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Abstract: Parkinson’s Disease (PD) is characterized as the commonest neurodegenerative 

illness that gradually degenerates the central nervous system. The goal of this review is to 

come out with a summary of the recent progress of numerous forms of sensors and systems 

that are related to diagnosis of PD in the past decades. The paper reviews the substantial 

researches on the application of technological tools (objective techniques) in the PD field 

applying different types of sensors proposed by previous researchers. In addition, this also 

includes the use of clinical tools (subjective techniques) for PD assessments, for instance, 

patient self-reports, patient diaries and the international gold standard reference scale, Unified 

Parkinson Disease Rating Scale (UPDRS). Comparative studies and critical descriptions of 

these approaches have been highlighted in this paper, giving an insight on the current state of 

the art. It is followed by explaining the merits of the multiple sensor fusion platform compared 

to single sensor platform for better monitoring progression of PD, and ends with thoughts 

about the future direction towards the need of multimodal sensor integration platform for the 

assessment of PD. 
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1. Introduction 

For the past several decades, quantitative monitoring of human motor control and movement 

disorders has been an evolving research field, which grown through the large global computer 

technologies, context-aware computing, solid-state micro sensors and telecommunication. This effective 

research has a continuous number of useful fundamental applications, with much attention-grabbing 

advances in term of human behavior modelling, interaction between human and machine, and healthcare 

field of research. In principle, this indeed will convey great public benefits, particularly in the 

applications related to human real life, for instance, attention towards healthcare technologies and elderly 

care. Beginning from the 1960s, the accessibility of advanced equipment has permitted many hospitals 

to measure human motor performance in details with good precision. This advanced equipment has 

also been used for studying various pathologies of human motor performance [1–5]. Research studies 

state the fact that Malaysia has been undergoing progress in term of health, extended life expectancy, 

lower mortality rate and decreasing of the fertility rate. This had taken about changes in the 

demographic profile of its population, where one of the main medical concerns it brings is the growth 

in the number of people affected by numerous types of illness as this prevalence increases 

exponentially with advancing age [6]. For a population that is shifting towards an older age range, 

Parkinson disease (PD) is categorized in second ranking for the commonest chronic progressive 

neurodegenerative disorder in the world after Alzheimer’s disease [7], which affects approximately 3% 

of people above 65 years old. For the coming 30 years, this figure is expected to double due to the 

increase in the number of elderly people, as age is the main key risk feature for the start of PD [8,9].  

According to the World Health Organization (WHO), it was estimated that the world is having 

seven to 10 million PD patients. The incidence of Parkinson’s increases with age and the syndrome 

rates rise sharply after 60 years old. PD has greater impacts in North America and European countries 

compared to Africa or Asian countries, and men are 1.5 times more likely to have Parkinson’s 

compared to women [10,11]. In Malaysia, the Malaysian Parkinson’s Disease Association estimated 

that about 15,000 to 20,000 patients suffer from PD, where this figure is estimated to rise for the 

forthcoming centuries [10]. The most general symptoms of PD are tremor (uncontrolled trembling or 

shaking movements), bradykinesia (slowness of movement), akinesia (loss of control in producing 

motion), hypokinesia (decreased in body movement), rigidity (struggle to externally carry out 

movements), postural instability and falls, speech and swallowing difficulties. It is also linked with 

some other non-motor symptoms that consist of fatigue, nervousness, gloominess, slow thinking, 

difficult to focus, visual hallucinations, pain, urinary regularity or urgency, extreme sweating, and 

sleep deprivation (e.g., dream-enacting behavior with shouting or kicking during sleep, or excessive 

sleepiness during the day) [12–16]. PD is recognized as one kind of neurodegenerative disorder of the 

central nervous system that is categorized into the group of circumstances known as motor system 

disorders, which are due to the loss of dopamine-producing brain cells. Till now, identifying the reason 
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that causes PD is still remain elusive and there is no existing treatment, though medication through 

drugs can relieve some of the symptoms in PD. Current therapy in managing PD symptom severity is 

through the replacement of dopaminergic agonist, via levodopa, combined with carbidopa, a peripheral 

decarboxylase inhibitor (PDI) that provides the greatest anti-Parkinsonian benefits to patients with 

Parkinson (PWP) [17–20].  

Usually, levodopa, which has been the most successful medication in reducing Parkinsonian 

symptoms, is prescribed to these patients for eliminating the typical symptoms of PD. This therapy is 

effective during the initial stages of PD. Yet, in the PD’s later stage, PWP have developed motor 

difficulties that include sudden loss of efficiency of the medicine during the end of each treatment 

break, wearing off and uncontrolled hyperkinetic actions denoted as dyskinesia [9,17,19]. These 

variations are referred as motor fluctuations by the clinicians as shown in Figure 1. Many PWP start to 

fluctuate between the “off” state (i.e., re-emergence of PD symptoms due to the effect of levodopa 

wears off a few hours after levodopa intake) and the “on” state (i.e., levodopa is active and improves 

the patients’ motor performance). While, in the “on” state, patients had chances to suffer from 

dyskinesia. The presence of dyskinesia is a side effect of levodopa therapy and therefore denoted as 

levodopa-induced dyskinesia (LID) [21,22]. 

 

Figure 1. Schematic diagram illustrating the motor fluctuations cycle of PD. 

To ensure that these patients are able to be self-independent, clinician’s in-charge must have a 

precise picture of how the PWP symptoms will fluctuate throughout their everyday activities by 

optimally adjusting the medications. With the latest advancement in healthcare technology, techniques 

for PD symptom severity detection and assessment are pretty restricted. The validation of PD can be 

accomplished either through subjective clinical assessments or through objective technological tools. 

Figure 2 shows the summary of various types of assessments that are applicable in monitoring PWP. 

Assessment of Parkinson Disease-State of Art 

One of the currently available tools for monitoring motor fluctuations of PWP is through subjective 

clinical practice. From the clinical side of view, patient-diaries, patient-self reports and prolonged 

observations on the spot approach have been applied. Details about motor fluctuations of PWP are 

obtained by using self-reports or the use of patient diaries. In order to obtain information regarding the 

motor fluctuations, PWP are requested to refresh back the total periods of active time and non-active 

time they had undergone. “Active time” is referring to the duration when the medicine is still active in 
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weakening the indications of PD while “Non-active time” is referring to the duration of presence of  

PD symptoms. 

 

Figure 2. Summary of overall assessment of PD. 

However, these both solutions have drawbacks of recalling bias, for instance, patients frequently have 

trouble in differentiating dyskinesia from other types of symptoms. Even though the use of patient diaries 

can increase the reliability through the records as the symptoms occur, but this method only provides little 

information and does not collect useful features, which are advantageous for the clinicians to make an 

accurate judgment. Besides that, PD expert’s observations on the spot are unrealistic as the duration of 

motor fluctuations are more than a few hours between the medication prescriptions. The current existing 

conventional methods have many limitations, for instance, the requirement of patient’s frequent visits to the 

clinic that may be very inconvenient for them [9,19,23,24].  

In order to overcome these difficulties and looking for more objective assessment, numerous types 

of rating scales have been taken into account and applied. This method for PD symptoms monitoring 

typically requires expert clinical staff to conduct several practical tests and physical examinations. This 

is linked to the international gold standard reference scale, Unified Parkinson Disease Rating Scale 

(UPDRS) used by physicians, which reflects the presence and severity of PD symptoms. Figure 3 

shows the summary of the clinical rating scale, UPDRS that computes the average PD symptoms 

severity. Unfortunately, the use of UPDRS brings some boundaries such as intra and inter observer 

inconsistencies whereby this scale may be too time consuming to administer and it can hardly be 

applied for continuous registration procedures done in the clinic. Additionally, UPDRS only offers 

assessment at that particular moment, but the symptoms severity of PWP may fluctuate extensively 

over the whole day. The motor fluctuation measurements taken during visits to the clinic might not 

precisely reveal the real functional disability experienced by patients while they are at home [25–27]. 

Prolong period of hospitalization will cause problems for the patient and their family members in term 

of financial status. Currently, this issue is one of the most demanding difficulties faced with PD as the 

appropriate medical care is progressively difficult and expensive.  

With the existing and on-going advance development in microelectronics, it had increased interest 

in using computerized methods for detecting early symptoms of PD on a more objective basis. This 
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can be categorized into five groups: (1) techniques that analyzed electromyography (EMG) signals;  

(2) techniques that analyzed electroencephalogram (EEG) signals; (3) techniques based on 3-D motion 

analysis or imaging modalities (Computed Tomography (CT) scans or Magnetic Resonance Imaging 

(MRI)); (4) techniques examining motion signals using unimodal wearable sensors; and (5) techniques 

using audio sensors. The researches using such sensors for monitoring and detecting early symptoms 

of PD allow the opportunity to visualize an unremarkable system on a more continuous basis. These 

objective assessments are favorable tools that allow long-term home-based intensive care, having the 

possibility of improving the standards, delivering healthcare and at the same time, turning it into an 

effective and cost-saving procedure in PD progression. In the previous year, many advances have been 

conducted, but there is still an absence of an all-comprehensive system that had the capability in dealing 

with consistent PWP status assessment and at the same time economically reasonable. In this review, our 

focus will be on the state of art in early detection of PD symptoms severity performing through 

technological tools. The main objective of this review is to deliver a discussion of the abilities of different 

types of assessments of PD through technological tools, which are presented in the following section. 

 

Figure 3. Overview of the clinical metric-Unified Parkinson Disease Rating Scale UPDRS 

(adapted from [26,27]). 

2. Related Research on PD advancement through Technological Tools 

2.1. Monitoring on Progression of PD Using Electromyography (EMG) 

The approach formerly conducted by previous researchers regarding EMG signals for differentiating 

PWP from healthy controls can be allocated into four categories: (1) non-linear analysis techniques [28,29]; 

(2) morphology analysis techniques [30,31]; (3) spectral based analysis techniques [28,32,33]; and  

(4) techniques from the above three groups. Overall summary of prior researches done on monitoring and 

detecting PD using EMG signals are shown in Table 1.  
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Table 1. Summary of previous works conducted using EMG signals. 

First Author and 

Year 
Database Techniques 

Best Performance 

Measure 

Gennaro de Michele  

(2003) [32] 

16 male subjects (10 PWD 

and 6 healthy controls) 

Wavelet correlation analysis with Global wavelet power (PCQ) 

parameters extracted from local wavelet power spectra 

Accurately classify the PWP 

from healthy controls 

Saara Rissanen 

(2007) [30] 

48 subjects (26 PWP and  

22 healthy controls) 

Histogram and crossing rate (CR) values applied as high 

dimensional feature vectors and the dimensionality was 

reduced using Korhunen-Loeve transform (KLT) 

Precise discrimination for 

healthy controls: 86% and 

PWP: 72% 

Saara Rissanen 

(2008) [34] 

33 healthy young controls 

26 healthy old controls 

and 42 PWP 

1. Selected features (six from right side and six from left 

side variables): 

(1). Kurtosis variable  

(2). CR variable  

3. Correlation dimension  

4. Recurrence rate  

5. Sample entropy  

6. Coherence variable 

Clustering analysis 

using k-means algorithms 

into 3 clusters: One cluster 

having 90% of the healthy 

controls while the two other 

clusters  having 76% of PWP 

A.I.Meigal (2008) 

[29] 

−19 PWP (4 men and  

15 women), −20 healthy old 

controls (7 men and  

13 women) −20 young 

controls (10 men, 10 

women) 

Non-linear SEMG features  

(% Recurrence, % Determinism and SEMG distribution 

kurtosis, correlation dimension and sample) entropy) 

Differentiate PWP from 

healthy controls 

Bryan T.Cole (2010) 

[35] 

4 PWP and  

2 healthy controls 

1. Linear classifier for detection when the subject is upright 

2. DNN FoG detection given that the subject is upright 

Sensitivity (82.9%) and 

Specificity (97.3%) 

V.Ruonala (2013) 

[31] 

35 PWP and 17 patients 

with ET 

Sample histograms during isometric contraction of biceps 

brachii muscle with varying loads and PCA for feature 

dimension reduction 

Discriminate 13/17 

(76%) patients with ET and 

26/35 (74%) PWP 

An innovative methodology for analyzing the surface EMG in PD is presented by  

Saara Rissanen et al. [30]. The system was designed referring to the analysis of crossing rate (CR) and 

histogram of the surface EMG signals, which are applied as the high dimensional feature vectors. CR 

expansion values and histogram were selected for this study due to the EMG signals that usually 

involve patterns of EMG bursts. The main intention of this research was due to trouble in conducting 

analysis for spiky impulse-like EMG waveform that usually use traditional amplitude and spectral 

Fourier based techniques. In this research, three types of features were applied (histogram values, 

values of concatenated CR expansion and histogram) for every segment of the EMG signals. Next, the 

dimensionalities of these feature vectors are reduced via Karhunen-Loeve transform (KLT). Lastly, 

study of discrimination of feature vectors will be implemented in a low dimensional eigenspace. 

Analysis conducted using augmented KLT applying concatenated CR expansion and histogram 

features had shown promising results. The proportion of accurate discrimination for the control group 

was 86%, while the ratio for correct discrimination achieved 72% for PWP.  
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Bryan et al. [34] described a two-phase Freezing of Gait (FoG) detection algorithm while PWP 

perform some daily activities that are not scheduled and restricted. This research used both wireless, 

wearable, miniaturized triaxial accelerometer and EMG sensor results as input features of a dynamic 

neural network to detect FoG instances. As shown in Figure 4, two triaxial accelerometer sensors are 

positioned on one side of the forearm and thigh of the patient, while one surface EMG sensor is 

positioned on the shin. For this study, the researchers planned and offered a two-phase algorithm:  

(1) Linear classifier for detection when the subject is upright either in their standing position or in 

walking position; (2) Dynamic neural network (DNN), which was applied for FoG detection given that 

the subject is upright. FoG detection can only be conducted when the subject is either trying to begin 

walking while in their standing position or trying to carry out walking. Thus, linear classifier was applied 

in the first phase of algorithm development for the detection of an upright state. After the confirmation 

that the subject is to be upright for more than 4 sequential seconds using the first stage classifier, the 

second stage was conducted by applying DNN over the break whereby the subject is in upright posture. 

This conveyed results with 83% sensitivity and 97% specificity upon assessing the efficiency of this 

system on experimentally collected datasets.  

 

Figure 4. Placement of accelerometer sensors and surface EMG sensor on the subject 

(adapted from [34]). 

According to research conducted by V.Ruonalla et al. [31], there is a difficulty in differentiating 

between PD and essential tremor (ET) as both of them had the possibility to occur under the same 

environments. The main symptoms of PD-resting tremor (4–6 Hz) and ET-postural tremor  

(5–7 Hz) are different but usually occur overlapping between the two. There are proofs that PWP 

usually have postural tremor as well as resting tremor and roughly 20% of ET patients having resting 

tremor. This overlapping of symptoms between ET and PD causes difficulty in classifying between PD and 

ET. This investigation aims to come out with solutions in order to differentiate PWP and patients with ET 

through EMG measurements. Data collection was conducted from the biceps brachii muscle of 17 patients 

with essential tremor and 35 PWP of other motor disorder during isometric tension. The preprocessing step 
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was conducted using the smoothness priors method whereby the raw signals were high pass filtered. After 

filtering, segmentation of signals were done with a length of 2048 ms and 75% overlapping. Morphology 

analysis was then implemented using a sample histogram, which was calculated with 200 bins for each 

epoch due to the spiky nature of the EMG signals. Next, feature reduction using principal component 

analysis (PCA) was applied to ensure that the histogram could be visualized with only useful features. 

These three new features (i.e., height of histogram, sharpness of the peak and side difference) act as the 

new input parameters for the final classification stage. The experimental results had presented the 

comparison for every two features vector combination. However, among them, histogram’s height and side 

difference between left and right hand were the best features that show the difference of ET from PD. This 

technique had shown results of 76% accuracy for patients with ET and 74% accuracy for PWP [31]. 

2.2. Monitoring PD Using Electroencephalogram (EEG) 

PD is a neurodegenerative disorder resulting from the death of dopamine-generating cells in the 

substanstia nigra, a region of the midbrain. Besides the cardinal symptoms of PD such as tremor, 

muscular rigidity, bradykinesia and postural instability, this motor impairment also goes along with the 

wide range of non-motor symptoms such as depression, decision-making dysfunctions, sleep 

disturbances, and autonomic deficiencies. As biological signals reflect the inherent activity of the 

autonomous nervous system (ANS) or the central nervous system (CNS), bio-signal captured such as 

electroencephalography (EEG) has been proved to provide informative characteristics in addition to be 

less invasive and the one with the best time resolution compared to other modalities. EEG is a 

recording of the electrical activity along the scalp, produced by the firing of neurons within the brain. 

In clinical contexts, EEG refers to the recording of the brain’s spontaneous activity, as recorded from 

multiple electrodes placed on the scalp. In general, EEG signals have been used in order to identify and 

analyze brain activity and dysfunctions relating to different neurological disorders such as PD. 

Evidences of such activity are reported in the majority of EEG frequency bands such as theta (4–8 Hz), 

alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–49 Hz). To the best of the author’s knowledge, 

previous researches conducted using EEG data are based on emotion deficits and there is less 

implementation of EEG related to classic motor symptoms and signs of PD. 

A technique for FoG detection using EEG signals was conducted in A.M. Ardi et al. [36] research 

using wavelet decomposition and pattern recognition techniques. FoG is characterized as a common gait 

impairment and ordinary cause of falling among PWP, which is one of the most disabling walking 

posture instabilities of PD. From the experience of the patients having FoG, they declared to have a 

feeling of their feet stuck to the ground and being temporally unable to initiate gait [37,38]. 4-channel 

wireless EEG system was applied in this study whereby the sensors were placed at occipital one  

(O1-primary visual receiving area), parietal four (P4-navigational movement area), central zero  

(Cz-primary motor area) and frontal zero (Fz-supplementary motor area). In this study, 26 PWP with 

significant FoG were recruited. Wavelet Energy and Total Wavelet Entropy were extracted from EEG 

subbands: delta (A6: 0–3.9 Hz), theta (D6: 3.9–7.8 Hz), alpha (D5: 7.8–15.6 Hz), beta (D4: 15.6–31.3 Hz) 

and gamma (D3: 31.3–62.5 Hz) using the multiresolution decomposition of EEG signals based on Discrete 

Wavelet Transform (DWT). Daubechies (db4) wavelets are chosen as the wavelet function due to their 

smoothing features, which are suitable for detecting changes of the EEG signals. The benefit applying this 
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wavelet transform was to ensure excellent feature extraction obtained through the non-stationary EEG 

signals [39]. Next, non-parametric statistical analysis through Wilcoxon Sum Rank Test was used for 

evaluating the statistical differences between the extracted features. Finally, classification stage was 

performed using the three layers Back-Propagation Neural Network (BP-NN) classifier that has the 

capability to identify the onset of FoG in walking posture of PWP through the extracted features. By 

applying this classifier, 56% of the overall data were used as training while the remaining 25% were 

used for validation and the remaining 19% for testing applying the Levenberg Marquardt algorithm. 

Tangent sigmoid is chosen as the activation function of this classifier. Through this classifier, the 

results have verified the possibility of applying the EEG in the forthcoming cure of FoG detection in 

PD patients during walking with the highest accuracy of 76.7% using the selected features [36]. It is a 

challenging task in performing the feature extraction and classification of EEG signals for healthy 

controls and PWP whereby several signal processing methods have already been proposed for 

classification of the EEG non-linear and non-stationary signals.  

In the latest research, Priyanka G. Bhosale et al. [40] had engaged in the grouping of two classifiers: 

(1) Support Vector Machine (SVM) and (2) Multilayer Perceptron Backpropagation (MLP-BP) for PD 

detection from the background EEG signals. Figure 5 shows the overall methodology presented in this 

research. Useful features were extracted by applying the Discrete Fourier Transform (DFT) and the 

statistical features are then calculated from these clean frequency components using  % power formula 

in order to obtain different frequency bands, which are the inputs for the classification stage. For the 

classification stage, SVM selects a discriminate hyper plane that maximizes the margins, which is the 

distances from the nearest training points for class identification. By using SVM, it enables 

classification with two types of boundaries: linear decision boundaries (linear SVM) or nonlinear decision 

boundaries using “kernel trick” (e.g., Gaussian SVM, Radial Basis Function (RBF) SVM, etc.). On the 

other side, MLP is a feed forward artificial neural network model utilizing a supervised learning technique 

known as backpropagation for training the network. Both classifiers were combined together instead of 

using a single classifier as SVM provides best training accuracy while MLP provides the best testing 

accuracy than others. The experimental results had shown that the combination of both classifiers had the 

capability to make an identification between the two classes of datasets: Healthy or Parkinson’s [40].  

Output
Signal 

components 

Clean 
frequencies 

Frequency 
components 

Input signal Removed unwanted 
frequencies 

Discrete Fourier Transform 
(DFT) 

MLP-BP+ SVM % power Overall 
collective output 

 

Figure 5. General system procedure for PD detection using EEG signal (adapted from [40]). 
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2.3. Monitoring PD Using Brain Imaging Modalities or 3D Motion Analysis 

Dan Long et al. [41] presented an objective solution for PD diagnosis using non-invasive 

neuroimaging modality technology through the integration of multi-modal MRI. Two different types of 

images were collected from each subject during the data collection: (1) Non-invasive technology of 

resting-state functional MRI (rsfMRI) and (2) Voxel-based morphometry (structural image). The 

benefits of rsfMRI are having high temporal and spatial resolution that had the capability in studying 

the abnormal function of the brain in PD. While for structural images, voxel-based morphometry had 

the ability to conduct analysis on the changes of the structural brain from the entire brain viewpoint. 

Integration of both imaging modalities had the ability in distinguishing early PWP from healthy 

population and correlate with the severity of PD. Template based approach was used as the feature 

extraction techniques whereby for rsfMRI data, multi-level characteristics at different levels were 

extracted: (1) Regional Homogeneity (ReHo); (2) Amplitude of Low Frequency Fluctuation (ALFF); 

and (3) Regional Functional Connectivity Strength (RFCS). While, for structural images, Gray Matter 

(GM), White Matter (WM) and the Cerebro-Spinal Fluid (CSF) volume characteristics were extracted. 

In this research, feature selection was conducted using two-sample t-test due to decrease of recognition 

rates of certain extracted features and the generalization of noise. By applying this test, only the 

features with significant difference (p-value < 0.05, uncorrected) were selected when comparing the 

feature values of various brain regions for both PWP and healthy controls. Finally, SVM was chosen 

as the supervised machine-learning classification algorithm using the leave-one-out cross validation 

technique that produces overall best accuracy of 86.87%, sensitivity of 78.95% and specificity of 

92.59% [41].  

As the resting tremor is one of the primary motor symptoms of PD, research had also been 

conducted by Magdalena et al. [42] using multimodal motion capture (MOCAP) system for 

registration of 3D positions of body markers, ground reaction forces and EMG signals to collect 

kinematic measurements of upper limbs. In this work, the data collection was conducted under four 

circumstances where the stimulator was turned ON/OFF and medication was ON/OFF. For the 

preliminary stage, the analysis begins with assessing the signal background to remove the trend 

component and constant from the triaxial coordinates of each signal using the recursive histogram 

algorithm from both right and left markers. Next, Euclidean distance between the actual position of the 

marker and its centroid (rooted sum of squares: RSS) was calculated to obtain two 3D tremor signals 

that correspond to the left and right markers. In addition, frequency analysis was carried out using Fast 

Fourier Transform (FFT) where the calculation of amplitude spectra was done. Based on this, the 

maximal amplitude, mean amplitude and area under the curve of the spectrum in the range of 3–7 Hz 

and 4–6 Hz were calculated. Lastly, statistical analysis was conducted applying t-test where the 

obtained results had shown the occurrence of statistically significant differences in certain tremor 

parameters between different tremor conditions [42,43]. 
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2.4. Monitoring PD Using Wearable Sensors 

2.4.1. PD Symptoms Assessment-Tremor and Bradykinesia 

In research conducted by Arash et al. [44], quantification of tremor and bradykinesia among PWP 

was presented. For the first study, research was conducted on 10 PWP and 10 healthy controls. Each of 

them was required to perform a list of activities, whereby each of the task signifying usual daily life 

activity. The measurement system includes three miniature uniaxial gyroscopes, which functions to 

measure the angular velocity during the movement of the forearm in three directions: roll, yawn and 

pitch. During the second study, data collection was conducted using a newly designed system that is 

integrated with two gyroscopes. However, only 11 PWP upper extremity movements were recorded 

continuously for several hours whereby they were allowed to carry out any of their daily activities. The 

range of the gyroscope (Murata, ENC-03J) used for this research after calibration was ±1200°/s with a 

weight of 35 g. To record the signals during each measurement, a light, portable data logger 

(Physilog®, BioAGM, CH, Switzerland) with 8 MB memory card and a sampling rate of 200 Hz and 

12-bit resolution of A/D was carried by the subject. The proposed new algorithm to detect tremor and 

bradykinesia had been validated through the obtained sensitivity and specificity results. Figure 6 shows 

the flowchart of the overall methodology for quantifying tremor and bradykinesia [44]. For the first 

study, average sensitivity of 99.5% and specificity of 94.2% was obtained through the proposed 

algorithm for tremor detection in contrast with the video recording. In addition, it was also found that 

the parameters related to the estimated tremor (tremor amplitude, ωtr and θtr) and bradykinesia (Mh, Rh 

and Ah) show high correlation towards UPDRS tremor and bradykinesia subscore. Correlation between 

the UPDRS tremor subscore and tremor amplitude and correlation between UPDRS bradykinesia 

subscore and bradykinesia parameters (Mh, Rh and Ah) were studied. A high correlation between the 

parameters related to tremor and bradykinesia and UPDRS subscore was achieved using Pearson’s 

correlation and Partial correlation (for eliminating the effect of ON/OFF factor) whereby feature with 

p-value above 0.05 were considered as non-significant [44,45].  

2.4.2. PWP Physical Activities Monitoring 

In the same year, Arash et al. [46] also propose a new ambulatory method to monitor the physical 

activities of PWP using a convenient data logger with three bodies-fixed inertial sensors consisting of 

one gyroscope and two accelerometers, which had capability of continuous recording. The subjects 

involved in this research consist of ten PWP that had undergone deep-brain stimulation of the 

subthalamic nucleus (STN-DBS) treatment and ten healthy controls. The patients were requested to 

perform a list of typical daily life activities and the whole process was recorded. Two gyroscopes 

(Murata, ENC-03J, ±600°/s) were placed on the shanks for walking posture detection while a 

gyroscope (Murata, ENC-03J, ±200°/s) and an accelerometer (Analog Device, ADX202, ±2 g) was 

placed on the trunk for lying posture detection. The signals from the sensors were recorded on a light, 

portable data logger (Physilog, BioAGM, CH, Switzerland) with a sampling frequency of 200 Hz. The 

main aim of conducting this research was to classify PWP basic posture allocation such as walking, 

lying, sitting and standing durations. Additionally, this research also aimed for the detection of  

Stand-Sit (StSi) and Sit-Stand (SiSt) transitions whereby several parameters of transitions pattern were 
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extracted as described in Table 2. The detection and separation of SiSt and StSi transitions from other 

body movements were obtained based on the calculation of trunk movement kinematic features during 

transitions between standing and sitting postures and by using two statistical classifiers based on the 

regression model. This model is an effective method for making discrete outcome predictions, for 

instance, transition vs. non-transition deprived of any particular distribution assumptions. The first 

classifier goal were to allocate each patient a possibility of being a transition vs. being a non-transition, 

while the second classifier aimed at separating the SiSt and StSi transition. Finally, information about 

transitions and activities performed before and after were used by a fuzzy classifier for detecting the 

periods of sitting and standing. The accuracy of the proposed technique has been determined by comparing 

with the video recording that is examined by UPDRS score experts. Through this research, the detection of 

the basic body position allocation had shown high specificity and sensitivity, both in healthy controls and 

PWP. Significant dissimilarities are also clearly seen in parameters related to SiSt and StSi transitions 

between PWP and healthy controls and between PWP with and without STN-DBS turned on. The 

classification of the basic activities, i.e., walking, standing, siting and lying had a sensitivity of 85%, 

83.6%, 86.3%, and 91.8%, respectively, and specificity of 97.8%, 96.5%, 98.0%, and 99.8%, 

respectively. While for detection of StSi and SiSt transitions, the proposed algorithms had shown 

83.8% sensitivity and a positive predicted value (PPV) of 87.0% [46,47]. 

 

Figure 6. Flowcharts of the techniques. (a) Detection and quantification techniques for 

tremor; (b) Techniques for bradykinesia quantification. 
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Table 2. List of posture transition related parameters [46,47]. 

Parameter Description 

TD (s) 
Period of transition: Time break between the two positive peaks before and after the transition 

time in the trunk tilt, θg-lp signal 

Min(θg-lp) (°) 
Minimum amplitude of negative peak of flexion and extension tilt of the trunk that in general 

much higher in the real posture transition patterns compared to the non-transitions patterns 

Max(αtrunk-lp) (g × 10−3) 

Signal αtrunk-lp was produced through the norm of the acceleration vector measured by the 

perpendicular accelerometers of the trunk sensor filtered using a low pass filter. The maximum, 

minimum and range, of this signal were generally higher in the posture transitions and lower in 

non-transitions. The relative time of the minimum and maximum peaks of this signal compared 

to the transition time was also different between SiSt and StSi transitions. 

Min(αtrunk-lp) (g × 10−3)  

Range(αtrunk-lp) (g × 10−3)  

T[Max(αtrunk-lp)] (s)  

T[Min(αtrunk-lp)] (s)  

Range(θg-lp) (°) 
Range of flexion and extension tilt of the trunk where the value of this parameter was lower for 

the non-transitions than for the real posture transitions. 

2.4.3. Levodopa Induced Dyskinesia (LID) Detection in PD 

Research conducted by Keijsers et al. [48] had demonstrated the highly effective use of neural 

networks for detection of dyskinesia and differentiating dyskinesia from voluntary movements. 

Measurement of PWP were continuously conducted in a home environment via six triaxial 

accelerometers (ADXL-202; Analog Devices, Norwood, MA), which were positioned at different parts 

of the body while PWP completed roughly 35 everyday life activities. The accelerometer signals were 

recorded using a recorder (Vitaport 3, TEMEC instruments, Kerkrade, The Netherlands) with a sampling 

frequency of 64 Hz. Neural network using MLP was trained to measure the severity of LID with 

numerous accelerometer signal features as shown in Table 3. A comparison was made between the 

scores obtained through MLP, specified by a linear transfer function reflecting the Abnormal Involuntary 

Movement, scale (AIMS) score and the validation by physicians, who made the evaluation of the PD 

patient’s condition through video recordings. Thirteen variables were derived from the raw accelerometer 

signals for every 1-min interval before being passed to the classification stage. These variables function 

as the input for the classifier while the output will be the rating scores obtained through the physicians. 

Classification through neural network was reflected as correctly classified if the output of the neural 

network and scores obtained through the clinicians was ≤0.5. The proposed neural network classifier 

successfully differentiates dyskinesia from non-dyskinesia with the recognition rate of 93.7% for arm, 

99.7% for trunk, and 97.0% for leg [48,49]. 

In addition, Keijsers et al. [50] also conducted another research that focused on the design of the 

trained neural network and the role of important features extracted from the raw accelerometer signals, 

which are used as input variables for an accurate detection and ratings of dyskinesia. The objective of 

this research was to investigate the performance of an ideal neural network for dyskinesia detection 

and rating. Table 3 showed the list of parameters used and their description. Figure 7 shows the 

schematic block diagram of the data preprocessing and successive neural network approach in 
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dyskinesia severity assessment. For every part of the body, the dyskinesia severity might be not similar 

that made the reason of evaluating it for every body part individually. This is also because the 

variables required are different for detecting dyskinesia in each body part. The forward selection 

procedure was used to determine the order of the important parameters and searching for the best 

features to be used as the input for LID classification. The benefit of this step is that it only includes 

variables, which bring improved performance without the need of any earlier information and 

restriction. From the analysis done, the most significant parameter for dyskinesia detection was the 

percentage of time during trunk/leg movements and standard deviation of less dyskinetic leg segment 

velocity. The remaining movement features are also significant, but that applies in a different way to 

other parts of limb segments. For instance, the grouping of percentage of time during wrist 

movements, and the percentage of time during the subject is in the sitting posture, described the major 

part of the variance of the output for arm [21,48–51]. 

Table 3. List of input parameters for neural network [50]. 

Variables Description 

V  segment Mean of segment velocity 
V <3 Hz segment Mean of segment velocity for frequencies below 3 Hz 
V >3 Hz segment Mean of segment velocity for frequencies above 3 Hz 

V <3 Hz segment/V >3 Hz segment Ratio between V <3 Hz segment and V >3 Hz segment 
SD (V) segment Segment velocity standard deviation 
% Vθ segment Percentage of time of segment’s movement 

V θ segment Mean segment velocity of segment’s movement 
P1–3 Hz segment Power for frequencies in the range between 1 and 3 Hz 
P<3 Hz segment Power for frequencies in the range below 3 Hz 

ρ segment-segment 
Mean value of the normalized cross-correlation between 

the segment velocities of different segments 

Max (ρsegment-segment) 
Maximum value of the normalized cross-correlation 
between the segment velocities of different segments 

% sitting Percentage of time during subject sitting posture 
% upright Percentage of time during subject upright posture 

2.4.4. Estimation of PD Symptoms Severity-Tremor, Bradykinesia and Dyskinesia 

Patel et al. [52] presented results from a preliminary study for estimation of symptoms, severity and 

motor complications in PWP through the assessment of accelerometer data. In this research, SVM 

classifier was chosen as the classifier for tremor, bradykinesia and dyskinesia severity estimation using 

the data features obtained through the accelerometer. Twelve subjects were diagnosed with idiopathic 

PD of stages 2 and 3 were recruited whereby their age ranged from 46 to 75 years. The PWP were 

asked to accomplish a list of fixed motor tasks developed clinically for PD evaluation where these 

tasks are part of the activities in UPDRS that includes finger-to-nose (reaching and touching a target), 

finger tapping, repeated hand movements (opening and closing both hands), heel tapping, quiet setting, 

and alternating hand movements (repeated pronation/supination movements of the forearms). 

Comparisons were made between the data collected with the clinical scores obtained through visual 

inspection of video recordings. The intention of conducting this research was taking concern regarding 
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the design of signal procedure techniques that can be applied to the nodes of the body sensor network, 

hence decreasing data volume to be transmitted from the network nodes to the base station. Analysis 

was conducted on the outcomes were achieved through the accelerometer data in order for assessing 

the consequences on the estimation of clinical scores. This includes the length of the window utilized 

that ultimately compute into data features, use of various SVM kernels (polynomial, exponential and 

radial basis kernel) and use of data features (data range, cross-correlation-based value, rms value, 

frequency based features and signal entropy) derived from different motor tasks. In addition, analysis 

was also done for assessing the types of combinations of data features that carried useful information, 

which may be reliable to assess the PD symptoms severity and motor complication. Table 4 provides the 

list of criteria studied for optimizing the algorithms by reducing the error, which will affect the 

estimation of clinical scores for measuring the symptom severity [9,22,25,52]. The analysis presented 

that window length of 5 s is optimal while the third-order polynomial kernel was selected to be desirable 

due to smaller misclassification value. Results also indicate the possibility of using the three feature types 

(rms value, data range value and two frequency-based features, i.e. dominant frequency and the ratio of 

the energy of the dominant frequency component over the total energy) achieving average estimation 

error values of 3.4% for tremor, 2.2% for bradykinesia, and 3.2% for dyskinesia [52]. 

 

Figure 7. An overview of the methodology of dyskinesia severity assessment. 
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Table 4. List of criteria considered in estimating symptom severity of PD [52]. 

Criteria Description 

Length of the 

windows 

Used for selecting data segments of the accelerometer data and deriving data features 

Achieving the average estimation errors below 5% 

Utilized length of windows ranging from 1 to 7 s with an increment of 1 s 

SVM kernels Three different types of kernels: polynomial, exponential and radial basis 

Feature types 
Five features types were compared: Data range, root mean square (rms) value,  

cross-correlation-based features, frequency based features and signal entropy 

2.4.5. PWP Home Monitoring System Using Web Based Application 

In the following year, Patel et al. [53] conducted his research toward the home-monitoring 

development for PWP who experience severe motor fluctuation using a wireless wearable sensor, 

whereby information is transmitted to the clinicians through an application using web-based. The 

implemented home-monitoring system comprises software services, conducting at three tiers: central 

portal server, patient’s hosts and clinician’s host as shown in Figure 8. The well-provisioned central 

portal server was in charge of providing a protected and trustworthy central location via coding 

services in order to coordinate the actual data collection and video services, ensuring data safety and 

high accessibility of the remote health monitoring service. The patient’s host (laptop) mostly occupies 

at the particular PD patient’s home and runs the body sensor network (BSN) platform that functions to 

collect motion data and continual upload motion data to the folder created in the central portal server. 

Lastly, the clinician’s host occupies in clinic only required Internet access to use the service. Besides 

that, this system also provides the capability of video interaction between the patients and the 

clinicians. This research implemented a web-application known as MercuryLive, which comprises a 

graphical user interface for displaying the motion signals together with the video conference, allowing 

clinicians for viewing and data annotation throughout every data collection session. Data collection 

using this developed system will then be processed in order to come out with an estimate of clinical 

scores that measure the symptom severity and motor complications of PWP using the algorithms for 

wearable sensor data analysis. In this work, a combination of web-based application together with the 

technology using the wireless wearable sensor for home monitoring had provided trustworthy 

quantitative information, which is useful in gathering clinically relevant information for PWP 

management and also for clinical decision making [53]. 

Chen et al. [54] conducted further studies on the home monitoring system, MercuryLive that offers 

an integrated platform, ensuring assessment of data collection from PWP gathered with wearable 

sensors through the web application. As mentioned previously in [53], this system offers the clinician 

opportunity in interacting with PWP in their homes, configuring the sensor nodes for hand application 

and recording annotated data. The advantages of data collection in the home environment using this 

system are having the capability for allowing the clinicians to expand the excellent care of PWP and at 

the same time reducing costs. The focus of this study is on the characterization of the system as the 

system design and implementation had previously been mentioned by Patel et al. [53]. The 

characterization of MercuryLive was made by assessment of latencies and bandwidth requirements at 

different tiers (central server, patient host and clinician host) of the system. The latency time is the 
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time between the packet delivery time from the sensor and the packet receiving time by the clinician. 

Latency calculations were created according to the timestamps taken at each host as relevant data 

packets arrived at each tier of MercuryLive that was further described in Table 5 [54]. The system 

clocks for every single host were coordinated into similar server- Network Time Protocol (NTP) to 

ensure the measurement accuracy. The preliminary testing results show the suitability for monitoring 

PD’s patients in the home environment and the gathering of information to assist the titration of 

medication. It revealed an average data latency of less than 400 ms and video latency of about 200 ms 

with the video frame rate of approximately 13 frames per seconds when 800 kb/s of bandwidth were 

accessible using 40% video compression [53,54]. 

 

Figure 8. A general idea of the design of the home monitoring system (adapted from [53]). 

Table 5. Different types of latency and their description [54]. 

Latency Description 

Command Latency 

 Time between commands delivered to the clinician’s host and the patient’s host 

received and acknowledged.  

 Commands are delivered by the clinician’s to execute configuration on the body sensor 

network such as changes in data sampling frequency 

Data and Video Latency 

 Data latency: Interval in live streaming of that decimated version of the sensor data 

 Video latency: Time between generation of a frame at the patient’s end and the 

appearance of the frame at the clinician’s end 

Recovery latency 

 Time needed for the system to begin re-operate after the miscarriage of the system  

 Latency values were predictable as the alteration between the two timestamps linked 

with the restart command and with the finishing point of the re-initialization process of 

the sensor node 

Data upload latency 
 Logging of the raw data or the data features into the onboard flash memory and 

uploading into the central server when possible  
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2.4.6. Assessment of Gait Impairment in PD 

Research conducted by Cancela et al. [55] concentrated on the design of non-supervised methods 

for the gait impairment assessment in PWP. Detection of motion changes was done using five  

triaxial accelerometers-ALA-6g (ANCO, Athens, Greece) placed on the limb and one triaxial  

accelerometer-ALA-6g (ANCO, Athens, Greece) on the belt of PWP. The development of this system for 

PD symptoms long duration monitoring permits physicians to distinguish the intakes of the medication and 

subsequently shows improvement in the patient’s reaction towards the cure. Besides that, this allows long 

term continuous monitoring of gait rhythm and other gait parameters in order to achieve assessable 

estimations of motor fluctuations in everyday life activities and assessment of the influence of 

medication on different gait parameters. The first step of this research was observing the recorded 

signals PWP and healthy control moving freely and performing their daily activities. By contrast, 

motor signals from PWP display an important distance compared to healthy control patterns. There are 

various ranges of features that can be connected to healthy pattern gait through spectrum analysis, 

which aids to create a contrast with the output of PWP recording. Some measures (i.e., step frequency, 

stride length, entropy and arm swing) related to magnitudes have been defined, based on the overview 

of both signals. Results shown that the use of measures like entropy and arm string were the better 

choice showing significantly better performance to provide a comprehensive and precise status of the 

gait impairment [55]. 

2.4.7. Detection of PD Motor Symptoms: Uncontrolled Home Environment 

Samargit Das et al. [56] conducted his research for PD motor symptoms automatic detection in 

everyday life environments by applying weakly supervised learning context called multiple instances 

learning (MIL). Adapting and training supervised learning classifier was challenging due to lack of 

reliable ground truth information when monitoring under uncontrolled environment. On the other 

hand, for each time instant, this MIL algorithm only requires knowing the existence of symptom 

pattern anywhere within the time interval without knowing the exact existences of the symptoms. The 

labels will be allocated into bag of cases (i.e., feature vectors collection over a time period) whereby 

the bag will be denoted as positive bag if a minimum of one case inside the bag is true, and the bag is 

denoted as positive bag if the entire cases inside it are all false (referring Figure 9). MIL will 

automatically learns those patterns by detecting the time period of symptoms existence as well as 

identifying cases of the symptoms [56–60].  

This research had shown promising preliminary results using five 3D accelerometers placed at the 

waist and limbs. Several features that include high frequency energy content, correlation and the 

frequency domain histogram were implemented in this research. MIL algorithms play a part in looking 

for an axis-parallel hyper-rectangle (APR) in the feature space, which captures the target concept. The 

authors proposed solutions to this algorithm recommended three variants of the APR algorithm:  

(1) a “standard” algorithm; (2) an “outside-in” algorithm; and (3) an “inside-out” algorithm. However, in 

this research, they implemented an iterative, discriminative variant of the APR algorithm (ID-APR) for 

MIL. This is an integration between the standard and outside-in APR algorithms. Comparison between 

the performance of ID-APR and other MIL algorithms such as multiple instance SVM (MI-SVM), 
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citation k-nearest neighbor (KNN), diverse density (DD) and expectation maximation version of DD 

(EM-DD) were conducted. The performance characteristics of the algorithm were analyzed through the 

computation of their total bags of correctly classified as symptoms percentage whereby ID-APR based 

MIL algorithm performs better compared to the rest of the algorithm with over 90% accuracy [56]. 

 

Figure 9. The intuitive idea behind multiple instances learning (MIL) (adapted from [59]). 

2.4.8. PD Hand Tremor Monitoring 

LeMoyne et al. [61] demonstrated the use of wireless accelerometer for monitoring PD hand 

tremor. The experimental setup of this research consists of two wireless accelerometer nodes that were 

tandem activated. The first wireless accelerometer represents the control, which was placed in a static 

position and second tandem activated wireless accelerometer was secured by a glove to the dorsum of 

the hand that simulated PD hand tremor. The triaxial accelerometer data collected were wirelessly sent 

to a local PC for post-processing. Based on the three orthogonal acceleration components, the 

magnitude of the acceleration vector was calculated to represent the acceleration waveform for the 

temporal domain. The acceleration waveform of 5-s duration between 2.5-s and 7.5-s of the 10-s 

acceleration waveform sample was analyzed to reduce transient effects. The time-averaged acceleration 

technique using a trapezoid rule was acquired for quantifying each respective acceleration waveform 

sample of both the simulated PD tremor and static condition, bound by a 98% confidence level based on 

a 2% margin of error about the mean. Statistical study using one-way ANOVA with alpha <0.05 

conducted exhibits statistical significance during the comparison of time averaged acceleration between 

the static positioned wireless accelerometer node and simulated PD hand tremor wireless accelerometer 

node. This configuration incorporating the wireless accelerometer application has demonstrated a 

significant degree of accuracy, consistency, and reliability for quantifying acceleration waveform of 

simulated PD tremor [61–64]. 

2.4.9. Detection of Freezing of Gait (FoG) in PD 

FoG commonly occurs on PWP during the advanced stage of PD associated with the disease 

duration and severity, representing common reason of falling and consequent injuries in PD patients, 

which significantly impairs quality of life. FoG had relations with falls is the transient block of 
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movement that is triggered by gait, which appears most often during turns, before initiating gait, in 

tight quarters such as doorways, while negotiating an obstacle and in stressful situations. Based on the 

analysis conducted by Macht et al. [65], 47% of the total 6620 PD patients reported regular freezing 

whereby 28% of them experienced FoG daily. This symptom had obstacles in predicting the 

occurrence and sensitivity to external factors such as environmental triggers, cause difficulty in 

detecting FoG under laboratory or clinical condition. The cause of freezing is unclear, but the 

condition of the patients becomes serious once they get nervous, in places surrounded by many people, 

while crossing doorways, in elevators and restricted areas or sudden change in their walking patterns. 

Although previous researchers have proposed that longer time span of dopaminergic treatment is 

correlated with FoG, the progression of the PD alone may be responsible for the development of FoG. 

It is important to have good results in both the severity and effect of FoG detection and rating. In order 

to come out with successful management of PD patients with FoG, it is required to have attentive 

assessment and gait pattern analysis [66–76]. 

In Haritz et al. [75] research, he had proposed a method for freezing detection in PWP using gait 

analysis in the frequency domain. This pilot study used an accelerometer to measure the acceleration in 

3 axes and a gyroscope to compute angular velocity in 2 axes in three locations of the lower 

extremities for monitoring foot, shank and thigh movements. Sparkfun Inertial Miniature Unit (IMU) 

sensors were used to obtain kinematic data of each point, which incorporates the new IDG300  

dual-axis gyroscope and the Analog Devices triple axis ADXL330 accelerometer providing 5 axis of 

sensing (Roll, Pitch, X, Y, Z). IDG300 is an integrated dual-axis gyroscope with integrated  

X- and Y-axis gyro on a single chip; full scale range of 500/s; integrated low-pass filters and the 

ADXL330 is a 3-axis accelerometer of a minimum full-scale range of 3 g. The intention of this 

research was applying the frequency domain analysis in determining the most suitable sensor position 

and selection of signal’s sensor that is most appropriate for FoG detection. Several parameters had 

been taken into consideration in order to conduct this analysis; the dominant frequency, power spectral 

density (PSD) Quartiles, power above and below the dominant frequency and the freeze index (FI). 

After data collection, the resulting signals were processed using various spectral analysis techniques 

such as FFT that transform the broken overlapping frame into the frequency domain for obtaining the 

PSD for each frame. Changes of the PSD towards higher frequency will be interpreted as FoG as the 

power of the signal above this frequency increase during FoG episodes. Results shown that sensor 

placement at the lower limbs (80.8% of FoG episodes detected correctly) and heel perpendicular to the 

coronal plane (82.7% of FoG episodes detected correctly) with a sensing magnitude of the angular 

velocity and acceleration respectively shown the best classification variables [75]. 

Research was also conducted by Moore et al. [74] that acquires vertical linear acceleration of the 

left shank. Detection of FoG in PWP was conducted by means of an ankle–mounted sensor array 

during a predefined walking and standing test where the data were transferred wirelessly to a pocket 

PC at a rate of 100 Hz. The sensor consists of an IMU, 9 V battery and Bluetooth serial transmitter that 

weight less than 130 g. The frequency spectrum obtained from the accelerometer were analyzed, where 

the power analysis showed that FoG go together with high frequency components of leg movement in 

the 3–8 Hz (freeze band) compared to the 0.5–3 Hz (locomotors band). Results obtained allowed the 

calculation of the FI, which was calculated as the power in the freeze band divided by the power in the 

locomotors band. The value of FI will be relatively stable during PWP normal movement, but 
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increases due to gait freeze whereby a threshold value is chosen such that the value of the FI above this 

limit would be considered as FoG events [67,73]. This global threshold had shown to be 78% accurate 

in detecting FoG events before being customized to PD patients [74]. 

2.5. Monitoring PD Using Audio Sensors 

Recent studies had also shown interest in the link between PD and speech deficiency. Lately, 

varieties of speech signal algorithms that had aimed for the PD symptom severity detection have been 

presented. Vocal impairment relevant to PD is among the initial indicators with studies reporting 

approximately 70%–90% prevalence. The symptoms existing in speech disorder include loudness 

reduction, vocal tremor increment, and breathiness (noise). Voice deficiency related to PD is termed as 

dysphonia (incapability of producing normal vocal sounds), hypophonia (reduced voice volume), and 

dysarthria (difficulty in pronouncing words). Speech disorders have been linked to PD, and there is solid 

supported proof of performance degradation in voice related to PD progression [77–81]. The degree of 

vocal deficiency is frequently assessed through sustained vowel phonation or running speech. However, 

the use of sustained vowels cannot capture some of the voice impairment that can be found in running 

speech, for instance, the integration between vowels and consonants, while the use of running speech can 

be categorized as a more convincing impairment test. On the other hand, analysis conducted through 

running speech may be more complicated because of the articulatory and other logistic confusions.  

By applying phonation test conducted through sustained vowels, it had the ability to provoke dysphonia 

symptoms. In addition, detection of dysphonia can be best efficiently accomplished without confusing 

effects of articulatory or linguistic modules of running speech. Hence, it has become a general protocol of 

using sustained vowels whereby the subject is asked to withstand the phonation for as long as possible, 

making a strength to sustain stable frequency and amplitude at a relaxed level [77,78,82–88].  

Studies have presented that the sustained vowel “/a/” is adequate for numerous voice  

assessment applications, which include prediction of PD status [85,86,89] and monitoring of PD 

symptoms [84,90–93]. Studies of speech disorders in term of PD have provoked the progress of many 

speech signal processing algorithms, for example, dysphonia measures whereby these measures had been 

suggested as a trustworthy tool for PD detection and monitoring [86–88]. For the past few years, several 

studies have been conducted using the available M.A.Little PD dataset from the UCI machine learning 

repository and achieve high success rates [87,94–102]. For instance, Kemal Polat et al. [102] had 

presented a comparative study by applying fuzzy c-means clustering and the experimental results had 

shown a maximum accuracy of 96% using k-nearest neighbor (KNN) classifier. In research proposed by 

H.L Chen et al. [101], the researchers had presented an effective diagnostic system for diagnosing PD 

using fuzzy k-nearest neighbor (fKNN). The analysis had been further improved where PCA had been 

applied in order to construct the most discriminative features set. The experimental results using the 

proposed fKNN classifier had shown greater performance when compared with the SVM classifier with 

best classification accuracy of 96% with average 10 fold cross validation method. Zahari et al. [100] 

employed the feature selection method based on Analysis of Variance (ANOVA) together with the MLP 

neural network (MLP-NN) classifier to predict PD. This research describes the analysis on the MLP-NN 

according to two types of training algorithms, which are Levenberg-Marquardt (LM) and Scaled 

Conjugate Gradient (SCG). Using the PD dataset by Little et al. [85,86,89], the classification accuracy of 
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above 90% was achieved after applying feature selection using LM algorithms while SCG algorithms 

obtained accuracy above 85% after the implementation of ANOVA as feature selection [100]. 

Max A. Little and his co-researchers had extracted different types of features for the objective analysis 

of voice signals for classifying PWP from healthy controls [85,86,89]. In one of their works [86], they had 

conducted a remarkable assessment using present traditional and non-standard measures to classify healthy 

controls and PWP dysphonia detection. This investigation has presented a new dysphonia measure, known 

as the pitch period entropy (PPE) that is useful for several confounding effects, which cannot be controlled 

such as noisy acoustic surroundings a difference in voice frequency. The experiment was tested on  

31 subjects, of which 23 of them were PWP. In the correlation filtering stages, ten highly uncorrelated 

dysphonia measures were selected. A combination of four optimal dysphonia features (HNR, RPDE, 

DFA and PPE) through a pre-selection filter removes redundant measures, followed by an exhaustive 

search gives the best overall accuracy of 91.4% by applying SVM radial basis kernel function. The 

results found that the combination of nonstandard techniques and the traditional harmonics-to-noise 

ratios had the greatest ability to separate healthy controls from PD patients [86,89].  

Tsanas et al. [92] conducted studies on disordered voices of PWP whereby the research shown that 

the prospective for recognizing subtle differences in PD symptoms can be considerably improved 

through the transformation of simple logarithmic of the dysphonia measures. The speech recordings of 

sustained vowels from 52 PWP were chosen as subjects of this study. The recording was performed by 

the patients at home using a telemonitoring device. In this test, PWP were requested to withstand the vowel 

“/a/” sounds for as long as possible. The primary objective of this study was for the computation of the 

progress in UPDRS estimation exclusively depending on the log-transformation of classical dysphonia 

measures. Bayesian Least Absolute Shrinkage and Selection Operator (LASSO) linear regression is 

performed for reducing the amount of measures that was selected as features and determination of whether 

the log-transformed classical measures overtook the non-transformed measures. The efficiency of 

improvement in this developing application of programs characterization of PD symptom evaluation from 

voice signals, rated based on UPDRS was revealed [91–93]. Tsanas et al. [85] also conducted studies in 

testing the accuracy of novel algorithms that can be applied for differentiating healthy controls from PWP. 

In this study, current available database from the National Centre for Voice and Speech (NCVS) taken 

from 43 subjects (10 healthy controls and 33 PWP) were used, which involves six or seven sustained vowel 

“/a/” phonation from each subject. Comparison between four different efficient feature selection algorithms 

was conducted: (1) LASSO; (2) minimum redundancy maximum relevance (mRMR); (3) RELIEF; and  

(4) local learning-based feature selection (LLBFS). These dysphonia measures have selected four 

parsimonious subsets mapping to a binary classification response applying two statistical classifiers: 

random forests and SVM. Results validation shows that selected new dysphonia measures can overtake 

the current existing outcomes, whereby the results reach nearly 99% of classification accuracy by only 

applying ten dysphonia features [85,86,89]. 

Douglas et al. [103] conducted a research measuring instability in the phonatory signal by 

identifying disordered patterns that have possibilities to exist in voice of some PWP using nonlinear 

dynamic analysis and perturbation analysis. 1-second segmentation of sustained phonation was done 

before proceeding to the analysis stage. Nonlinear dynamic analysis will provide corresponding 

information for perturbation analysis, allows the combination of both analyses. This will improve the 

ability in describing pathological voices from PD and at the same time aiding the diagnosis of 
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laryngeal pathologies from PD. Correlation dimension, jitter, and shimmer parameters of the acoustic 

signal were applied for comparing continuous vowel formations of PWP with the healthy controls. The 

parameters obtained through both analyses were then undergoing statistical analysis for analyzing the 

results obtained. The overall comparison between the control subjects and PWP was obtained through  

Mann-Whitney rank sum tests for each parameter. Results showed that the overall PWP have 

significantly higher correlation dimension values compared to healthy controls (P = 0.0016), which 

specify greater signal difficulty in PD vocal pathology. However, alterations in the evaluation of these 

two groups were significant in jitter (P = 0.014) but non-significant in shimmer (P = 0.695). The 

overall results showed that the combination of nonlinear dynamic analyses and perturbation analysis 

was necessary, which can be a representation as a beneficial technique in the research of PD vocal 

pathology, adding to the traditional techniques of voice analysis [103]. 

3. Discussion and Conclusions 

It is essential for the medications to be optimally adjusted in order for PWP to function at their best 

whereby the clinicians in charge are compulsory to have a precise image of the way PWP symptoms 

fluctuate throughout their everyday life activities. Lately, PD cannot be handled through medication, 

although it offered significant improvement of symptoms, particularly at the primary stages of PD. Yet, 

appropriate identification at an initial stage can produce significant lifesaving outcomes [104,105]. In these 

conditions, the conventional methods such as patient’s subjective self-reports and patient diaries are 

normally not very precise and have shortcomings. Although several rating scales that were plotted to 

UPDRS had been designed and used by physicians, they still possess some limitation whereby UPDRS 

assessment is subjective, time consuming task and sensitive to inter-rater variability. Many PWP will thus 

be extensively reliant on clinical involvement, but physical appointments to clinic for checking and 

treatment are demanding for many PD patients [24,26,27]. This matter is currently a tedious challenge 

that the physicians are fronting when handling long durations of PD as the medical care towards these 

patients is increasingly complex and expensive.  

Over the past decades, researchers have devised several non-invasive, objective methods for 

detecting early symptoms of PD using physiological biomarkers, including EMG [29–32,35] and  

EEG [36,40] signals, brain imaging methods (CT scans or MRI) [39–41], speech difficulties using 

audio sensors [41,42] and wearable sensors [44,45,50–56,62]. EEG is a tool that is used to measure the 

electrical activity generated in the brain, which opens a window for exploring brain functioning and 

neural activity. It is a completely non-invasive technique measured using several electrodes located on 

the subject’s scalp, which records the electrical impulses generated by nerve cells from the brain (brain 

waves). In medical environments, EEG refers to the recording of brain’s unstructured electrical activity 

over a long time period, usually 20–30 min that includes preparation time, as recorded from multiple 

electrodes located on the scalp [106]. Even though current EEG technology can precisely identify brain 

activity at resolution of single millisecond (and even less), simple to operate and inexpensive 

compared to other devices, EEG still had a number of limitations. By applying EEG methods, brain 

responses of the patients were recorded with or without visual indications, which bring difficulty for 

both patients and their caregivers, especially in the later stages of the disease. Large areas of the cortex 

have to be activated synchronously for ensuring that adequate potentials are generated and changes to 
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be enumerated at the electrodes positioned on the scalp. In addition, the position of the source of the 

electrical activity may sometimes give puzzling impressions due to the propagation of electrical 

activity along the physiological pathway or through volume conduction in extracellular spaces. The 

placement of an EEG cap may also bring discomfort to the patients without making any head 

movements and this will be a tedious procedure during the data collection [106–108].  

For EMG, this technique is related to the function of muscles through measures of the electrical 

activity (action potentials) activated during muscular contractions. One of the informative diagnostic 

EMG signal approach used to measure PD patient’s muscles is through surface (interference) electrode 

placed on the skin. This signal is frequently examined using amplitude and spectral analysis 

techniques. These approaches are applied mainly to calculate the degree of muscle activation and 

fatigue [109–111]. However, the physician that uses the EMG electrodes is requested of having 

knowledgeable perception on the anatomy of the human body as it is essential for the accurate 

electrode location and placement. The physician must also ensures that the inter-electrodes distance are 

constant during the whole experiments for making sure the electrodes are over the identical muscle 

fibers. Moreover, there are many undesirable signals obtained together with the useful signals, for 

instance skin artifacts, power line artifacts, motion artifact due to electrodes not attached properly at 

the skin interface or loose tips of the wires, involuntary reflex activity, and any other electrical device 

that may be available in the room when data are collected. Besides that, this technique cannot function 

accurately if the patients had taken medicine beforehand, which will disturb the nervous system, for 

instance, a muscle relaxant or anticholinergic (medicine that function for reducing uncontrollable 

movements, relaxing the lung airways, and relieving cramps) [109–112].  

While for methods using imaging modalities such as MRI, it also brings some drawbacks where the 

MRI machines will make a tremendous amount of noise during the operation of the machine. The 

simultaneous actions of being put in an enclosed space and the loud noises from the machine made by 

the magnets can cause some patients having a claustrophobic feeling while undergoing the MRI scan. 

It also requires subjects to maintain still for some period of time, but the MRI scan can take up to 90 min 

to complete the whole test. A very minor movement during the scan may bring the effects of distorted 

images meaning that the scanning will require to be taken again. In addition, if multimodal MRI is 

applied, this modality has additional drawbacks, which include the increased cost of the scan, 

increased scan time, increased post-processing and reading time, and the need for an experienced 

radiologist who is familiar with the post-processing and interpretation of images and metabolic spectra 

produced by these modalities. On the other hand, CT scans have the gains of more precise, painless 

and more detailed compared to other imaging modalities. However, they insert a high dose of radiation 

in the patients and sometimes will give misconceptions to physicians where the scan can cause 

negative effects to the patients’ body if found out that there is a mistake. Then the patients will have to 

experience unnecessary cures, which exposed them to more radiation [113,114].  

In latest years, the significance of biomedical engineering and wearable technology for healthcare is 

developing with the progress and the accessibility of many strategies and technological explanations. 

With the latest on-going advance development in various technologies and systems, this latest 

knowledge will permit the monitoring of PD with the application of wearable and user-friendly 

technology. Recently, wearable sensors (accelerometer, gyroscope and magnetometer) and audio 

sensor have been taken into consideration to progress the experience and capabilities of doctors and 
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medical specialist in making judgments about the PWP. There is no hesitation that the assessment of 

data tool from PWP and judgments of experts is still the most significant factors in diagnosis. 

However, these computational tools and techniques have the potentials of being useful supportive tools 

for the experts. The developed system can be an assistance in improving the precision and consistency 

of diagnoses and reducing potential errors, and at the same time making the diagnoses more time 

saving [115]. Current technological developments in the multimodal miniature sensor system 

(combination of more than two sensors), which includes mobile and ubiquitous monitoring have been 

producing excessive growing attention in applying wearable technology for health monitoring. 

Wearable sensors or body fixed sensors placed on the body to monitor the kinematic and physiological 

parameters have been advanced to the state that they can be equipped for clinical applications and 

started to play an important role in patient’s daily routine. The success of these wearable sensor 

technology fully depends on the sensor performance, cost and reliability. For these reasons, wearable 

sensors have become very useful for scientific applications and in daily life settings-home monitoring. 

The use of wearable sensors for monitoring at home has the prospective to expand the quality of 

delivering healthcare while creating it to be proficient in the process of rehabilitation. This allows 

physicians resolving restrictions of ambulatory technology and providing feedback for physicians in 

order to monitor individuals over weeks or even months [115,116].  

The main target using this wearable technology is providing an objective evaluation of motor 

disorder status, for instance, PD through the motion analysis. Most recently, body-fixed sensors such 

as accelerometers, gyroscopes and magnetometers have been widely used for PWP mobility 

monitoring, especially in term of recording their daily activities. Perhaps, the researchers begin 

exploring PD motor disorders and the likelihood of employing wearable technology for assessing the 

effect of clinical interventions on the value of movement observed while PWP accomplished tasks 

required. These sensors have turn out to be smaller, more robust, totally unobtrusive and precise in the 

previous couples of years back that facilitate long-term monitoring [117–119]. An accelerometer is a 

low-cost, flexible and miniature devices that provide sufficient information for human motion 

detection in clinical/laboratory settings or free-living environments. This sensor has been the most 

commonly used wearable sensor in the field of physical activity recognition and monitoring. It is a 

type of position sensor functioned by measuring acceleration in motion along each reference axis. 

Measuring human physical activity using accelerometer is preferred because acceleration is 

proportional to external forces and therefore reflects the intensity and frequency of human movement. 

A gyroscope measures angular rotation of body segments, when attached to the segment with their axis 

parallel to the segment axis. It uses the vibrating mechanical element to sense angular velocity (angular 

rate) along one rotational axis. It can measure transitions between postures by measuring the Coriolis 

acceleration from rotational angular velocity and often combined with accelerometers in human 

motion studies. Magnetometer measures a change in rotation of the body segment with respect to the 

earth’s magnetic field. The general concepts of these sensors correspond to the magneto-resistive effect, 

which is the property to change the resistance with a change in magnetic induction. Magnetometer is 

mostly combined with inertial sensors (gyroscope and accelerometer) where every sensor has their own 

benefits for overall recognition performance. The combination of multimodal sensors (accelerometer, 

gyroscope and magnetometer) forms an inertial measurement unit (IMU) that provides quick, accurate 

position and orientation determination with a low amount of drift over time [117–121]. 
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Besides the application of wearable sensors, research also shown that speech signal may be a useful 

biomarker to remotely monitor PD symptom severity based on the sources of medical indication that 

suggested the huge majority of PD patients usually reveal some form of vocal disorder. There is strong 

supported proof of degrading in voice with PD progression. In fact, speech impairment might be 

among the initial sign of PD symptoms, measurable up to five years prior to clinical diagnosis. Study 

of progression and severity of PD using speech signals is a non-invasive technique, easy to obtain that 

drawn significant attention. In addition, speech signals fit ideally the purpose of telemonitoring in 

medical care, because they can be self-recorded, easy to obtain, potentially reliable, cost-effective 

screening of PWP and potentially alleviating the burden of frequent, and often inconvenience, visit to 

the clinic. This also relieves national health systems from excessive additional workload, decreasing 

the cost and increasing the accuracy of clinical evaluation of the patient’s disease condition [82–88]. 

From earlier investigation conducted, there have been a number of initiatives from previous researches 

addressing the application of wearable sensors that had the ability to enumerate the different types of PD 

symptoms (i.e., dyskinesia, bradykinesia, tremor, FoG, etc.) using uni-modal sensor or bi-modal sensors 

(accelerometer and gyroscope) and application of speech in discriminating healthy control from PWP.  

Until now, there is insufficient research on the development of multimodal sensor platform for 

accurately and efficiently follow PD progression at more frequent intervals with less cost and minimal 

waste of resources. At the same time, the strength of existing signal processing and classification 

algorithms was not tested using the information from the combination of multiple sensors. Although many 

improvements have been shown, but there is still an absence of a multimodal fusion system that had ability 

to deliver a trustworthy validation of PWP status and at the same time economically practical [116,121]. 

The driving principle of multimodal fusion (also known as multimodal signal integration) system is 

computer systems provided with multimodal proficiencies for human/machine interaction and the ability to 

interpret information from various sensory and communication channels. Multimodal interfaces process 

two or more combined user input modes, such as speech, gesture, and body movements in a 

coordinated manner with multimedia system output. Fusion of input modalities is one of the features 

that distinguish multimodal interfaces from unimodal interfaces. The aim of fusion is to extract useful 

information from a set of input modalities and pass it to a human-machine dialog manager. Fusion of 

different modalities is a delicate task, which can be executed at three levels: at data level, at feature 

level and at decision level. Each fusion scheme operates at a different level of analysis of the same 

modality channel as illustrated in Figure 10. Data-level fusion is applied for multiple raw data coming 

from a same type of modality source, for instance, similar scene recorded from two webcams from 

different viewpoints. The advantage of this fusion is achieving the highest level of information details as 

the signal is directly processed, but it is highly susceptible to noise and failure as there is an absence of 

preprocessing. Next, feature-level fusion is a general type of fusion when closely-coupled modalities are 

to be fused. The typical example is the fusion of speech and lip movements. This level of fusion will 

produce a moderate level of information details, but less sensitive to noise and failures. Finally, the 

decision-level fusion is the most common type of fusion in multimodal applications. The key reason is 

due to its ability to manage loosely-coupled modalities, for instance, pen and speech interaction. This 

level of fusion is highly resistant to noise and failure as well as improving reliability and accuracy of 

semantic interpretation, by combining information coming from each input mode [122–124]. 
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Figure 10. Levels of multimodal fusion (adapted from [124]). 

The rising interest in the design of multimodal sensor fusion platform has been motivated through 

the benefits of pursuing robustness and providing more convenient, obvious, and powerfully 

expressive means of human-computer interaction. The multimodal sensor interface design could have 

potential for more interesting applications, provide access to a larger range of consumers and provide 

more adverse habit surroundings comparisons to before. These sensor designs regularly reveal 

improvements when handling errors, reducing recognition uncertainty and demonstrate performance 

advantages. Perhaps, most importantly, the multimodal sensor system can achieve error suppression 

higher compared to a unimodal sensor system that improves the overall recognition rates [123,124]. 

The prospective gain obtained when fusing information from numerous sensors corresponds 

respectively to the notions of overlapping, complementarily and timeless provided for the system. 

Overlapping information sources provided from integration of two or more sensors obtained through a 

multimodal interface can be an effective means of considerably lessen the overall recognition doubt 

and thus aid to improve the precision whereby the features are perceived by the system. Additionally, 

this overlapping information can also serve to improve reliability in the case of sensor error or failure. 

Complementary information obtained through numerous types of sensors will allow features in the 

surroundings to be perceived, which are impossible to be perceived using information from every 

single sensor functioning independently. Increasing the quantity of input sensors interpreted within the 

multimodal system can provide more appropriate information as compared to single sensor due to 

either the processing parallelism or the speed of each unimodal sensor, which had possibility to 

achieve as part of the integrating. Overall, a well-designed multimodal sensor interfaces fusing two or 

more information sources can successfully function in a more robust, reducing the recognition 

uncertainty and stabilizing the system performance compared to unimodal system that involve only a 

single recognition technology [124–129].  

The latest studies have raised the significant topic of looking for a statistical mapping between 

speech properties and application of wearable sensors as an issue worthy of advance exploration. The 

combination of wearable sensors (accelerometer, gyroscope and magnetometer) and audio sensor can 

be an appropriate to investigate, on the basis of clinical evidence, suggesting that the earliest prodromal PD 

symptoms in the vast majority of PWP are slowness (82.4%), difficulty in walking (77.1%), difficulty in 

writing (53.6%), stiffness (50%), tremor (82%) and speech difficulty (34%) [130]. On one hand, wearable 

sensor technology is totally unobtrusive and does not interfere with the PWP’s normal behavior. While on 

the other hand, it has been suggested that speech is affected in the early stage where it is a natural candidate 
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for measuring and quantifying the progress of PD. With the benefits from both wearable sensors and audio 

sensor as the biomarker of PD assessment, the fusion of these two sensors is expected to deliver an 

outstanding performance in management related to PD and provide a remarkable improvement in the 

patients’ management as well as a substantial cutting-off of the economic burden caused by PD. 

Currently, to the authors’ knowledge, the latest research on multimodal sensor fusion do not cover the 

focus on a combination of wearable sensors (accelerometer, gyroscope, and magnetometer) and audio 

sensor for monitoring the progression of PD. For this reason, areas for future research focused on the 

integration of multimodal sensor fusion with wearable sensors and audio sensor as the biomarker for 

enriching early diagnosis of PD are proposed.  
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