢘0.0016 0 0.0001
0.0029 0.9992 (2)ܴܣ    0.996    0.9963 (1)ܴܣ   0.9976 0.0001 0.9992 (4)ܴܣ   0.0016 0.0002 0.0028 0.9976 0.0001 0.0001 0.0015

 

Figure 6. Longitudinal position error for vehicle ݒଵ using autoregression model with ݌ = 1, 2, 4. 
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Figure 7. Latitudinal position error for vehicle ݒଵ using autoregression model with ݌ = 1, 2, 4. 

 

Figure 8. Longitudinal position error for vehicle ݒଶ using	autoregression model with ݌ = 1, 2, 4. 

 

Figure 9. Latitudinal position error for vehicle ݒଶ using autoregression model with ݌	 = 	1, 2, 4. 

For the second experiment, we want to investigate the integration of the model into a localization 

algorithm. The Gauss–Markov model was integrated into the Kalman filter localization scheme proposed 

in [29] in order to illustrate how error modeling and parameter estimation enhance the accuracy of 

localization. We will experiment with ݌ = 1, 2, 4 to assess whether reducing the model complexity using ݌ = 1 will provide comparable results to higher orders. 

The Kalman filter involves two steps: a prediction step and a measurement update step. The prediction 

step assumes that the state of a system at time ݐ evolved from the prior state at ݐ − 1 according to: 
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௧ݔ = ௧ିଵݔ௧ܨ + ௧ݑ௧ܤ + ∅௧ (17)

where ݔ௧ is the state vector containing system information at time ݑ ,ݐ௧ is a vector containing control 

inputs, ܨ௧ is a state transition matrix that applies the effects of the system state at ݐ − 1 to its state at time ܤ ,ݐ௧ is a control input matrix that serves a similar purpose to ܨ௧ but for the control inputs, and ∅௧ is the 
process noise. In our experiments, the transition matrix ܨ௧ was composed using the parameter values ܣ௣ 

that were produced by the Yule Walker equations, which are listed in Table 1. A different matrix was 

constructed for each model using the longitude and latitude parameter values. The size of the 

transformation matrix was the same size of the dataset. The control matrix ܤ௧ was set to zero since there 

are no control inputs. The measurement step performs corrections to the predicted location, according to 

the equation: ݖ௧ = ௧ݔ௧ܪ + ௧ (18)ݓ

where ݖ௧ is the vector of measurements, ܪ௧ is a transformation matrix which is set to default value of 1 

in our experiments, and ݓ௧ represents the measurement noise. 

The process and measurement noise in Kalman filter-based localization algorithms are usually 

assumed to be zero-mean Gaussian white noise. Our proposed error model can compute the noise 

variance in location information. Therefore, we incorporate it into the prediction step of the Kalman 

filter and study how this will improve the localization algorithm. The ܴܣ-integrated Kalman filter is 

then applied to the two time series location information of vehicles ݒଵ and ݒଶ, and the results shown in 

Figures 10–13 compare the localization error for the three error models; ݌ = ݌ ,1 = 2, and ݌ = 4. We 

note that the computational complexity of the Kalman filter and the autoregression-integrated Kalman 

filter is dominated by the matrix multiplication, and therefore grows as ܱ(݊ଶ), where ݊ is the number of 

location measurements. We also note that the computational complexity of the AR-integrated Kalman 

filter implementation and the standard Kalman filter implementation are identical. This is because the 

integration of the AR model into the Kalman filter involves the replacement of the transition and error 

matrices and the extension of prediction step to accommodate computations when ݌ = 2 and ݌ = 4. 

We can see that incorporating our error model into the Kalman filter outperforms the results produced 

by the Kalman filter with zero Gaussian error, which we call the standard Kalman filter for convenience. 

Similar accuracy gains are obtained when the error model is integrated into the Kalman filter and applied 

to the location measurements of vehicle ݒଶ whose location information is used for validation. We can 

also observe that there is no observable gain in accuracy when using a higher Gauss–Markov order, since ݌ = 1  provides almost identical results to ݌ = 4 . The average measurement error for the standard 

Kalman filter applied to the location measurements of vehicle ݒଵ  is 56 m and 29 m for x and y, 

respectively, compared to 0.25 m produced by the Kalman filter that is integrated with the autoregression 

model of order 1. The Kalman filter that was integrated with the autoregression model of order 4 has an 

average measurement error of 0.24 m, which is very close to that produced by the autoregression model 

of order 1. This can be further illustrated in Figures 14 and 15, which provide a more detailed view of 

the behavior of the model for ݌ = 1, 2, 4. The fluctuations in error measurements are due to the constant 

variability in the vehicles’ position measurements, as was found upon further inspection of the original  

time-series for longitudinal and latitudinal location measurements of both vehicles. 
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Figure 10. Longitudinal positioning error produced by the standard Kalman filter and the ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for vehicle ࢜૚. 

 

Figure 11. Latitudinal positioning error produced by the standard Kalman filter and the 	݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for vehicle ࢜૚. 

 

Figure 12. Longitudinal positioning error produced by the standard Kalman filter and the ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for vehicle ࢜૛. 
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Figure 13. Latitudinal positioning error produced by the standard Kalman filter and the 	݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for vehicle ࢜૛. 

 

Figure 14. Zoom in on the longitudinal positioning error produced by the  ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for vehicle ࢜૚. 

 

Figure 15. Zoom in on the latitudinal positioning error produced by the ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-

Kalman filter for vehicle ࢜૚. 

5.3. Verification of Model 

In order to verify our ܴܣ model, we tested the model against three realistic datasets. We chose three 

vehicular mobility traces from OpenStreetMap [30]. The first trace (݀ܽݐ݁ݏܽݐ	1), which is illustrated in 

Figure 16, represents a single vehicle trip along the route between Northeast Union Hill Road and 
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Bravern 1, Bellevue, WA. The total trip time was 30 min and 45 s (totaling 1845 data points), and vehicle 

speed ranged from 0 km/h to 104.4 km/h. The second trace (݀ܽݐ݁ݏܽݐ	2), illustrated in Figure 17, 

represents a single vehicle trip between East Main Street and the Gelder Park, Derry, PA, USA. The total 

trip time was 5 min and 45 s (totaling 343 data points), and speed ranged from 0 km/h to 96.7 km/h. The 

third trace (݀ܽݐ݁ݏܽݐ	3), illustrated in Figure 18, depicts a vehicle’s trip around a new residential area in 

Stockholm, Sweden. The total vehicle trip time was 25 min and 56 s (totaling 1313 data points). There is 

no mention of the vehicle speeds for the third dataset. For the three datasets, location measurements were 

taken every second.  

 

Figure 16. OpenStreetMap route for verification dataset 1. 

 

Figure 17. OpenStreetMap route for verification dataset 2. 



Sensors 2015, 15 15557 

 

 

 

Figure 18. OpenStreetMap route for verification dataset 3. 

As with the previous experiment set, the model parameters and process noise were extracted from 

each of the datasets using the autoregression model of order 1. The Kalman filter was integrated with 

the model parameters and applied to the location measurements. Figures 19–24 show, respectively, the 

longitudinal and latitudinal position measurement errors produced by the Kalman filter when the  

Gauss–Markov model is used for the prediction step when applied to the OpenStreetMap traces. The 

margin of error for all three datasets stays within a very small and negligible range (0.005 m), which 

indicates the high level of accuracy produced by the localization model. The larger variation in 

longitudinal error in comparison to the latitudinal error in ݀ܽݐ݁ݏܽݐ	1 is due to the larger variation rate 

in longitudinal measurements compared to a small overall change in the latitudinal measurements.  

The localization model performs well regardless of the road scenario—highway, residential, or a 

combination of both. Error variation is miminal at the intervals during which the vehicles do not change 

their positions, as can be noticed in the interval between the seconds 1101 and 1550 in ݀ܽݐ݁ݏܽݐ	1 and 

between the seconds 310 and 650 for ݀ܽݐ݁ݏܽݐ	3, for example. We notice that error in the third section 

of the position measurements for ݀ܽݐ݁ݏܽݐ	3  exhibits more fluctuations. When the corresponding 

vehicle’s route is closely inspected, it can be evident that this variation is due to the rather unsmooth 

movement along some sections of the residential area. We can assume that this error variation can be 

controlled if vehicle speed is incorporated into the prediction model, which is part of our future work. 

 

Figure 19. Longitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	1. 
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Figure 20. Latitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	1. 

 

Figure 21. Longitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	2. 

 

Figure 22. Latitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	2. 

 

Figure 23. Longitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	3. 

 

Figure 24. Latitudinal positioning error produced by ݊݋݅ݏݏ݁ݎ݃݁ݎ݋ݐݑܣ-Kalman filter for ݀ܽݐ݁ݏܽݐ	3. 

6. Conclusions and Future Work 

Vehicular localization accuracy remains a key issue for vehicular safety applications. In this paper, 

we proposed the use of autoregressive ݌-order Gauss–Markov model to model successive location 
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measurement errors and incorporate these measurement errors in the prediction of a vehicle’s future 

position given its past position measurements. We used our model as a prediction step in the Kalman 

filter localization scheme, and results showed substantial accuracy gains over a standard Kalman filter 

at the same level of computation complexity. We could infer the autocorrelation time between location 

measurements, which can be used in the future to enhance the accuracy of localization algorithms.  

We intend to incorporate diverse measurement types into the model in order to further enhance  

its accuracy, and provide means for estimators to define upper bounds on the error measurements of 

location estimates. 
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