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Abstract: In this paper, we present a challenging task of 3D segmentation of individual 

plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is 

introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D 

camera is utilized to capture depth and color image in fields. Mean shift clustering is 

applied to segment plant leaves in depth image. Plant leaves are extracted from the natural 

background by examining vegetation of the candidate segments produced by mean shift. 

Subsequently, individual leaves are segmented from occlusions by active contour models. 

Automatic initialization of the active contour models is implemented by calculating the 

center of divergence from the gradient vector field of depth image. The proposed 

segmentation scheme is tested through experiments under greenhouse conditions. The 

overall segmentation rate is 87.97% while segmentation rates for single and occluded 

leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental 

results show segmentation rates of individual leaves higher than 90%. Nevertheless, the 

proposed method is able to segment individual leaves from heavy occlusions. 
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1. Introduction 

Precision agriculture is a synthesis technology that enhancing crop production with minimal energy 

costs and environmental pollution [1,2]. Recently, precision agriculture has been rapidly developed by 

introducing advanced technologies, such as intelligent sensors and robotics. The productivity of the 

conventional farming, which the crop cultivation and management manually conducted by farmers, is 

significantly improved by using intelligent machines. Numbers of agricultural robotics based on  

visual guidance are developed for automatic agricultural operations, such as micro-dosing, plant  

de-leafing, weed control and pest management [3–6]. Due to the success of computer vision 

techniques, imaging sensors have become the most common sensing devices in agricultural automation 

systems for collecting information of plants. 

Image analysis of plant leaves is one of the essential tasks for agricultural automation since a plant 

leaf contains abundant information of plants. In particular, automatic detection of individual leaves is a 

fundamental task for achieving precision operations in agricultural practices. Segmentation of 

individual leaves is a challenging task due to plant leaves showing significantly varying poses and 

complex shapes in natural conditions. Plant leaf segmentation has been extensively studied in the last 

decades [7]. Numerous sensing techniques are presented to acquire plant information, such as image 

camera, infrared camera, spectral camera, etc. In the initial stage, plant leaf segmentation is mainly 

conducted by using 2D segmentation approaches. Genetic algorithms are introduced to extract 

individual leaves from canopy images [8]. Watershed based leaf segmentation is reported in [9], which 

efficiently extracts plant leaves from the images taken from tomato fields. Neural network is also 

demonstrated high performance in detecting vegetation pixels and extract leaves from the ground [10]. 

These works are successful in extracting leaves from the natural background. However, these 

methods are less able to identify leaves from occlusions and might be sensitive to illuminations 

changes. Occlusions frequently occur in plant images. In order to deal with detecting occluded plant 

leaves deformable models containing a priori knowledge on leaf shapes are presented to segment the 

individual leaves from the complicated background. A parametric deformable template is developed to 

accumulate information on weed leaves on the basis of the tips of leaves [11]. Lately, the active shape 

model (ASM) is utilized to detect occluded leaves in field conditions with a priori knowledge.  

A modified active shape model is presented to detect occluded and damaged pepper leaves in 

greenhouses [12]. The active shape model shows high accuracy in identification of weed species [13]. 

Recently, 3D segmentation of plant leaves has attracted attention by the scientists and engineers due 

to the rapidly developed imaging systems and highly improved computational performance of 

computers. Various imaging systems are developed to obtain 3D plant images, such as stereo camera 

and laser scanners. Three-dimensional reconstruction from multiple views (e.g., stereo vision) is one of 

the successful techniques to obtain accurate 3D information of objects. Quan et al. developed an  

image-based plant modeling system that can reconstruct the 3D model of a plant from a set of images 
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around the plant [14]. This method measures point cloud data of plants from more than 30 images 

taken from different angles of views. A graph based segmentation scheme integrating 3D and 2D 

information is developed to segment leaves and to reconstruct 3D structure of plant leaves by fitting 

leaf models. Another 3D leaf segmentation system is devised based on multiple views camera and 

classification of plant species is implemented by using 3D leaf images [15]. A mesh processing based 

precise 3D measurement of plant leaves and stems are proposed based on the multiple views of plants [16]. 

And the plant species could be identified by the 3D leaf images. Since the collection of multiple view 

images of plants should be conducted in controlled conditions, such as in a laboratory, this approach is 

not yet available for agricultural applications. 

High precision 3D data of plants could also be obtained by using 3D Laser scanners. Detection of 

individual plant in crop fields using LIDAR sensor is developed for agricultural robots navigation [17]. 

Plant phenotyping is implemented based on the point cloud obtained by a laser scanner, and the plant 

organs, such as leaves and stems, are classified by using the laser-scanned data [18]. A 3D dynamic 

measurement system is developed based on the LIDAR sensor and the structure of a fruit tree and the 

leaf area are estimated [19]. 

Furthermore, a time of flight (ToF) camera is developed for measuring accurate 3D information of 

objects and has been applied to 3D analysis of plants. Plant phenotyping has been developed by using a 

ToF camera [20]. An automatic leaf grasping by manipulator is presented by measuring individual leaves 

using a ToF camera [21]. In this work, individual plant leaves are segmented by applying graph-based 

segmentation and fitting quadratic leaf models to depth data. Moreover, the suitability of using ToF 

cameras for agricultural applications is evaluated by comparing with stereo cameras under the indoor 

and outdoor conditions [22,23]. The ToF cameras show comparable accuracy with stereo vision. 

Although stereo vision and laser scanner can provide high precision 3D data of plants, currently, 

they are not affordable for agricultural practices due to their extremely high prices. A ToF camera is an 

alternative solution for acquiring real-time depth images. However, most ToF cameras provide low 

resolution of depth image (e.g., 204 × 204 pixels for PMD® CamCube). Low cost RGB-D cameras 

have recently been developed for 3D imaging with better image resolution than a ToF camera  

(e.g., 640 × 480 pixels). RGB-D cameras have been utilized in numerous applications in 3D 

reconstruction, object recognition and remote control [24–26]. RGB-D cameras have been evaluated 

for plant phenotyping by comparing with the high precision laser scanners. The low-cost RGB-D 

imaging devices are shown impressive reliability for 3D plant phenotyping and the possibility to 

automated agricultural applications is demonstrated [27]. The 3D structure of plants is reconstructed 

by using depth data [28]. Moreover, an indoor test of 3D plant phenotyping using RGB-D camera is 

conducted in [29]. The leaf segmentation using depth is presented and the feasibility of plant 

monitoring based on RGB-D camera is proved. 

In the previous works, the RGB-D camera showed high performance in plant image analysis. The 

RGB-D camera could produce real-time depth data which is less computational cost for 3D mapping. 

The RGB-D camera is extremely economic compared with laser and stereo cameras. However, plant 

leaf analysis using a RGB-D camera in a natural scene has not been extensively studied. We focus on 

plant leaf segmentation for agricultural automation in practice. This work presents a 3D leaf 

segmentation scheme under natural conditions and an accurate measurement of individual leaves from 

heavy occlusion. The mean shift segmentation is introduced to segment leaves from the complicated 
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background in green house fields. An automatic initialization of active contour model (ACM) is 

implemented by calculating the center of divergence (CoD). Occluded individual leaves are segmented 

by using the ACM. Performance of the proposed segmentation scheme is verified through field 

experiments in a green house. 

2. Materials 

A Kinect RGB-D camera developed by Microsoft® Company (Redmond, WA, USA) is adopted to 

capture color and depth images of plants. The structure of plant monitoring facility is presented in 

Figure 1. A Kinect camera is installed on a tripod and connected to a laptop computer for capturing 

images. The Kinect camera is powered by a 12V Li-On battery. The Kinect camera could produce  

1280 × 960 pixels color images and 640 × 480 pixels depth images. To align the color image with 

depth image the resolutions of RGB and depth images from Kinect are set to 640 × 480 pixels. The 

Kinect camera and tripod is positioned 100 cm away from the plants in a horizontal direction and the 

Kinect camera is placed at 130 cm height with 30° downward angle to capture the optimized view of 

plants (Figure 1). 

 

Figure 1. Structure of plant monitoring using Kinect camera in the green house. 

3. Segmentation of Plant Leaves 

3.1. Overall Procedure of Plant Leaf Segmentation 

The proposed leaf segmentation scheme is conducted in mainly two steps: background removal and 

segmentation of individual leaves. The overall procedure of the proposed segmentation scheme is 

presented in Figure 2. Depth and color images of plants are captured by the Kinect camera and 

concurrently depth and color images are aligned for further process. Initially, mean shift clustering is 

conducted on the depth image to segment objects from the background. The candidate segments are 

examined by RGB colors. The non-green background objects are removed and only plant leaves are 

extracted at this step. Background images are removed from the depth and color images, respectively. 

Subsequently, the gradient vector field (GVF) is calculated on the filtered depth image. The center of 

divergence is calculated based on the gradient vector field. The automatic initialization of active 

contour models is implemented according to the center of divergence of the depth image. Accordingly, 

individual leaves are segmented from the depth image by using the active contour models. 
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Figure 2. Flowchart of the proposed leaf segmentation scheme. 

3.2. Removal of Natural Background 

In plant image analysis, segmentation of plant leaves from the background in fields is a crucial and 

challenging task. Plant leaf segmentation should be conducted prior to the analysis of individual 

leaves. We introduce depth information to improve the robustness of in situ leaf segmentation. Plant 

leaves are initially extracted from the background according to the depth feature. Since depth data 

represent the coordinates of objects in three-dimensional space, plant leaves and background objects 

could be efficiently separated in terms of the discontinuity in depth. Figure 3 presents the plant images 

taken from green house by using Kinect camera. The RGB image and depth image of plants are 

obtained simultaneously (Figure 3). The illumination condition is complicated which a large area of 

sunlight diffusion is appeared in the top part of image (Figure 3a). Leaves are in various poses and 

occluded with each other. In contrast, leaves present significant difference in depth compared with the 

background objects (Figure 3b). The depth image of plant leaves is relatively smooth and depth noises 

could not represent the segmentation of leaves. 

 

Figure 3. Leaf image captured by Kinect camera, (a) RGB image of plants and (b) depth image. 

The mean shift algorithm is applied to segmented objects in the depth image. The mean shift 

algorithm is a robust feature-space analysis approach which has been widely applied in image 

segmentation and object tracking [30,31]. Mean shift is an iterative procedure that shifts each data point 

to the average of data points in its neighborhood by using kernel density estimation. 
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The local density peak 1jy +  is updated iteratively during the clustering process. All the points that 

are drawn upwards to the same peak are considered to be members of the same segment. This is the 

overall procedure of mean shift segmentation. 

In this work, the clustering process of mean shift is conducted on the gray-level depth data to obtain 
the leaf areas and backgrounds. Let { }

1...i i n
x

=
 be the 2-dimensional input in the spatial-range domain of 

a gray-level image. Moreover, ,i jy  is the local density peak for a pixel ix  at the j-th iteration. The 

procedure of mean shift segmentation on depth data is described in the following steps: 

1. Initializing a searching window in spatial domain with radius ps  and range domain window with 

radius rs  and set iteration step 1j =  and local density peak ,1i iy x= . 

2. The shift vector of searching windows is obtained by examining the depth difference between 

each pixel and the center pixel in the spatial window and range window. 

3. Computing the mean depth value of all the pixels within the spatial windows and updating  

, 1i jy +  with the mean depth. 

4. Pixels in the spatial window which showing depth difference smaller than radius rs  of range 

window are grouped into the clusters 1...{ }p p mC = . The above steps are repeated until the shift 

value is small enough that indicate the mean shift clustering is converged. Assign ,i i cz y= . 

5. Finally, each pixel ix  is grouped into the segments by assigning { | }i i pL p z C= ∈  (refer to [30] 

for detailed algorithms). 

Consequently, the depth image is segmented into numbers of sub-areas when the convergence of 

mean shift is reached. As presented in Figure 4a, segments are represented by different colors. The leaf 
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images are determined from the segmentation results by examining the RGB color of green vegetation 

as shown in Figure 4. Non-green background objects are removed in this process. Plant images are 

segmented into numerous sub-images of leaves and only segmented leaves are extracted in depth and 

color images (Figure 4b,c). 

 

Figure 4. Leaf segmentation using mean shift, (a) mean shift segmentation results;  

(b) segmentation results presented in depth image and (c) segmented leaves in RGB image. 

A standard mean shift clustering implemented by the open source computer vision library (OpenCV 2.4) 
is adopted. The segmentation of mean shift is optimized by tuning the spatial window radius ps  and 

the feature window radius rs  according to depth difference. ps  determines the size of segments and rs  

is related to the depth difference among objects. In this work, the background segmentation is not 

sensitive to these two parameters because the leaves and the background present significant difference 
in depth. The values of ps  and rs  are chosen as 12 and 6 in our experiments. The RGB thresholds for 

eliminating backgrounds are determined from the pre-tests on the field images.  

3.3. Segmentation of Individual Leaves from Occlusions 

In the background removal process, single leaves could be separated from the background while 

occluded leaves are difficult to be segmented by the mean shift because of the insignificant depth 

difference between the occluded leaves. A sophisticated method should be presented to accurately 

extract the individual leaves from occlusions. Considering the flexible shape of leaves and varying 

poses, a flexible contour model, or active contour model, could efficiently fit the accurate boundaries 

of leaves [32]. The active contour model based on gradient vector field is utilized to segment occluded 

individual leaves in depth images [33] since most occluded leaves show small depth difference on the 

boundaries between two leaves. The boundaries of occluded leaves could be identified using the active 

contour model by fitting to the local boundary feature in depth image. 
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Automatic initialization of the active contour model is an essential step to obtain the accurate 

segmentation of individual leaves. A proper number of models should be initialized at the optimized 

positions in the plant image. A large number of hypothesized models could not only increase the 

computational cost and also lead to over-segmentation of leaves. In this work, we calculate the center 

of divergence for initializing the active contour models [34]. The CoD corresponds to the local 

maxima of the external energy field which is calculated from the point from the GVF vectors of all the 

neighboring pixels. 
The GVF vectors of pixel are calculated from the four adjacent pixels: ( , )p i j , ( 1, )p i j+ , ( , 1)p i j +  

and ( 1, 1)p i j+ +  where i and j are the coordinates of pixels in the image. The GVF vector of pixel 

( , )p i j  is calculated as ( , ) ( ( , ), ( , ))i j x i j y i j=v . Subsequently, a sign function is introduced to 

represent the direction of ( , )i jv : 

sign(x) =
1,  x >  0

0,  x =  0

-1,  x <  0









 (3)

Accordingly, the potential scattering point set sP  is given as: 
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and the center of divergence is determined by applying a given threshold. If the distance of any two 
points in sP  is larger than the threshold, one of the two points is removed. 

According to the center of divergence, the contour models are initialized to segment the leaves from 

occlusions. The initialized models are drawn in green circles while the boundaries of segmented of 

individual leaves are represented in yellow lines (Figure 5). 

 

Figure 5. Leaf segmentation using center of divergence (CoD) and active contour model 

(ACM) (Green circles are initialized models and yellow contours are segmentation results). 
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4. Results 

Experiments of 3D leaf segmentation are carried out on the plant images captured under greenhouse 

conditions. In total, 37 field images of paprika plants are tested by the proposed segmentation scheme. 

These images contain 474 target leaves that 24.05% (114 leaves) of them are single leaves while the 

rest 75.95% (360 leaves) of leaves are with occlusions (Table 1). Initially, plant leaves are segmented 

from the background by using mean shift segmentation and color filtering using RGB colors. The 

results of background segmentation show that leaves are efficiently extracted from the complicated 

background in green house (Figure 4c). Although the illumination condition is complex in field 

conditions, such as shadows and reflection on leaf surfaces, the leaves could be accurately segmented 

from the natural scene according to the depth image and color values (Figure 3a). Figure 6 presents 

segmented individual leaves from plant images in Figure 3. Segmented individual leaves are drawn 

with yellow contours. Individual leaves showing irregular shapes and complicated poses are accurately 

segmented although the leaves are clustered and occluded with each other. 

 

Figure 6. Segmentation of individual leaves (yellow contours represent boundaries of 

individual leaves). 

The performance of 3D individual leaf segmentation is presented in Table 1. The segmentation 

performance of individual leaves is evaluated by segmentation rate, failure detection, unseparated 

occlusions and over-segmented leaves. Segmentation rate indicates the proportion of accurately 

identified individual leaves from the total amount of individual leaves. Failure detection is the 

individual leaves which are unable to be detected during the background removal process. While 

unseparated occlusions represent the occluded leaves which are not correctly separated by the 

proposed method, such as the top right leaves in Figure 6. Over-segmentation is the individual leaves 

which is incorrectly segmented into several partial leaf images. An example of over-segmentation is 

shown in the middle right of Figure 6. The leaf segmentation is evaluated by examining the identified 

individual leaves by the proposed method with manually labeled individual leaves. Up to 92.10% of 

single individual leaves are correctly identified from the plant images. Segmentation rate of occluded 

leaves is 87.97% while the overall segmentation rate is 86.67%. The segmentation rate is remarkable: 

such a precise measurement of individual leaves from occlusions is challenging since leaves are 
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showing rather complicated poses. The segmentation performance of the proposed method is 

remarkable that only nine leaves were failed to be detected among the overall target leaves (Table 1). 

The failure detection rates for single leaves and occluded leaves are 5.26% and 0.83%, respectively. 

Single leaves show higher failure detection rate since single leaves contain numbers of small-sized 

young leaves which are difficult to be measured using the Kinect camera. The experimental results show 

that the incorrect segmentation of individual leaves is mainly caused by over-segmentation. Especially 

for occluded leaves, the over-segmentation rate is 8.33% while the over-segmentation rate for single 

leaves is 5.26%. It is impressive that only 3.33% of the occluded leaves are unable to be separated by 

the proposed segmentation scheme. 

Table 1. Segmentation performance for single and occluded individual leaves. 

 Proportion of Leaves Segmentation Rate Failure Detection Unseparated Occlusion Over-Segmentation

Single leaves 24.05% (114) 92.10% (105) 5.26% (6) N/A 5.26% (6) 

Occluded leaves 75.95% (360) 86.67% (312) 0.83% (3) 3.33% (12) 8.33% (30) 

Overall 100% (474) 87.97% (417) 1.90% (9) 2.53% (12) 7.59% (36) 

The segmentation performance for each plant images is investigated in Figure 7. The segmentation 

rates vary in the range of 75%–100% with standard derivation 8.02%. While the number of target 

leaves in each plant image is varied from 7 to 18. The trend line of the segmentation rate is plotted in a 

black dash line. Although the segmentation rate shows a slightly decreasing trend with the increasing 

number of leaves, the segmentation performance is reliable and high segmentation rates (>80%) are 

obtained for the images containing high density of leaves (>14) (Figure 7a). The distribution of 

segmentation rate is presented in Figure 7b and approximately 90% of the experimental results have 

segmentation rates of over 80%. Proportions of the segmentation rates of 80%–85%, 85%–90%,  

90%–95% and ≥95% are 0.32, 0.08, 0.22 and 0.27. It is notable that approximately half of the 

segmentation rates are higher than 90% and 27% of results show segmentation rates more than 95%. 

 

Figure 7. Analysis of segmentation rates for each plant images, (a) the trend of 

segmentation rates and (b) distribution of segmentation rates. 
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5. Discussion 

In this work, automatic segmentation of individual leaves is implemented in a green house. The 

proposed 3D leaf segmentation scheme could accurately extract individual plant leaves from field 

images. Generally, in situ segmentation of plant leaves encounters the following issues: image noises 

from the complicated natural background, varying illumination conditions, flexible leaf shapes and 

occlusions of leaves. Varying illumination and color distortion frequently appeared in the field images. 

The ground is always confusing with coloured leaves under field conditions, which could lead to 

inaccurate leaf segmentation in color images. Numerous studies have been proposed to filter the 

vegetation pixels from the natural background [35–37]. Our experimental results prove that 

introducing depth information could significantly improve the efficiency and stability of plant leaf 

segmentation under natural conditions. In our experiments, most leaves containing shadow and 

reflection are correctly measured. Since the intensity of sunlight in the late afternoon is relatively low, 

it could not effectively interfere with the measurement of the Kinect camera in green house conditions. 

The experimental results suggest that the measurement of plant leaves using RGB-D camera could be 

conducted directly in fields under low intensity of light conditions (e.g., early morning or late afternoon) 

or with additional facilities reducing the intensity of light under all natural conditions. The RGB-D 

camera is also able to measure the 3D information of plants at night since infrared light is utilized to 

depth measurement. However, additional lighting is required to acquire color images of plants at night. 

The proposed leaf segmentation using depth data is robust to background noises and complex 

illumination conditions (e.g., shadows). Because plant leaves and the background (e.g., ground) have 

large difference in depth in the camera coordinates. Mean shift clustering could efficiently extract the 

leaves from background according to their depth. In this process, accurate segmentation of individual 

leaves could be obtained for those single leaves or occluded individual leaves which showing 

significant difference in depth to adjacent leaves. However, occluded leaves are commonly attached 

close to each other and showing small differences in depth which are difficult to separate using the 

clustering algorithm. 

The challenge of this work is to segment leaves from the heavy occlusion in natural conditions.  

As presented in Figure 8a, leaf boundary of the occluded part is difficult to detect even by human eyes 

and the leaf veins produce rather serious noise in color images. In contrast, the boundary between 

leaves is observed and leaf veins disappeared in the depth image (Figure 8b). The depth image could 

provide boundary feature for the segmentation of individual leaves from heavy occlusions. The active 

contour model could exactly fit the leaf boundary the depth image. The CoD method could properly 

calculate the local minima in the gradient vector field of depth image for initialing the contour models. 

Initialization positions of the contour models are plotted in the green circles in Figure 8c. The 

segmentation performance of heavy occlusions is remarkable since more than 2/3 of the surface of the 

underneath leaf is invisible and the entire shape of the whole image is confusing to a regular leaf. 

Nevertheless, the experimental results show that the CoD procedures show a proper number of contour 

models, and over-segmentation is reduced in this case. 
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Figure 8. Segmentation of individual leaves from heavy occlusions. (a,b) are the 

segmented leaves of color and depth image, and (c) is the segmentation results in which 

green circles are initialized models and segmented leaves are presented in yellow contours. 

Since this work deals with plant leaves in complex poses in fields, many of the leaves are in 

irregular shapes. It is difficult to model the leaf shapes by using geometric models or statistical models, 

such as parametric models and active shape models [11,12]. The deformable contour model has the 

ability to fit the leaf boundaries of irregular shapes according to the discontinued depth between 

leaves. Various shapes of leaves are exactly segmented by the active contour models, including twisted 

leaves, side-view leaves and leaves in irregular shapes. In particular, it is difficult to measure the 

accurate depth information of leaves in irregular poses, such as wilted, rolled or twisted leaves. 

Examples of field images and their segmentation results are presented in Figure 9. Clustered individual 

leaves are accurately segmented and leaves with shadow are also correctly identified (Figure 9d). In 

our tests, incorrect leaf segmentations are usually caused by measurement error of depth. Although 

most irregular leaves are correctly segmented by the proposed method, a small proportion of them with 

severely distorted poses are the main reason of inaccurate segmentations. For instance, wrinkles on 

leaf surface produce a discontinuous depth that results in over-segmentation of leaves. In this case, the 

plant leaf is recognized as several small pieces of partial leaves. As presented in Figure 9c,d, the right 

side leaf is divided into small parts since the leaf surface is rolled and depth of the leaf is discontinuity. 

Side-view leaves in Figure 9a,c are lost in the segmentation results due to the hardware limitation of 

the Kinect camera. Reflection on leaf surface produces noises to depth data and lead to incorrect 

segmentation as shown in Figure 9d. 

Moreover, the proposed method is difficult to segment the occluded leaves showing tiny difference 

in depth. As presented in the top right leaves in Figure 6, the two leaves show smooth depth. In this 

case, the boundary of occluded part could not be detected by calculating gradient vector field. Similar 

segmentation results appear in the middle of Figure 9d where the two small leaves are attached 

together. The proposed segmentation scheme is developed based on the depth feature of leaves. 

Therefore, the proposed method could be effective for segmenting occluded leaves showing significant 

difference in depth. 
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Figure 9. Plant images and segmentation results, (a,c) are field images and (b,d) are their 

corresponding segmentations. 

Another advantage of the proposed scheme is that it is insensitive to parameter setting and all of the 

experiments are conducted using the constant parameters for each segmentation steps. The parameter 

setting is important to the automation systems and our results indicate that the proposed method could 

automatically observe the leaf status without human interference. 

Due to the physical limitation of RGB-D camera inaccurate measurement is occurred in the depth 

data. The precision of depth measurement of the Kinect camera is limited that implies the detailed 

depth information of objects could be lost and small-sized objects might not be detected by the Kinect 

camera. Noises frequently occur in the measurement data, the boundaries of leaves are not smooth and 

leaf tips might not be measured in the depth image. Side-view leaves might not be correctly measured 

if they show large angles (>60°) to the imaging plane because these leaves present small visible area 

and large slope in depth in the camera view (Figure 9). In this work, the working distance of the Kinect 

camera is set to 100 cm so that the depth of small objects could be inaccurate in the tests. Therefore, 

small leaves are not taken into account in the experiments. Moreover, plant stems are almost 

impossible to capture with the Kinect camera due to their thin body. The measurement of stems is out 

of the range of this work; it could be considered in the further studies. Acquiring more detailed 3D 

information of plants may need additional facilities, such as utilizing high performance graphics cards 

and computers, but this solution is not economic for agricultural applications and it is not necessary for 

agricultural operations. Precision of depth provided by the low-cost Kinect cameras could satisfy the 

requirement of plant monitoring or robot operations. Agricultural automation using a RGB-D camera 

has high price-performance ratio comparing with the stereo vision and laser scanners. Furthermore, the 

computational time of background removal is 2289.7 ms and segmentation of individual leaves costs 

150.4 ms on average on a personal computer (Intel® G860 CPU 3 GHz and 8G RAM). The 

computational time of the proposed method is acceptable for actual applications since real-time 

processing is not necessary for plant monitoring or agricultural operations by robots. Therefore, the 

proposed 3D leaf segmentation scheme based on RGB-D camera for agricultural automation is 
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practical and it could be extended to large scale deployment in agricultural applications, such as 

sensing network for plant monitoring. 

We demonstrate the feasibility of in situ plant leaf measurement using RGB-D camera. Individual 

plant leaves are successfully extracted from the natural scene. The experimental results prove the 

proposed method has great potential in the agricultural applications. Leaf segmentation is tested on the 

paprika plants and the proposed method could also be applied to many other species of plants. 

However, the development of leaf monitoring presented in this work is still in its initial stage. 

Segmentation of leaves is conducted on depth and color images separately. We tried several schemes 

to modify the mean shift segmentation by integrating depth and color to enhance the stability of the 

segmentation. For example, depth image is integrated to the color image in RGB or Lab color space by 

multiplying a weight value and the mean shift is accordingly conducted on the new image. 

Unfortunately, the combination of depth and color image is failed to improve the stability of 

segmentation. More tests should be carried out to enhance the segmentation efficiency in the further 

works. The influence of illumination conditions on the leaf segmentation should also be investigated in 

depth. Furthermore, 3D posture of leaves could be calculated based on the 3D segmentation results of 

this work. The 3D posture analysis of plant leaves should be studied in the further works to obtain the 

accurate plant status. Nevertheless, measuring actual size of leaves using RGB-D camera could be 

studied in the next step; this is not addressed in this work. The precision of depth measurement could 

be improved by adopting new Kinect v2, which is based on the ToF technology. 

6. Conclusions 

In this paper, a 3D segmentation of individual plant leaves is presented by using a low cost RGB-D 

camera. Plant leaf segmentation from a natural background is implemented based on mean shift 

clustering. Individual leaves with occlusions are segmented accurately by using an active contour 

model. The automatic initialization of contour models is developed by calculating the center of 

divergence from the gradient vector flow in depth image. Remarkable segmentation rates for both 

single and occluded leaves are obtained through the field experiments. Plant leaves in heavy occlusion 

could be correctly identified. The feasibility of in situ plant leaf measurement using RGB-D camera is 

demonstrated through field tests. The proposed segmentation scheme could be applied to many related 

works in agricultural automation, such as de-leafing, plant inspection and pest management. This work 

could also be adapted to harvesting agricultural products (e.g., fruits) by greenhouse mobile robots  

in the future. 
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