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Abstract: Satellite orbit error and clock bias are the keys to precise point positioning (PPP). 

The traditional PPP algorithm requires precise satellite products based on worldwide 

permanent reference stations. Such an algorithm requires considerable work and hardly 

achieves real-time performance. However, real-time positioning service will be the dominant 

mode in the future. IGS is providing such an operational service (RTS) and there are also 

commercial systems like Trimble RTX in operation. On the basis of the regional Continuous 

Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the 

coupling estimation of clock bias and orbit error. The projection of orbit error onto the 

satellite-receiver range has the same effects on positioning accuracy with clock bias. 

Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock 

bias and the effects of residual orbit error on positioning accuracy can be weakened by the 

evenly distributed satellite geometry. In consideration of the simple structure of pseudorange 

equations and the high precision of carrier-phase equations, the clock bias estimation method 

coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast 

ephemeris and real-time satellite clock bias coupled with orbit error. By applying the 

proposed algorithm, the precise orbit products provided by GNSS analysis centers are 

rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP 

system was developed. Some experiments were then designed to verify this algorithm. 

Experimental results show that the newly proposed approach performs better than the 

OPEN ACCESS



Sensors 2015, 15 17809 

 

 

traditional PPP based on International GNSS Service (IGS) real-time products. The 

positioning accuracies of the rovers inside and outside the network are improved by 38.8% 

and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 

65.9%. The new approach can change the traditional PPP mode because of its advantages of 

independence, high positioning precision, and real-time performance. It could be an alternative 

solution for regional positioning service before global PPP service comes into operation. 

Keywords: clock estimation; precise point positioning; orbit error; CORS network 

 

1. Introduction 

Precise point positioning (PPP) is a cutting-edge theory and a significant topic in the field of Global 

Navigation Satellite System (GNSS) navigation and positioning. PPP technology uses the corrections of 

the parameter field to realize precise positioning through a dual-frequency receiver at any position in 

International Terrestrial Reference Frame (ITRF) [1–4]. The realization of this technology can change 

the status of obtaining high-precision location information, which only relies on double-difference mode. 

This technology can prevent the regional restriction caused by the relative positioning of ground 

reference stations and has important and broad application prospects. In the process of PPP calculation, 

satellite orbit error and satellite clock bias cannot be corrected by empirical models or eliminated through 

station difference. Therefore, satellite orbit error and clock bias need to be calculated on the basis of the 

observations of a ground-tracking station network. The error can directly affect PPP resolving precision. 

These factors are the critical and core issues of achieving PPP. 

Traditional PPP studies often use third-party precise orbit and clock products for PPP, such as the 

current most widely used precise satellite orbit and clock products provided by the International GNSS 

Service (IGS) [5,6]. The IGS final products can achieve 2 cm accuracy for orbit and 0.075 ns accuracy 

for clock [7]. However, real-time positioning services will be the dominant mode in the future [8,9]. IGS 

is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX 

in operation [10–12]. The real-time product can achieve 2 cm accuracy for orbit and 0.3 ns accuracy for 

clock [13,14]. These products usually have a significant time delay with a fixed sampling interval.  

The final precise IGS ephemeris is usually available after 12–18 days. Rapid ephemeris is available after  

17–41 h, and the observed half of the ultra-rapid ephemeris is available after 3–9 h. In the latest real-time 

data stream products provided by IGS, the orbit and clock products have a sampling interval of 

approximately 30 s. However, the direct use of such products cannot meet the needs of real-time PPP.  

The fixed sampling interval of these products also cannot meet the application needs of travel, aircraft 

carriers, and other high sampling rate. To solve the abovementioned problems, Gao et al. [15] and  

Ge et al. [16] applied a simple interpolation process for satellite orbit, with an extrapolation forecast of 

several hours, which can guarantee the orbit accuracy. The linear interpolation method would incur 

serious accuracy loss because of the discrete nature of satellite clock error, which is the key problem of 

the current real-time PPP. The linear interpolation for satellite clock bias with 5 min sampling interval cannot 

meet the cm-level orbit determination for Low Earth Orbit (LEO) satellites in PPP [17]. Furthermore, 

IGS reference stations belong to more than 100 research institutions, universities, and government 
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organizations; thus, data coordination is difficult. The practice requirement is also difficult to protect. 

Overall, PPP is currently relatively mature for post-processing. Nevertheless, real-time positioning is 

still difficult to conduct in consideration of the requirement of precise orbit and clock products provided by 

the GNSS analysis center. 

Since third-party precise orbit and clock error products are inadequate for real-time PPP, Yan et al. [18] 

and Ge et al. [19] applied a method using regional Continuous Operational Reference System (CORS) 

to estimate orbit and clock error. The method is based on ground-tracking station networks covering a 

region. Each station transmits real-time observation data to the system control center. Thus, satellite 

orbit and clock are precisely determined to provide real-time PPP service for regional users. Although 

the use of regional CORS can effectively estimate satellite clock error, very small-scale regional 

reference station network cannot be used to determine precise satellite orbit because orbit determination 

is restricted by the continuous arc observation time. This method has claim on the size of CORS network. 

A large CORS network contains many ground-tracking stations, thus increasing time needed to estimate 

unknown parameters. In addition to the satellite orbit and clock error, the estimated parameters also 

contain phase ambiguity, receiver clock error, station zenith tropospheric delay, etc. The huge 

computational load is a severe test for the real-time computing and external broadcast capability of a 

system. Therefore, some improvements are made for real-time PPP [20–22]. The real-time clock bias is 

estimated on the basis of known precise satellite orbits. The observations from regional CORS and the 

predicted IGS ultra-rapid orbit are applied to estimate the satellite clock bias. The PPP service can then 

cover a larger area than the CORS service. This method does not need to determine the satellite orbit 

autonomously, and the system is relatively simple to realize. Hence, this method is the most common 

way for achieving real-time PPP processing in small areas, such as Chinese provincial and municipal 

reference station networks. In the case of a CORS network using low-cost, single-frequency receivers, 

uncombined GNSS data plus ionospheric delays from the CORS is a better choice for PPP [23]. The 

uncombined algorithm can avoid the effects of amplified observational noise and multipath effects, as 

well as possible information lost [24]. However, the system needs to receive real-time IGS satellite orbit 

products. The system is also not a truly rigorous independent real-time PPP algorithm because the 

operation of the system is affected by the real-time performance and service quality of the IGS satellite orbit. 

When utilizing the satellite orbit and clock error products offered by IGS or using regional CORS to 

autonomously estimate clock error, the orbit error and clock error need to be estimated. However, 

judging from the ultimately positioning demands of PPP, in consideration of the positioning results only, 

the satellite orbit and clock error do not need to be distinguished. We can couple the clock and orbit error 

to estimate and obtain a clock error product that absorbs some of the broadcast ephemeris orbit errors. 

When turning to broadcast ephemeris for positioning, the technical limitations of third-party precise 

ephemeris for real-time PPP can be avoided. 

We find that the satellite orbit error and clock bias have an approximately consistent direction, thus 

inspiring us to couple the satellite orbit and clock bias as a parameter to estimate. We can then realize 

PPP completely and autonomously by using the broadcast ephemeris to couple the estimation of orbit 

and clock errors through regional CORS. 

The remainder of this article is organized as follows. Section 2 presents the algorithm model for 

simultaneously estimating satellite clock error and orbit error, which is derived theoretically and is 

verified. Section 3 provides the designed system based on the coupling estimation of the clock and orbit 
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errors on real-time PPP. Section 4 shows the measured data from different ways to verify the feasibility 

of the newly proposed algorithm and be compared with IGS real-time data stream products on PPP in 

terms of accuracy, convergence time, and other indicators. Section 5 summarizes the characteristics and 

advantages of the new method and provides the conclusions. 

2. Estimation for the Parameter of Coupling Clock Bias with Orbit Error (PCCO) 

2.1. Coupling of Clock Bias and Orbit Error 

Broadcast ephemeris is commonly used in real-time positioning because of its easy acquisition  

and real-time availability. However, its application is limited by orbit precision. The orbit error of 

broadcast ephemeris can be divided into the radial part (R-orbit error), along-track part (A-orbit error), 

and the cross-track part (C-orbit error) in the satellite coordinate system. The broadcast ephemeris  

on 8 August 2013 is applied for orbit error analysis. The precise ephemeris provided by National 

Geospatial-intelligence Agency (NGA) is treated as the true value. The result from the broadcast 

ephemeris is the position of the satellite antenna phase center, whereas the precise ephemeris gives the 

position of satellite mass center [25]. Therefore the satellite antenna-phase center offset should be 

corrected before comparison. The satellite position from broadcast ephemeris is compared with the NGA 

orbit products with the antenna-phase center offset corrected. Since the precise ephemeris has a large 

fixed sampling interval, the comparison is only conducted every 15 min to avoid interpolation error. 

By calculating the three components of the orbit error from broadcast ephemeris, we find some 

stochastic characteristics for each component. Four satellites with different types (BLOCK IIF, IIR, IIA, 

and IIR-M) are chosen as an example. Figure 1 shows the orbit error of broadcast ephemeris in the  

Radial (R), Along (A), and Cross (C) directions, and the Total (T) error. The total orbit error is calculated 

as follows: 

2 2 2= R A Cs s s sΔ Δ + Δ + Δ  (1)

where RsΔ , AsΔ , and CsΔ  represent the orbit errors in the radial direction, along-track direction, and 

cross-track direction, respectively; and sΔ  represents the total orbit error. 

From Figure 1 we can see that the total orbit error of broadcast ephemeris is about 1 m. All three 

components of orbit error fluctuate near the zero mean value. The bias in the radial is rather smaller than 

the other two components. However, considering that the orbit error is important for receiver positioning, 

even the small R-orbit error must be processed for PPP. The correlation between the satellite clock bias 

and orbit error is analyzed. 
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(a) PRN01 (BLOCK IIF) (b) PRN02 (BLOCK IIR) 

(c) PRN03 (BLOCK IIA) (d) PRN05 (BLOCK IIR-M) 

Figure 1. Orbit error statistics of the satellites with different types calculated from broadcast 

ephemeris. (a) BLOCK IIF; (b) BLOCK IIR; (c) BLOCK IIA; (d) BLOCK IIR-M. 

The GPS dual-frequency ionosphere-free observation equations are written as follows: 

μ μ ε

μ μ ε

IF

IF

r s
IF P

r s
IF IF L

P r s cdt cdt M zpd

L r s cdt cdt M zpd A

Δ = − ⋅Δ + ⋅Δ + − + ⋅ +

Δ = − ⋅Δ + ⋅Δ + − + ⋅ + +
 (2)

where IFPΔ  and IFLΔ  denote the ionosphere-free pseudorange observation residual and the ionosphere-free 

phase observation residual, respectively; IFA  denotes the ionosphere-free real-valued ambiguity; μ  

denotes the unit vector of the satellite to the station; rΔ  and sΔ  denote the coordinate corrections of the 
station and satellite, respectively; rcdt and scdt  denote the receiver clock offset and the satellite clock 

error, respectively; M  denotes the troposphere mapping function; zpd  denotes the zenith tropospheric 

delay; and ε
IFP  and ε

IFL  denote the multipath and other measurement noises, respectively. 

In traditional PPP, the precise ephemeris and satellite clock bias provided by IGS are already known. 

The unknown parameters include the receiver coordinate corrections, receiver clock bias, zenith 

tropospheric delay, and real-valued ambiguities. If broadcast ephemeris is applied to replace the precise 

ephemeris, the orbit error in meter size of broadcast ephemeris will be introduced. Therefore, the orbit 

0 5 10 15 20
-1

-0.5

0

0.5

1

1.5

time /h

bi
as

 /
m

 

 

R A C T

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

time /h

bi
a

s 
/m

 

 

R A C T

0 5 10 15 20
-2

-1

0

1

2

time /h

bi
as

 /
m

 

 

R A C T

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

1.5

time /h

bi
as

 /
m

 

 

R A C T



Sensors 2015, 15 17813 

 

 

error of broadcast ephemeris cannot be ignored. The geometry relationship between the orbit error and 

satellite to receiver direction is shown in Figure 2. 

 

Figure 2. The geometry relationship between the orbit error (radial, along, and cross 

direction) and the satellite to receiver direction. (R: rover; RA and RB: rover position with 

altitude angle of zero; S: satellite). 

From Figure 2 we can see that, to track a satellite, the receiver on the ground could just move in the 

radian RARB (2D geometry). According to the definition of radial direction, it is perpendicular to the 

direction of satellite movement in the orbital plane. If the satellite moves in a circular pattern, the radial 

direction points to the Earth’s center. For GPS satellites, the satellite orbit can be determined as a circle 

(only with elasticity of 0.01); thus, the radial direction can be approximated as the direction from the 

satellite to the Earth’s center. The angle between the satellite vector to the station and the satellite vector 

to the Earth’s center can be expressed as α . As shown in Figure 2, the maximum value of α  can be 

calculated as follows: 

maxα arcsin
R

R H
 =  + 

 (3)

where R  denotes the radius of the Earth and H denotes the height of the satellite orbit. The orbital 

altitude of the GPS satellite orbit is approximately 20200 km. Hence, if a user on Earth can receive the 

signal of GPS satellites, the maximum value of α  will be 13.9°. 

When it comes to the along and cross direction, the projection is determined not only by angle α , but 

also the angle between the cross direction and the plane defined by satellite, receiver, and the Earth’s 
center. The angle can be expressed as β . Without thinking about the surface configuration, we assume 

that the receiver could move to anywhere on the ground; β  changes from −90° to 90°. 

Therefore, the projection onto satellite to receiver range of the satellite orbit error can be calculated 

as follows: 

( )cosα sinβ cosβ sin αR A Cs s sΔ = Δ ⋅ + Δ ⋅ + Δ ⋅ ⋅  (4)

where Δ  is the projection in the direction of the satellite to the receiver. Since α  is between 0° and 13.9°, 

( ]cosα 0.971,1∈  and ( ]sinα 0,0.240∈ . By setting a certain cut-off angle in the receiver, cosα  value 
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can be closer to one and sinα  value can be closer to zero. Thus, most of the R-orbit error can be projected 

onto the satellite-receiver range, while the A-orbit error and C-orbit error cannot be projected so far. 

The satellite clock bias can be viewed in terms of distance measured in the direction of the satellite 

to the receiver. Therefore, the orbit error can be absorbed during clock bias estimation. Lou et al. [26] 

have verified that, considering that all visible satellites are evenly distributed in the sky above the station, 

a part of the remaining unabsorbed orbit errors of several satellites can offset one another in the unified 

calculating process. The effect caused by the residual orbit error can then be weakened by PPP. 

2.2. Joint Weighted Estimation of PCCO Based on Regional CORS 

The regional reference stations have advantages, such as precise coordinates of stations already 

known, continuous operation, high observation data quality, and convenient observation data 

acquisition. These advantages provide a good platform for real-time satellite clock bias estimation. On 

the basis of Equation (2), the single difference between satellites is applied to estimate the satellite clock. 

The observations are as follows: 

( )
( )

, , , ,

, , , , ,

,

,

ε ( )

ε ( )

i j i j i j i j

IF IF

i j i j i j i j i j

IF IF IF

i j

i j

P M zpd c dt P

L M zpd A c dt L

c

c

Δ = ⋅ − +

Δ = ⋅ + − +

Δ−

Δ−
 (5)

where i and j denote the reference and non-reference satellites, respectively. The other parameters are 

the same as in Equation (2). By using the single difference between satellites, the receive clock bias is 

eliminated. The precise station and satellite coordinates are already known. Thus, Equation (5) is more 

simplified than Equation (2). In particular, , ,i j i j
dt c

Δ−  denotes the satellite clock bias that absorbs the 

satellite orbit error. In this way, this satellite clock bias is no longer the same as that provided by IGS. 

According to Equation (5), satellite clock bias and phase ambiguity are the main parts of the unknown 

parameters. Since these two parameters have the same quantity and coefficient, a strong correlation 

exists between them. More than 20 min of observation time is usually needed to separate the two 

parameters by using the traditional method. To overcome this defect, we promote a modified satellite 

clock bias estimation method as follows: 

1. At the first epoch, the satellite clock bias is calculated by using the pseudorange  

observation equation; 

2. At epoch n, through the difference among the phase observations, the epoch differential phase 

observations are added to the pseudorange observation and the initial epoch to create a new 

pseudorange observation 
,

,
i j
IF nP . The expression is expressed as follows: 

, , , ,
, ,0 , ,0( )

i j i j i j i j
IF n IF IF n IFP P L L= + −  (6)

The calculation model of the satellite clock bias estimation with smoothing pseudorange can be 

written as follows: 
,, , ,

,,( ε( ) ) /
i ji j i j i j
IF nIF ndt M zpd L P c= ⋅ + − Δ  (7)
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A deviation is introduced to the satellite clock bias by the pseudorange observation noise in the initial 

epoch for any satellites. The deviation in the satellite clock bias belongs to the systemic error in the 

estimation process. Therefore, such a deviation can be absorbed by the ambiguity parameters and does 

not affect the positioning result. This clock bias estimation method is similar to the traditional method. 

The traditional method applies epoch differential phase observations to eliminate the ambiguity 

parameters. In the process of satellite clock bias estimation, the variation in zenith tropospheric delay 

can be considered the unknown parameters for estimation. The traditional method uses empirical models 

to correct zenith tropospheric delay. 

During the estimation processing of satellite clock bias in the regional reference station network, the 

troposphere mapping function of the same satellite at different sites is similar. Hence, unified estimation 

with several stations will cause a strong correlation among the zenith tropospheric delays. For this reason, 

the satellite clock bias is estimated in each station. The weighted average is calculated from each satellite 
clock bias ,

s
i mtΔ . For example, in epoch i , the weight k  of satellite s  in station m  is calculated, and the 

weighted clock bias s
itΔ  is as follows: 

, 2 2
, ,

,1 ,1 ,2 ,2 , , ,
1

1 1
1/ ( )

sin ( ) sin ( )

( ) /

s
i m s ref

i m i m

N
s s s s s s s s
i i i i i i N i N i m

m

k
E E

t k t k t k t k
=


= +



Δ = ⋅Δ + ⋅Δ ⋅Δ


 (8)

where E  denotes the elevation of satellite. 

The improved method for satellite clock bias estimation (including orbit error) does not need to 

consider the effect of ambiguity parameters. With each station independently calculating satellite clock 

bias, the final real-time satellite clock product could be obtained through the elevation weighted average. 

This method can reduce the overload of satellite clock bias calculation and provides the satellite clock 

bias immediately. 

2.3. PCCO Effect on Observation Equations 

According to the previous analysis, most of the R-orbit error and part of the A-orbit error and C-orbit 

error from the broadcast ephemeris can be absorbed by satellite clock bias. The residual orbit error is 

weakened or even offset by its own random characteristics and the unified calculation of satellites at 

different azimuths. The influence of satellite clock bias that absorbs part of the orbit error is determined 

by analyzing the Observed Minus Computed (OMC) value during rover positioning. 

The dual-frequency ionosphere-free observation equation can be transformed from Equation (2).  

The detailed information is expressed as follows: 

μ μ ε
IF

s r
IF IF LL cdt s r cdt M zpd AΔ + − ⋅Δ = − ⋅Δ + + ⋅ + +  (9)

where the observation residual IFLΔ  is already known and satellite clock bias sdt  is estimated and sent 

to the user by CORS center. Since the satellite position calculated by broadcast ephemeris is considered 

as the precise value, the satellite orbit error sΔ  can be ignored. In this way, the value to the left of the 
equals sign is expressed as LΦ . Thus, the formula can be expressed as follows: 
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ε
IFLL AXΦ = +  (10)

where A  denotes the coefficient matrix and , , ,
Tr

IFX r dt zpd A = Δ   denotes the unknown parameter 

vector. For convenience of calculation, the difference between satellites is applied to eliminate the 

receiver clock bias. The OMC vector of observation equation could be obtained as follows: 
rover pivotL L LΦ Φ= −  (11)

where roverLΦ  denotes the OMC vector of rover satellite-phase observation and pivotLΦ  denotes the OMC 

vector of pivot satellite-phase observation. 

The comparison of the traditional PPP methods and PCCO methods in real-time PPP indicates that 

the coefficient matrix and unknown parameter vector are the same. Hence, the OMC vector L  is the 

only factor that affects the final positioning result. 

Four CORS stations, named P301, P171, P279 and P546, are chosen as regional reference stations 

for satellite clock bias estimation. Five other stations are chosen as the rover for real-time PPP. 

Influenced by observation satellite distribution and data quality, five common visible satellites are used 

for calculation. The influence on the positioning performance with the satellite clock bias estimation  

is analyzed. 

The OMC vector L  of observation equation for the regional reference network by using the 

traditional PPP method and the PCCO method on real-time PPP is calculated. The difference between 

the two OMC vectors is analyzed, and the root-mean-square (RMS) values are calculated for statistics. 

The specific results are shown in Figure 3. 

 

Figure 3. Statistical RMS values of the OMC vector of observation equations in different stations. 

Although the accuracy of broadcast ephemeris is poor (usually approximately 1–2 m for orbit 

precision), Figure 3 shows that the OMC vector of observation equation based on PCCO is the same in 

the millimeter level as traditional PPP, thus indicating that PCCO meets the request of PPP and that the 

residual unabsorbed errors do not affect the positioning performance in a regional area. 
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3. Real-Time PPP System Based on PCCO 

The real-time PPP system mainly includes two parts, the data control and processing center and the 

real-time PPP user. The data control and processing center is mainly used to calculate the coupling 

parameter of clock bias and orbit error (abbreviated as PCCO) and then broadcasts the PCCO to the PPP 

user in real time via the mobile network. The PPP user receives PCCO, GNSS observation, and broadcast 

ephemeris in real time and then executes PPP. The overall system structure and data flow are shown in 

Figure 4. 

Regional CORS Service

…….

Data Control and  processing Center

Ntrip Caster

Real-time 
Observation 

Transmission

Data 
Preprocessing Satellite Clock 

Estimation

Database FTP Service
Real-time 

Data Stream

Real-time PPP user

GPRS/CDMA
Mobile Network

Observation Decoding

Satellite Clock 
Decoding

PPP Results

Rover Data Process

Broadcast 
Ephemeris

Satellites Matching

Satellite Clock 
Encoding

 

Figure 4. Overall structure and data stream of real-time PPP based on PCCO. 

The detailed process of realization is as follows:  

(1) The “regional CORS reference stations” receive GNSS observations and broadcast ephemeris. 

(2) The “data control and processing center” receives observation data and the broadcast ephemeris 

from the regional CORS and then calculates the PCCO after data preprocessing. 

(3) The PCCO is encoded, instantaneously broadcasted to the rover user by a mobile network, and 

uploaded to the database for post-processing users. Since the single-difference results clock the 

bias of a pair of satellites, the satellite clock bias is given to the rover in pairs. 

(4) The PPP user receives observation data and broadcast ephemeris and obtains the clock bias 

coupled with orbit error followed by PPP. 

The error equation of the PCCO method has been introduced in the previous section. The rover 

positioning error equation is expressed as follows: 
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 (12)

In the rover positioning equation, the unknown parameters contain 3D coordinates, the wet part of 

zenith troposphere delay, and phase ambiguity. Only the phase observations are used for positioning; 

thus, the equation number is n−1. In the design matrix, the first three columns are the coefficients of 
, ,x y zΔ Δ Δ ; the fourth column is the coefficient of the wet part of tropospheric delay; and the other 

columns are the coefficients of the single difference ambiguities between satellites. The algorithm is 

used to develop our own PPP software, named SEUP3, which could receive PCCO and decode it for PPP. 

Compared with traditional real-time PPP, the advantages of this system are as follows: 

(1) In this system, satellite clock bias is coupled with orbit error as an estimation parameter. 

Therefore, precise ephemeris is no longer demanded because broadcast ephemeris is enough for 

real-time PPP. 

(2) PCCO can generate real-time clock bias coupled with orbit error by regional CORS and can 

broadcast to the rover instantaneously. PCCO has better real-time performance than the IGS real-time 

data stream. 

(3) PCCO only needs regional CORS and does not rely on global distribution station; thus, the PCCO 

method is easy to implement and is suitable for engineering practice. 

4. Experiment and Analysis 

In this study, observation data from 20 stations of National Geodetic Survey (NGS) network on  

8 August 2013 were used for the experiment. The data sampling rate was 15 s. The distribution of the  

20 stations is shown in Figure 5. The four stations (blue triangles) were used to make the network for 

PCCO estimation. The lengths of the four sides of the network by four stations were 100, 110, 101 and 

82 km. Another 15 stations (red circles) were selected as rovers for the PPP accuracy test. Among these 

stations, five were used for the experiment within the network and the others were used for the experiment 

outside the network. Based on the real-time PPP system designed in Section 3, the self-developed software 

SEUP3 is applied to compare PCCO with IGS real-time service for the rovers. 
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Figure 5. Network distribution in the experiment. 

4.1. Experiment within the Network 

Station P175 was randomly selected as the representative of rovers within the network. We conducted 

real-time PPP on the basis of PCCO with regional CORS. The experimental result was compared with 

real-time PPP obtained by SEUP3 software on the basis of the real-time streaming data from IGS (RSDI) 

from precision and convergence speed. We defined convergence as when the positioning error in any of 

the three directions becomes less than 10 cm. In addition, we calculated the RMS value of the positioning 

errors from the convergence epoch to the end. The results are shown in Figure 6. 

(a) (b) 

Figure 6. Results of station P175. (a) RSDI; (b) PCCO. 
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accuracy of PCCO was significantly better than the results of RSDI. A comparison of the positioning 

results of P175 indicated that the convergence speed of RSDI was slower in each direction. The 

convergence time was 38 min, and the position error was 7.29 cm according to RSDI. The convergence 

time of PCCO was 9.75 min, and its position error was 3.32 cm by using PCCO. The results showed that 

the PCCO method was feasible in this station, which can achieve high-precision results in the U 
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direction. PCCO can reach better results in the N and E directions than RSDI. The position accuracy 

increased by 54.4%, and the convergence speed increased by 74.3%. 

The precision and convergence time of PCCO were compared with those of RSDI for five stations 

within the network to further analyze the effect of PCCO. The statistics of precision mainly involved the 

RMS of three direction errors (N, E and U) and position error. The results of the two methods are shown 

in Figure 7. 

(a) (b) 

(c) (d) 

(e) 

Figure 7. Results of the five stations within the network: (a) N; (b) E; (c) U; (d) convergence 

time; (e) position error. 
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Figure 7 compares the positioning results of PCCO for the five stations within the network with the 

results of RSDI. It should be noted that, for station P299, the positioning accuracy cannot converge to 

achieve 10 cm within 1 h by using RSDI, so it is blank in Figure 7. The precision of the two methods 

could reach better than 3 cm in N direction. The precision of PCCO could be significantly improved in 

the E and U directions. Furthermore, the convergence speed and position precision were both improved 

obviously in the five stations and PCCO can achieve high precision on real-time positioning. The 

quantitative comparison results are shown in Table 1. 

Table 1. RMS of positioning error and convergence time of RSDI and PCCO. 

Station 

Name 

RSDI PCCO 

Directional Error (cm) Position  

Error (cm) 

Convergence 

Time (min) 

Directional Error (cm) Position Error  

(cm) 

Convergence 

Time (min) N E U N E U 

P289 2.65 4.48 6.28 8.16 36.25 0.75 2.74 5.62 6.30 16.25 

P287 2.52 3.91 7.33 8.68 26.75 2.42 4.14 2.50 5.41 8.25 

P299 - - - - - 2.67 3.87 1.47 4.93 14.75 

P285 0.94 4.36 4.35 6.23 13.00 0.58 1.54 3.14 3.55 9.75 

P175 2.97 6.42 1.78 7.29 38.00 2.07 1.89 1.78 3.32 9.75 

“-” represents a result that cannot be converged to 10 cm within 1 h. 

The position precision of the five stations by PCCO was generally higher than that by RSDI and 

increased by 38.8% on average except P299. The convergence time was greatly shortened and improved 

by 61.4% on average when compared with RSDI except P299. Therefore, real-time positioning can be 

achieved by PCCO for stations within the network and PCCO can achieve higher precision and faster 

convergence speed than RSDI. 

4.2. Experiment Outside the Network 

Station P091 was randomly selected as representative of rovers outside the network. The results were 

compared with the real-time PPP obtained by SEUP3 software on the basis of RSDI. The effect of PCCO 

was analyzed from the precision and convergence time, which was similar to station P175. The results 

are shown in Figure 8. 

(a) (b) 

Figure 8. Results of station P091. (a) RSDI; (b) PCCO. 
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The distance from the network center to station P091 was approximately 308 km. RSDI and PCCO 

needed 46.75 and 7.5 min until the error converged to 10 cm in each direction, respectively. The position 

error was 4.59 cm by PCCO and 10.45 cm by RSDI after convergence. The positioning accuracy of the 

two methods was excellent in the N direction. The position accuracy increased by 56.1% on average, 

and the convergence speed increased by 83.9% on the basis of PCCO. The external station P091 was far 

from the network center, but its position accuracy was similar to that of the internal station. Both of the 

stations within and outside the network can achieve better results than RSDI. The accuracy was better 

than 2 cm in the N direction, which was similar with RSDI. PCCO could be applied well not only to the 

internal network station but also to the external station, which was 300 km away from the network. 

The precision and convergence time of 10 stations outside the network were calculated and analyzed 

to further test the performance of PCCO for stations outside the network. These stations were analyzed 

in turn according to the distance to the network center from near to far (ranging from 190 km to 511.6 km). 

The positioning scheme and statistical method were the same as those presented in Section 4.1. The 

results are shown in Figure 9. On the basis of RSDI and PCCO, the time when the errors in the N, E, and 

U directions converge to less than 10 cm and the RMS of positioning error within 1 h after convergence 

are shown in Figure 9 and Table 2. The blank represents where it cannot converge to 10 cm within 1 h. 

(a) (b) 

(c) (d) 

Figure 9. Cont. 
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(e) 

Figure 9. Results of stations outside the network: (a) N; (b) E; (c) U; (d) convergence time; 

(e) position error. 

Table 2. RMS of the positioning error and convergence time of RSDI and PCCO. 

Station 

Name 

Distance  

(km) 

RSDI PCCO 

Directional Error 

(cm) 

Position 

Error 

(cm) 

Convergence 

Time  

(min) 

Directional Error 

(cm) 

Position  

Error 

(cm) 

Convergence 

Time (min) 
N E U N E U 

P229 190.0 - - - - - 0.86 1.80 1.84 2.71  14.50 

P571 195.1 - - - - - 1.95 2.60 2.16 3.90  12.50 

P629 200.3 3.59 1.76 7.75 8.72 34.75 0.69 2.83 1.01 3.08  9.25 

P579 297.7 1.61 2.79 8.12 8.74 53.00 1.54 4.80 3.46 6.11  7.75 

P091 308.0 2.10 4.77 9.06 10.45 46.75 1.24 2.63 3.55 4.59  7.50 

P617 407.9 0.96 3.78 6.34 7.44 11.75 1.01 3.84 3.54 5.32  5.75 

P604 413.2 1.18 8.18 2.22 8.56 15.25 1.48 4.49 4.84 6.77  7.25 

P611 492.2 2.03 8.04 3.95 9.19 42.75 1.82 5.21 5.01 7.45  9.25 

P601 510.6 2.13 8.07 2.06 8.60 44.50 2.38 4.56 3.63 6.30  26.25 

P490 511.6 2.72 4.74 3.91 6.72 12.25 1.93 2.06 2.98 4.10  16.00 

“-” represents a result that cannot be converged to 10 cm within 1 h. 

Figure 9 and Table 2 show that the precision of PCCO outside the network significantly increased in 

the E direction and was similar to the N direction with RSDI. The accuracy of the U direction is improved 

for stations within about 400 km, but the positioning accuracy decreased with the increase of distance. 

The results of two stations (P229 and P571) cannot be converged to 10 cm within 1 h by RSDI. The 

convergence speed and position accuracy of all stations outside the network were significantly improved 

by PCCO by 65.9% and 36.1% on average in comparison with RSDI except P299 and P571, respectively. 

For the rovers inside and outside the network within a certain distance, real-time PPP could be better 

achieved on the basis of PCCO. By using PCCO, the position accuracy increased significantly and the 

convergence speed improved greatly. PCCO can satisfy the cm-level accuracy requirement for stations 

within 500 km. 
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5. Conclusions 

Satellite clock bias can absorb the projection of orbit error onto the satellite-receiver range. Therefore, 

an approach is proposed for the coupling estimation of clock bias and orbit error in CORS data 

processing center. According to the results of the proposed method, the satellite orbit from broadcast 

ephemeris was enough for PPP in a large-scale area (much larger than the CORS service coverage area) 

and precise orbit products were no longer needed. An experiment was conducted by using the NGS 

network observation data. The positioning results were compared with RSDI. The main conclusions are 

as follows: 

(1) The projection of satellite orbit error was similar to the clock bias on PPP; hence, they can be 

coupled as one parameter for estimation purposes. During PPP by the user, the OMC vectors of 

GNSS equations by coupling estimation were almost the same as the traditional PPP (with a 

difference in millimeters). Therefore, the orbit error was availably absorbed by clock bias, 

whereas the residual unabsorbed orbit error did not affect the positioning in a regional area. 

(2) For the stations inside and outside (with a distance less than 500 km) the network, the proposed 

approach performs better than RSDI. The position accuracy of the stations inside and outside the 

network improves by 38.8% and 36.1%, respectively, and the convergence speed improves by 

61.4% and 65.9%, respectively. This new approach has the advantages of autonomy, real-time 

processes, and simple parameters, which is an improvement over traditional PPP. It could be an 

alternative solution for regional positioning service before global PPP service comes into operation. 
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