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Abstract: The quick and accurate understanding of the ambient environment, which is 

composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent 

vehicles. The road elements included in this work are road curbs and dynamic road obstacles 

that directly affect the drivable area. A framework for the online modeling of the driving 

environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes 

the 3D environment in the form of a point cloud, is reported in this article. First, ground 

segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne 

LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road 

obstacles are detected and tracked in different manners. Curves are fitted for curb points, and 

points are clustered into bundles whose form and kinematics parameters are calculated. The 

Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for 

curbs. Results indicate that the proposed framework is robust under various environments and 

satisfies the requirements for online processing. 

Keywords: dynamic obstacle modeling; multi-beam LIDAR; multi-feature ground 

segmentation; road curb modeling 
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1. Introduction 

Environment perception is a key research area as a source of information flow in developing 

unmanned ground vehicles (UGVs). Without an accurate and quick understanding of the driving 

environment, a vehicle is unable to make the right decisions when it moves at a high speed. Road curbs 

and dynamic road obstacles are the most important road elements in the driving environment. Road curbs 

indicate the road area for a vehicle, whereas road dynamic obstacles specify the areas to avoid. 

To obtain quick and accurate understanding of the driving environment, various sensors such as cameras, 

stereo vision, infrared cameras, and 2D sequential lasers are employed to perceive the environment.  

A common problem in using these sensors is their limited description of the environment. Image 

processing has been studied intensively and applied extensively in modeling the driving environment to 

detect lanes, road boundaries, traffic lights, etc. [1–8]. However, unlike that of other sensors, the 

information provided by a camera is restricted to a certain view direction that covers a narrow field of 

view (FOV); moreover, distance information is lacking. Cameras are also susceptible to changing light 

conditions. To address the lack of distance information provided by ordinary cameras, stereo cameras 

have been developed and used in autonomous driving to address the lack of distance information in 

ordinary cameras [9–11]. However, stereo cameras have a narrower FOV than ordinary cameras. To 

overcome this light-limited disadvantage, studies on the application of infrared cameras have gained 

significant attention because of the capability of these cameras to detect obstacles and their insensitivity 

to illumination [12–17]. However, the high price and low resolution of infrared cameras limit their 

applications. Meanwhile, vehicles are typically equipped with a 2D sequential laser to detect obstacles 

in a certain direction under any weather condition [18–22]. However, the sparse information offered by 

a 2D sequential laser is insufficient for a vehicle to make its own driving decision. 

To extend 2D and 2.5D to 3D, a multi-beam LIDAR is employed to replace the 2D sequential laser 

that can only provide points in a fixed pitch angle. Although considerable research has been conducted 

on 2D and 2.5D perception, only a few researchers have addressed problems in 3D perception thus far. 

Pieces of 2D and 2.5D information are typically represented in the form of an image, whereas a point cloud 

is adopted in 3D perception. The point cloud was first used in remote sensing [23–26] to model terrain. 

However, the method developed for remote sensing is unsuitable for UGVs because of two reasons. 

First, the density of the point cloud used in remote sensing is different from that of the point cloud used 

in UGVs. A data set is considered dense if the connectivity of scanned surfaces can be captured with the 

connectivity of non-empty cells (i.e., cells with at least one data point), whereas empty cells exists in the 

sparse point cloud. The point cloud used in remote sensing is the dense point cloud, whereas what 

employed in UGVs is the sparse point cloud; thus, data are stored and processed differently [27].  

Second, real-time requirements for remote sensing are different and significantly lower from those  

for UGVs. One of the most time-consuming aspects in remote sensing is determining the closest  

point in a point cloud because the stored points are unorganized. To overcome this problem, point 

structure should be considered for different types of sensors. The sensor adopted in this study is the  

Velodyne HDL-64E LIDAR, which is a new type of 64-beam LIDAR that is extensively used in UGVs.  

With its 360° horizontal FOV by 26.8° vertical FOV, 5–15 Hz user-selectable frame rate, and over 1.3 million 

points per second output rate, the Velodyne HDL-64E LIDAR can model the 3D environment in a point 

cloud. Various studies on the Velodyne HDL-64E LIDAR have been presented in literature. Some 
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concepts in image processing, e.g., model matching, have been integrated into LIDAR data processing. 

Pascosl et al. [28] used the superquadrics fitting method to segment and model an obstacle simultaneously, 

whereas a plane model was applied in [29] to fit the drivable area. Range scan likelihood models were studied 

in [30] by directly considering the range parameter. However, the results of our experiment determined 

that the points obtained from the LIDAR data of a certain object varied with the relative position of the 

vehicle to the detected obstacle, particularly when the obstacle was far from the vehicle. In this case, 

only a few points were projected onto the obstacle, which caused the match to fail. Thus, the present 

study focuses on extracting local features from raw data using multi-line LIDAR, in which points 

belonging to the same obstacle are grouped together after the points that are projected onto the ground 

are removed. In contrast to sensors, e.g., Ibeo, which allow easy ground filtering by collecting four 

parallel horizontal scan lines and marking the readings that likely come from the ground [15], the data 

from the Velodyne LIDAR contains points projected onto the road surface. Ground segmentation methods 

are categorized based on the organization of a point cloud or the utilization of the information contained in 

a packet. In the first category, the vicinity information in raw data is not considered and only the positions 

of the points are obtained. Azim et al. [31] determined that a pratical means to identify a dynamic obstacle 

was to detect the change in occupancy in an octree. Meanwhile, a 1D Gaussian process (GP) regression 

with a non-stationary covariance function was used to distinguish the ground points or obstacles in each 

segment of a polar coordinate system in [32]. Excellent results based on the vicinity information in the 

packet obtained from the Velodyne LIDAR were observed after the 2004 and 2005 Grand Challenges 

and the 2007 Urban Challenge held by the Defense Advanced Research Projects Agency to boost the 

development of UGVs. Von Hundelshausen et al. [33] proposed an obstacle detection method based on 

the different values of points located within the same grid cell produced by a single beam. This method 

was also applied in [34]. The number of points projected onto the same grid and the height difference in 

the same grid were considered in [35]. Height difference was also employed in [36–38], with the addition 

of the range comparison returned by two adjacent beams presented in [21]. Moosmann et al. [36] projected 

a point cloud onto a cylinder whose axis was the rotational axis of the scanner; the local convexity 

criterion was applied to segment the ground. In our experiment, various features were tested and a 

conclusion was presented, that is, multi-features with a loose threshold should be considered to address 

challenges in various environments. 

After an obstacle is detected, the dynamic obstacles and road curbs are tracked. Tracking multiple 

dynamic objects is a complex problem that is generally divided into two parts: data filtering and data 

association. Filtering is the sequential estimation of the state of a dynamic object. This process is typically 

performed using Bayesian filters and requires a specific motion model to predict the positions of tracked 

models in an environment. After predicting the positions of existing tracks, data association is performed 

to assign observations to existing tracks. Although the framework is the same as the one previously 

mentioned, details vary. A bounding box was employed to classify the characteristics of the obstacle, 

and the global nearest neighbor was applied in data association to predict obstacles in [31]. The Junior [37] 

tracked an obstacle by identifying the area where changes occurred; a set of particles were then initialized 

as possible object hypotheses to implement rectangular objects with various dimensions at slightly 

different velocities and locations to track the dynamic obstacle. Another proposed approach was grouping 

the classified obstacle range returns into local line features that are tracked across consecutive scans 

using a multiple-hypothesis Kalman filter [39]. In road curb tracking, two typical Bayesian methods 
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were combined in [21], namely, the interacting multiple model-probabilistic data association filter 

approach. Another work [40] focused on the particle filter. 

A framework for detecting and tracking road curbs and dynamic obstacles is presented in this study. 

First, ground segmentation is performed with dynamic obstacles clustered simultaneously by combining 

multi-features from both the point cloud and the obstacle grid map generated from the point cloud. This 

process was tested robustly in various urban and rural environments. A general approach to detect 

obstacles is ground segmentation followed by obstacle clustering. However, a novel method is presented 

in the current work wherein obstacles are clustered during ground segmentation, which reduces time 

consumption. In addition, the features extracted from the Velodyne LIDAR raw data are studied 

comprehensively in this section. To our knowledge, this work is the first attempt to conduct such a study. 

Second, geometric parameters are obtained separately for dynamic obstacles and road curbs. Local 

information is applied to dynamic obstacle detection using the Karhunen–Loeve transformation, whereas 

global information is applied to road curb detection using distance transformation. Third, the processes 

involved in the tracking procedures for dynamic obstacles and road curbs are completely different. A Kalman 

filter is employed for dynamic obstacles, whereas road curbs are fitted using the snake model. The Kalman 

filter has been proven to be a minimum-variance state estimator for linear dynamic systems with 

Gaussian noise and the best linear estimator for non-Gaussian noise [41], which is suitable for this work. 

Moreover, the improved real-time performance of the proposed approach compared with other Bayesian 

filters, e.g., particle filter, makes it applicable to high-speed unmanned vehicles. The snake model is 

selected for its capability to combine local curvature information with overall continuous information. 

To our knowledge, tracking and detecting dynamic obstacles and road curbs are performed separately in 

previous works. By contrast, these two processes are combined in the current work. In the proposed 

framework, previous information can be applied to detect obstacles. 

The succeeding portions of this paper are organized as follows: The dynamic obstacle and road curb 

detection process are described in Section 2. The process of tracking road curbs and dynamic obstacles 

is discussed in Section 3. The experimental procedures are presented in Section 4. 

2. Detecting Road Curbs and Dynamic Obstacles 

2.1. Ground Segmentation 

As described earlier, the Velodyne LIDAR provides a comprehensive description of the ambient 

environment. It was employed in our experiments as follows. The Velodyne LIDAR was mounted on 

the test car, called Intelligent Pioneer, and the direction of the vehicle was marked as the starting 

direction from which 64 points would be sampled from the 64 lasers every 0.2°. Thus, a point cloud 

frame that consisted of 1800 × 64 3D points that described the all-around car environment would be 

obtained after one spin of the Velodyne LIDAR. The coordinates of the points were translated from the 

polar coordinate system into the Euclidean coordinates, wherein the up direction was set as the z axis 

and the forward direction was set as the y axis. To utilize the information in the raw data sent by the 

Velodyne LIDAR, the points were stored in an 1800 × 64 2D matrix called Clouds. In this matrix,  

the column represents a circle of points generated by one laser in one spin, whereas the row represents 

64 points generated by 64 lasers in one rotating position. The 1800 points generated by one laser in a 
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single spin that was projected onto the flat horizontal ground would form a circle. By contrast, the  

64 points generated by the 64 lasers in a fixed rotating position would form a straight line. The tested 

car and the point cloud frame obtained using the Velodyne LIDAR are shown in Figure 1. 

(a) (b) 

Figure 1. (a) The test car; (b) A point cloud frame. 

Based on the preceding analysis, road curbs or dynamic obstacles can be regarded as consisting of 

points that are not in the position they should have been if projected onto a flat horizontal plane. If the 

points are projected onto such a plane, the points will form concentric circles, and changing the positions 

of the points of the obstacles will affect local geometric characteristics and prevent concentric circles 

from forming. That is, detecting obstacle points is modeled as removing points projected onto a road 

surface, the local geometry of which is similar to those projected onto a flat horizontal plane. However, 

a road surface is not an entirely horizontal plane and the effects of various lasers are different because 

of varying scan ranges; hence, segmenting ground points by using only a single characteristic is difficult. 

When only a single characteristic is applied, a strict threshold causes leak detection of imperceptible 

obstacles, whereas a loose threshold results in false detection, particularly in field environments where 

road conditions are complex. The principle behind our work involves applying various features and 

intensively testing each feature using a relatively loose threshold. Given that the scan frequency is 10 Hz 

and the local features are only affected by neighboring points, which are generated nearly simultaneously, 

the ego-motion of the vehicle has minimal influence on the local feature. The features applied in this 

work are described in the following sections. 

2.1.1. Change in Radius between Neighboring Points in One Spin 

The most significant feature for a circle formed by one laser in one spin is the nearly similar distances 

between the LIDAR and the points. However, the distance will change significantly when the laser beam 

is blocked during rotation. Thus, the ratio between the radii of neighboring points in one circle can be 

designated as a feature. If the ratio is within [ ]
1 1

1 ,1− δ + δ , then the point is designated as a road surface 

point and is removed. 
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2.1.2. Detecting Broken Lines 

This method extracts line segments from the raw data obtained from the sensor in the polar coordinates. 

The line segments are classified into road and obstacle segments. A detailed description of this method 

is provided in [20]. This feature is applied to detect only straight lines alone as a supplement of the points 

filtered by other features. The points between two broken lines are fitted with a line model. The points 

will be designated as non-ground if the line model fits well. This feature is particularly applicable to 

boundary points with a straight model, e.g., straight road curbs, vehicle edges, etc. However, it will fail 

when applied to curved boundaries. 

2.1.3. Tangential Angle 

As mentioned earlier, a circle will form if the points generated by the same laser in one spin are 

projected onto a flat horizontal plane. However, this process will not occur if an obstacle exists.  

This situation is illustrated in Figure 2. 

(a) (b) 

Figure 2. (a) A sample point cloud; (b) the points formed by one laser in one spin. 

The figure depicts a driving environment on an urban road whose boundaries are formed by a parterre. 

Figure 2b shows a portion of Figure 2a. Hence, Figure 2b is formed by one laser in one spin, whereas 

Figure 2a is formed by a total of 64 lasers in one spin. 
As shown in Figure 2b, situation varies according to projection position. Based on this figure, if a 

point , e.g., point P, is projected onto a road surface, then the tangential angle formed by its radial 

direction, i.e., OP
→

, and its tangential direction, which is expressed by two of its symmetrical neighboring 

column points in Clouds, i.e., MN
→

, is nearly perpendicular. Otherwise, if the point, e.g., point Q, is 

projected onto an obstacle, then its radial direction, i.e., OQ
→

, and its tangential direction, i.e., GH
→

, will form 

an acute angle. Thus, ground segmentation can be described as follows: if the absolute value of the 

cosine of the tangential angle is less than the threshold 2δ  , then it is regarded as a road surface point 

and is removed. 



Sensors 2015, 15 21937 

 

 

This feature is particularly applicable to obstacles that are far from the vehicle because the farther a 

point is, the larger the value of the tangential angle formed by the obstacle. 

2.1.4. Local Height Difference 

Assuming that the road is flat; the height difference in a local area will then be small. Nevertheless; 

an obstacle causes a sudden change in height. The point cloud is projected onto a 512 × 512 grid map; 

wherein each pixel covers a range of 20 cm × 20 cm. Hence; a range of approximately 100 m × 100 m of 

the environment will be covered. The maximum height difference will be calculated in each pixel. The pixel 

will be marked as an obstacle area if the height difference exceeds the threshold 3δ . 

2.1.5. Gradient in the Radial Direction with a Dynamic Threshold 

As mentioned earlier, the 64 points generated by 64 laser beams in one direction will form a straight 

line when they are projected onto a flat plane. However, the line will be broken if it is blocked by an 

obstacle. Thus the gradient in the radial direction will be changed. The dynamic threshold of the change 

in gradient is obtained from the inner points in this direction by tripling the variance. A detailed 

description of this work is provided in [42]. 

2.1.6. Determining the Threshold of the Features 

A total of 17 features are tested in our experiment. The features mentioned from Sections 2.1.1–2.1.5 

are proven to be effective and robust, whereas other features cause leak detection of the obstacles.  

For example, the height difference between neighboring points in one spin from a laser, which is a feature 

adopted in many works, will remove distant road curb points because height difference changes 

gradually when points are projected. To provide an analogy, if the height of a road curb is 10 cm and up 

to 10 points are projected onto it from one laser in one spin, which is possible in an actual situation, then 

the average height difference is 1 cm. Thus, the point will be removed. To determine the threshold for 

the first and third features, an experiment was conducted to obtain the statistics for the distribution of 

the feature values of the points projected onto the ground. The result is shown in Figure 3. 

As shown in the figure, the range for the change in radius between neighboring points in one spin  

is [0.997, 1.003]. Thus a looser threshold of 0.05 is adopted in this work. Although the range for the 

third feature is [0.915, 0.965], our experiment demonstrates that a threshold with a value near 1 removes 

the points belonging to non-ground points near the vehicle. Therefore, a considerably looser threshold 

of 0.6 is adopted. The threshold for the fourth feature was set to 15 cm in [38]. However, a looser 

threshold of 10 cm is adopted in this work to detect unobvious obstacles. Details are shown in Table 1. 

Table 1. Thresholds adopted in the experiment.  

δ1 for feature in Section 2.1.1 0.05 
δ2 for feature in Section 2.1.3 0.6 
δ3 for feature in Section 2.1.4 10 
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Figure 3. Distributions for features 1 (a) and 3 (b) of points projected onto the road surface. 

2.2. Obstacle Clustering 

To our knowledge, previous works have processed road surface segmentation and obstacle  

clustering separately. By contrast, clustering and ground segmentation are performed simultaneously in 

our work. Hence, a point is assigned to an obstacle point cluster once it is detected. The proposed method 

offers two advantages over previous approaches. First, processing time is reduced because an extra 

obstacle clustering step is eliminated. Clustering is conducted during obstacle detection and the position 

of the test point can be obtained; thus, clustering can be performed locally instead of globally. Second, 

previous clustering information can be utilized in subsequent detection. This advantage is demonstrated 

in our experiment. Neighboring information can also be regarded as a feature to detect obstacles.  

For example, the points on top of a bus will be removed if all criteria are satisfied. However, if the 

boundary of the bus is detected after all the criteria are satisfied, then the points on top of the bus can be 

detected using a looser threshold because detecting the boundary of the bus suggest that neighboring 

points are likely to be obstacle points. If the neighbor of a point is designated as an obstacle, then the 

point can be identified as an obstacle with less constraint. In our experiment, if no obstacle point is 

detected among the neighbors of the tested point, then the combination of all the criteria mentioned in 

Section 2.1 except for the second criterion, called criterion set 1, should be satisfied to designate the 

point as an obstacle point. Otherwise, only the combination of the local height difference and tangential 

angle, called criterion set 2, should be satisfied. An ID is attached to each obstacle cluster during the 

detection process and an obstacle map is used to record the clusters that have been built based on the 

grid map. However, unlike that in the grid map, the information registered in an obstacle map is the ID 

of the cluster to which the pixel belongs to. Moreover, a list of detected clusters is maintained and 

updated during the process. The process flow is shown in Figure 4. 
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Figure 4. Process flow for clustering. 

2.3. Calculating Obstacle Cluster Shape Characteristics 

A number of clusters are obtained after the process described in Figure 4 has been performed.  
For each cluster kζ  that consists of points {( , , )}i i ix y z , with i = 1,2,3,…,N, the shape characteristic for 

the projection on the x – y plane is calculated as follows: 

(1) The center position 
0

kO  of the cluster is calculated as follows: 

0
1

1 N
k

i
i

centerX x
N =

=   (1)

0
1

1 N
k

i
i

centerY y
N =

=   (2)

(2) The covariance matrix in the x – y plane is calculated as follows: 

0 0 0 0 0
1

1
[ , ][ , ]

N
k k k k k T

i i i i
i

C x centerX y centerY x centerX y centerY
N =

= − − − −  (3)

(3) The eigenvalue and eigenvector of 
0

kC  are calculated and saved in matrices P and X: 
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As proven in the Karhunen-Loeve transformation, the principal component denotes the direction in 

which the cluster points are irrelevant. The principal component can be obtained by transforming the 

rectangular axis through rotation transformation defined by the eigenvector of the covariance matrix, 

i.e., 0
kX . The dynamic road obstacle are mostly vehicles, which can be represented by a cuboid in 3D or 

a rectangle in 2D. Thus, the forward direction of the dynamic obstacle can be represented by its irrelevant 

direction, i.e., 1,
0

kn


, in 2D. 

The x – y points in 0
kζ  are projected onto two directions defined by 1, 2,

0 0,k kn n
 

, which are perpendicular 

to each other. Half of the length and width can be determined by calculating the maximum distance of 

the projection onto the center. Hence, the minimum bounding box can be obtained in the obstacle map. 

Moreover, the height can be determined by calculating the maximum difference in the z direction. The 

height, length, and width of an obstacle are saved in the state variables 0
kH , 0

kL , and 0
kW , respectively. 

2.4. Detecting Road Curbs 

The most significant feature of a road curb is its continuity. However, local discontinuity may affect 

this feature. Discontinuity may result from natural road curbs or the leak detection of a road curb because 

it is unobvious. To enhance the continuity information of a road curb and reduce local discontinuity,  

a smoothing filtering technique is employed on the grid map. Filtering is performed through the  

following steps: 

(1) As a key step, binarization is conducted on the obstacle map wherein obstacle pixels are marked 

as 0, whereas other pixels are designated as 255. This step is followed by smoothing filtering, in 

which the possibility of a pixel marked as a road surface is designated as its intensity.  

The intrinsic logic of filtering is as follows: when a pixel is far from the pixel marked as an 

obstacle, then the possibility that it is a road surface increases. In the map, the difference between 

the pixel and its neighboring eight pixels should not exceed 2. To satisfy this restriction, intensity 

difference threshold filtering is performed from the top left corner to the bottom right corner and 

then from the bottom right corner to the top left corner. To illustrate this step, a pixel and its eight 

neighboring pixels are shown in Figure 5. 

 

Figure 5. 0P  and its eight neighboring pixels. 

In the first iteration from the top left corner to the bottom right corner, the effect of pixel 0P  on its 

neighboring pixels is described as follows: 

0min{ 2, }i iP P P= +  1~ 4i =  (5)

In the second iteration from the bottom right corner to the top left corner, the effect of pixel 0P  on its 

neighboring pixels is described as follows: 
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0
min{ 2, }

i i
P P P= +  5 ~ 8i =  (6)

(2) A threshold filter is used on the map to identify the road area. The threshold is set to 20 in this 

work. A pixel value larger than 20 is set to 0; otherwise, it is set to 255. 

(3) A neighboring road pixel search algorithm is employed to detect the road area. The algorithm 

starts from (256, 100), which is the position of a vehicle, to search the eight neighboring pixels. 

The pixel is designated as a road surface pixel only if all of its 24 neighboring pixels in a  

5 × 5 grid are 0. Once a pixel is designated as a road surface pixel, it is then added to the road 

surface area and a search is performed on its eight neighboring pixels iteratively. A drivable area 

will be identified at the end of the iteration. To accelerate the process, the search is restricted to 

a rectangular area in the vehicle forward direction. 

(4) A road curb is identified by searching the boundary of the road area, which is described in detail 
in our previous work [42], and stored in { , 1~ }iC P i N= = . Finally, a least square fit is applied 

to C to form a quadratic curve. 

An example of this process is shown in Figure 6. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Example of road curb detection. (a) Original image obtained by the camera that 

describes the local environment; (b) Original grid map obtained by the Velodyne LIDAR; 

(c–f) Results for Steps 1–4, respectively. 
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3. Tracking Road Curbs and Dynamic Obstacles 

Tracking is a complex problem that can be divided into two steps: prediction and updating the 

prediction. Prediction is the sequential estimation of the state. It is typically performed using Bayesian 

filters that require a specific motion model to predict the positions of the tracked objects in the 

environment. After predicting the positions of existing tracks, data association is performed to assign the 

observations to existing tracks. The tracking of road curbs and dynamic obstacles is addressed separately 

in our work. A road curb is a static obstacle in the environment; hence, the variation of its position 

between different frames merely depends on the motion of a vehicle. For dynamic obstacles, however, 

the variation in state depends on both the motion of a vehicle and the state of the dynamic obstacles. The 

motion information of a vehicle can be obtained from the Global Positioning System (GPS) and inertial 

navigation systems (INSs). The processes of tracking road curbs and dynamic obstacles are described in 

detail in the following sections. 

3.1. Tracking Road Curbs 

3.1.1. Predicting Road Curbs 

As mentioned earlier, a road curb can be considered a static obstacle and predicting a road curb merely 

depends on the motion states of a vehicle. The motion of a vehicle is simultaneously modeled as a 

transfer motion and a rotating motion. The motion of the road curb can be modeled as the relative motion 

in the negative direction of the vehicle, which can be obtained directly from Synchronous Position, 

Attitude, and Navigation (SPAN)-CPT. The SPAN technology combines two different but complementary 

technologies: a global navigation satellite system (GNSS) and an Inertial Navigation System (INS). The 

absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) gyro and 

accelerometer measurements are tightly coupled to provide an exceptional 3D navigation solution  

that is stable and continuously available, even through periods when satellite signals are blocked. The 
state space equation for this static model is presented to model the road curb motion { , 1~ }iC P i N= =   

as follows: 

^

1

i
i

k k k kP A P B+ = +  (7)

where: 

C : pixel set that consists of a road curb, 
( , )i i i TP x y= : a curb pixel, 

, ,

, ,

cos( ) sin( )

sin( ) cos( )
v k v k

k
v k v k

A
ϑ ϑ 

=  − ϑ ϑ 
, 

, , , , , , ,

, , , , , , ,

( )cos( ) ( )sin( )

( )sin( ) ( )cos( )
v k v k v k v k v k v k v k

k
v k v k v k v k v k v k v k

x x y y x
B

x x y y y

 − Δ + ϑ − Δ + ϑ +
=  Δ + ϑ − Δ + ϑ + 

, 

,v kϑ : rotation of the vehicle, 

, ,,v k v kx y : x and y coordination of the vehicle in the map, 

, ,,v k v kx yΔ Δ : transformation in the x and y directions. 
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3.1.2. Updating the Prediction of a Road Curb 

To increase the accuracy of the predicted road curb points, the predicted road curb should converge 

to the road curb in this frame by adopting the result of ground segmentation. As mentioned earlier,  

the most significant feature of a road curb is its continuity. However, local discontinuity occurs because 

of two reasons. First, discontinuity is caused by the scene, e.g., the adjacent parterre. Second, leak 

detection of a road curb is inevitable because road curbs are not obvious obstacles that may be  

concealed by dynamic obstacles on the road. Considering global continuity and local discontinuity, the 

snake algorithm is applied to update prediction. 

The snake model was proposed by Kass [43]. A snake is an energy-minimizing spline guided by 

external constraint forces and influenced by image forces that pull it toward features such as lines and 

edges. The energy function is defined by the integration of three items, as follows: 

int ( ) ( ( )))snake imageE E E s ds= + ν ν(s)  (8)

where 2 2
int ( ) ( ( ) | ( ) | ( ) | ( ) | ) / 2s ssE s s s s= α +βν υ ν(s)  represents the internal energy of the spline because 

of bending, and 2( ( )) ( ) | ( ) |imageE s s I= −γ ∇ν ν  denotes the external energy that corresponds to the edge 

features of the image. Parameters ( ), ( ), ( )s s sα β γ  denote the weighting coefficients of elastic energy, 
curvature energy, and external energy, respectively; whereas =ν (s) (x(s),y(s))  represents the pixel 

coordinates on the spline. 

To decrease the time consumed in updating the road curb, the elevation map is applied. Some noise 

points are detected in the grid map because only the height difference feature is applied to update prediction. 

This decision is based on two considerations. First, the elevation map can be obtained immediately once 

the LIDAR point is parsed, which can improve real-time performance. Second, the height difference in 

our experiment is relatively robust and only a few discrete noise points remain, which will not affect the 

final result because the snake model considers global continuity information. The iteration starts from 

the predicted road curb point obtained using Equation (7) and continues until the local minimum value 

of Esnake is obtained. Our experiment proves that the curve converges to the road boundary when the 

minimum value of the Esnake is obtained. 

For a rapid convergence, the greedy snake [44] is adopted in our work. The vehicle dynamic 

information obtained by GPS and INS is accurate and a road curb is a static obstacle; hence, the local 

optimum value is sufficient to converge to the actual road curb in our experiment. 

3.2. Tracking Dynamic Obstacles 

The motion state of a dynamic obstacle in a frame reflects its relative position with a vehicle.  

Thus, its motion state depends on both the dynamic obstacle and on itself. Unlike a road curb whose 

motion state between frames can be obtained from the sensors in a vehicle, a motion state vector is 

maintained for each tracked dynamic obstacle. The track of dynamic obstacles is modeled as a linear 

time invariant system in our experiment, and the Kalman filter is used. 

The motion state for each dynamic obstacle is composed by and given as:  
, , , ,[ ]k k x k y k x k y k k k k k T

t t t t t t t t t tx y v v a a L W= ϑ αk
tS  
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where ( , )k k k
t t tO x y=  is the center position of a dynamic obstacle; , ,( , )k x k y k

t t tv v v=


 is the velocity of a 

dynamic obstacle; , ,( , )k x k y k
t t ta a a=  is the acceleration of a dynamic obstacle; k

tϑ  is the forward direction 

of a dynamic obstacle; k
tα  is the angle acceleration of a dynamic obstacle; and ,k k

t tL W  are the length and 

width of a dynamic obstacle, respectively. To initialize k
tS , once a new cluster ( , )k k k

t t tO x y=  is detected, 
k
tϑ  and ,k k

t tL W  can be obtained through the process presented in Section 2.3 and the others are initialized 

as 0. 

The dynamic obstacle motion system is modeled as follows: 

1
k k k
t t tS AS w+ = +  (9)

k k k
t t tZ S v= +  (10)

where A = 

2

2

1
1 0 0 0 0 0 0 0

2
1

0 1 0 0 0 0 0 0
2

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

T T

T T

T

T

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 is the system transfer matrix; and k
tw  and k

tv  are 

the independent zero-mean Gaussian noise variables to process and measure with covariance ,w kR  and  
,v kR , respectively. 

3.2.1. Predicting Dynamic Obstacles 

The motion state and its covariance matrix of each dynamic obstacle in the present frame from the 

last frame is predicted as follows: 

^

1

k
k

t tS AS+ =  (11)

The covariance 
^

1

k

tP +  for 
^

1

k

tS +  is estimated as follows: 

^
,

1

k
k T w k

t t tP AP A R+ = +  (12)

3.2.2. Updating Dynamic Obstacles on a Road 

In this section, data association is performed between the newly detected obstacle point and the historical 

dynamic obstacle list. Once a point is designated as an obstacle by applying the rules in Section 2.1, the 

point is tested to determine whether it is located on the road. A road is static and the measurement of the 

sensors in the vehicle and is accurate; hence, the predicted road area between the predicted road curb 
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obtained in Section 3.1.2 is employed. If the projection of the point onto the x − y plane is not on the 

road surface, then the point is not clustered because it does not affect driving decision. Otherwise, it is 

designated as a road obstacle. The point will be matched first with the dynamic obstacles in the historical 

dynamic obstacle list. If the match succeeds, then the motion state of the matched dynamic obstacle will 

be updated. Otherwise, a new dynamic obstacle will be created. 

The neighboring pixels will be searched to determine whether they are attached to a cluster. If a 

neighboring pixel is attached, then it is included in the same cluster. Otherwise, the pixel is evaluated to 
identify the cluster to which it belongs to. For points ( , )P x y=  and cluster k

tς , the process is as follows: 

(cos( ),sin( )k k k
t t tn = ϑ ϑ


 (13)

, | * |k l k k
t t td O P n=

 
 (14)

, | | | |k w k k
t t td O P n= ×

 
 (15)

, 2 , 2

2 2

1
( )

21

2

k l k w
t t
k k
t t

d d

L Wk
t k k

t t

pos e
L W

− +

=
π

 (16)

The largest pos  among k
tpos  is determined. If a pos  is less than the threshold, then the point is dealt 

with, as indicated in Section 2.2. Otherwise, the kth cluster is updated with the new point. The process 

is shown as follows: 

max( )
dealt as shown in Section 2.2 

k
p tk

t
k

p

update the
pos pos

 ≥ δ ς= < δ
 (17)

After processing all the points, a list of clusters is established for this frame. If a cluster is  

newly detected, then it is initialized as described earlier. Otherwise, the observed state vector 
, , , ,[ ]k k x k y k x k y k k k k k T

t t t t t t t t t tx y v v a a L W= ϑ αk
tz  can be obtained as follows. 

( , )k k k
t t tO x y= , k

tϑ , and ,k k
t tL W  can be identified through the process described in Section 2.3. 

The other components of the state vector can be obtained as follows: 

, 1
k k

x k t t
t

x x
v

T
−−=  (18)

, 1
k k

y k t t
t

y y
v

T
−−=  (19)

, ,
, 1

x k x k
x k t t
t

v v
a

T
−−=  (20)

, ,
, 1

y k y k
y k t t
t

v v
a

T
−−=  (21)

1
k k

k t t
t T

−ϑ − ϑα =  (22)

The state vector and its covariance are updated as follows: 
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^

^
,

k

tk
t k

v k
t

P
Kg

P R

=
+

 (23)

^ ^

( )
k k

k k k
t tt t tS S Kg Z S= + −  (24)

^

( )
k

k k
tt tP I Kg P= −  (25)

4. Results and Discussion 

The experiment was performed on our UGV, called the Intelligent Pioneer, which was equipped with 

various sensors, e.g., a camera, an infrared camera, an Ibeo LIDAR, a Sick LIDAR, a Velodyne LIDAR, 

and SPAN-CPT. The sensors used in this work were the Velodyne LIDAR and SPAN-CPT.  

The processor used for the LIDAR data was a Core™ i7-3610QE with a process frequency that could 

be increased to 3.3 GHz and a cache of 6 M. 

First, ground segmentation experiments were conducted under various road conditions. The proposed 

multi-feature ground segmentation algorithm was proven to be effective under various road conditions. 

The experiment was performed in both urban and rural environments. Four representative scenes are 

shown in Figure 7. 

The original image obtained using the camera and the original grid map developed by the Velodyne 

LIDAR are shown in the first and second columns, respectively, whereas the results of ground segmentation 

and curb fitting are shown in the third column. The yellow area denotes the drivable area, whereas the 

red and green lines represent the road curb and driving guide line, respectively. 

Two urban scenes are shown in the first two rows. The first row shows a straight road that is not flat. 

On the one hand, the road surface is cracked. On the other hand, it is not clean because of the presence 

of mud. Given such disturbances, the points projected onto the road surface do not form a smooth circle 

but an arc with a high-frequency noise. However, based on the third column, the road surface was 

detected as clean and without noise. This result was achieved by adopting features in two aspects: the 

local point characteristics described in Section 2.1 and the local area continuity feature processed 

similarly in Section 2.4. Multi-feature road surface segmentation removed nearly all the noise points on 

the road surface because a multi-feature scheme with a relatively looser threshold was applied.  

The remaining noise points, if they existed, were eroded by the surrounding continuous road surface 

area. The curve shown in the second row demonstrates the capability of the algorithm to detect road 

curbs. In general, the curve fits the general road curb well. However, some gap exists in our experiment; 

these gaps are mainly caused by two reasons. First, the curve is a quadratic, and thus, it may be unsuitable 

for a curb in an actual scene. Second, the dynamic obstacle near a road curb will be detected as a road 

curb. However, driving decision will be unaffected because the continuity of the drivable area is not 

influenced by the dynamic area, as shown in Figure 8. As shown in this figure, the packed cars  

and pedestrians along a road curb are detected as the road edge, which causes the irregularity of  

the road curb. However, this phenomenon will not affect driving decision because the given drivable 

area is reasonable. 
  



Sensors 2015, 15 21947 

 

 

 

Figure 7. (Left column) Original image taken by a camera; (Middle column) Original  

grid map obtained by the Velodyne LIDAR; (Right column) Ground segmentation and curb 

fitting results. 

The third and fourth rows in Figure 7 depict the rural environment, wherein the boundary is 

represented by bushes, i.e., positive obstacles, in the third row, whereas the boundary is represented by 

a ditch, i.e., a negative obstacle, in the fourth row. The challenge in ground segmentation in a rural 

environment is considerably greater than that in an urban environment because points projected onto the 

road surface are irregular. Moreover, diffuse reflection occurs because road surface is coarse. Hence, the 
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local point feature becomes increasingly irregular. In the experiment conducted in the rural environment, 

height measurements were inaccurate because of the position of the horizontal projection, which might 

be caused by the jolt of the vehicle in the rural environment. Based on the analysis, the local coordinate 

system keeps changing with the fluctuation in pitch of the vehicle during a jolt, which results in the 

incorrect calculation of the z value of the point. Each single feature was tested in our experiment, and 

the results were unsatisfactory. However, combining multiple features yielded an excellent result. 

 

Figure 8. Scene where the vehicle parked along the road side was designated as the road 

curb. (Left column) Original image taken by camera; (Middle column) Original grid map 

obtained by Velodyne LIDAR; (Right column) Ground segmentation and curb fitting results. 

 

  
(a) (b) (c) (d) 

Figure 9. Comparison between multi-feature road surface segmentation and segmentation 

based on height difference. Left to right columns: (a) Original image taken by a camera; (b) 

Image resulting from the height difference feature with a strict threshold; (c) Image resulting 

from the height difference feature with a loose threshold; (d) Image resulting from the  

multi-feature scheme with a loose threshold. 
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The vehicle drives under various road conditions; hence, the LIDAR finds performing effective 

ground segmentation to be difficult because of the irregularity of the source point cloud, which results 

from vehicle fluctuation and the diffused reflection of the ground. To address this problem, the 

philosophy behind ground segmentation is a multi-feature scheme with a relatively looser threshold. 

Experiments were conducted by applying different algorithms under various road surface conditions in 

ground segmentation to exhibit the advantages of the multi-feature scheme. Height difference is a widely 

applied characteristic in ground segmentation; hence, a comparison between segmentation that applies 

height difference and segmentation that applies the fusion of features is presented in Figure 9. The two 

scenes shown in the figure represent urban and rural environments. This figure indicates that when road 

surface is flat and road curb is relatively low, a loose threshold is more suitable when applying the single 

height difference feature because the strict threshold classifies a true road curb as road surface. The trees 

on the roadside are classified as road curbs instead, which is shown in the second column of the first row. 

However, the environment is more complex in rural areas. Based on the image, nearby points are 

classified as non-ground points and road surface is restricted to a small area. 

Figure 10. Tracking experiment on the distance and velocity of a vehicle under  

various velocities.  

In tracking dynamic obstacles; an experiment was performed to track vehicles under various velocities. 

The positions and velocities of a target vehicle that was moving at various velocities were recorded by CPT. 

Meanwhile; the test vehicle was stopped to estimate the position and velocity of the target vehicle.  

Three groups of experiments are shown in Figure 10; with speeds of approximately 2; 3; and 6 m/s.  

The data obtained by CPT are shown in blue; whereas the estimations are indicated in saffron yellow. 

The top image illustrates the track of the distance of the target vehicle from the test vehicle; whereas the 

bottom image shows the track of the velocity of the target vehicle. This figure also indicates that tracking 

under a low speed is accurate; whereas tracking under a high speed is relatively inaccurate. Based on the 

analysis; this finding is caused by two reasons. First; the result occurred because of the property of the 

Kalman filter; which considers previous information. Thus when relative speed is high; the frames that 

can be tracked for the target vehicle are few. Second; this phenomenon occurred because fluctuation 

increases with speed. However; the relative speed between the test vehicle and the target vehicle is low. 



Sensors 2015, 15 21950 

 

 

Thus; when the vehicle is on an actual driving environment; our algorithm exhibits good capability in 

tracking the vehicle. 

The two scenes in Figure 11 show our experiment conducted in an actual driving environment.  

The detected dynamic obstacle is marked in blue and surrounded by a minimum bounding box.  

The number on the right column denotes the velocity of the target vehicles. As shown in Figure 11, the 

first row indicates the track of a single vehicle on a straight road, where the test vehicle is stopped by 

the road curb. As the test vehicle stops, the velocity of the target vehicle is reflected. However, this 

velocity is the relative velocity between the test vehicle and the target vehicle. Hence, the vehicle moving 

toward the opposite direction has high speed, whereas the velocity of the vehicle moving in the same 

direction is relatively low. This phenomenon is illustrated in the second scene, which represents a 

crossroad environment. The left target vehicle is moving toward the opposite direction with higher 

velocity, whereas the right vehicle is moving toward the same direction with lower velocity. 

 

 

Figure 11. Dynamic obstacle track result. (Left column) Original image taken by a camera; 

(Middle column) Original grid map obtained by the Velodyne LIDAR; (Right column) 

Ground segmentation and dynamic obstacle track result. 

To evaluate the real performance of the proposed algorithm, experiments on urban and rural 

environments were conducted. The satellite aerial photographs of two scenes are shown in Figure 12. 

The urban scene Figure 12a is composed of various road conditions: straight roads, crossroads, and 

curved roads. In the rural environment Figure 12b, the road condition is more complex. The bad road 

condition causes the vehicle to jolt, which makes the generated point cloud more irregular. The length 

of the route is about approximately 5 km in Figure 12a and approximately 800 m in Figure 12b. 
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First, the real-time performance for each frame is obtained and the result is shown in Figure 13.  

As shown in the figure, the real-time performances of the urban scene and the rural scene are nearly the same. 

Moreover, the figure shows that the real-time performance is invariant to time. 

The distribution of process time for each frame is illustrated in Figure 14. As shown in the figure, 

most of the samples fall within [30,40] in both cases. 

(a) (b) 

Figure 12. Satellite aerial photographs of the urban scene (a) and the rural scene (b). 

 

Figure 13. Real-time performances of the urban scene (a) and the rural scene (b). 

An experiment on the robustness of road curb detection was also conducted. Ground segmentation is 

the key procedure for an effective of the road curb detection. As shown in our experiment, accurate 

ground segmentation can guarantee the effectiveness of road curb detection and a minor segmentation 

error was tolerable because of the error elimination process in the following step. Only significant errors 

will lead to incorrect detection of the road curb. Thus, a statistic is proposed. This statistic consists of 

four contents: the percentage of successful ground segmentation, the percentage of ground segmentation 

with minor errors whereas wherein the road curb detection is not affected, the percentage of incorrect 

ground segmentation which caused leak detection of the road, and the percentage of incorrect ground 

segmentation which caused false detection of the road. The results are shown in Table 2. As indicated 

in the table, performance is better in urban scenes, wherein road conditions are better than in rural scenes. 
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Leak detection of the road curb occurred in cases wherein the road curb is not distinctive from the  

road surface. However, false detection occurred in crossroad situations which are not tackled in this work 

in urban scenes and in those cases wherein the road situation is severe in rural scenes. 

 

Figure 14. Distribution of process time for each frame in the urban scene (a) and the rural 

scene (b). 

Table 2. Statistics on ground segmentation and road curb detection. 

Scene Accurate Minor Error Leak Detection False Detection 

Scene 1 97.44% 1.85% 0.55% 0.16% 
Scene 2 89.29% 6.54% 1.56% 2.61% 

5. Conclusions/Outlook 

A framework for the application of a multi-line LIDAR to model key elements that comprise the 

driving environment, i.e., road curbs and dynamic obstacles, is proposed in this work. The framework 

combine the modeling of the road information and the road dynamic obstacle as an organic entirety.  

This approach is proven to be robust and satisfied the requirement for the online process in the 

experiment presented in earlier sections. A quick and robust modeling of dynamic obstacles and road 

curbs consists of several procedures that all pose a significant influence on the final result. To segment 

the ground robustly, in contrast to the application of single or very few features in ground segmentation 

in previous work, the philosophy of multi-features with loose thresholds is employed in this work, which 

proves to be adaptive to various environments. As for the dynamic obstacles, in contrast to previous 

works where dynamic obstacles are clustered after the grid map is generated, dynamic obstacles are 

clustered in this work once they are classified as non-ground points. The latter approach has two benefits. 

First, the different strategies are applied depend on the neighborhood information of the tested point. 

When the neighbor points of the test point are designated as non-ground points, the possibility that the 

test point is a non-ground point increases, and thus, a looser threshold can be applied for the point to be 

designated as non-ground point. Second, clustering time is reduced because clustering is performed 

locally instead of globally. Moreover, shape features are calculated by adopting the Karhunen-Loeve 

transformation, which is the first time such a procedure is employed. In the tracking process, the shape 

features mentioned before are used to fuse current information with historical information. In road curb 
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detection, the distance image is applied to detect the road curb, whereas the snake model is used for 

tracking because of its capability to consider both local and global information. To our knowledge, the 

snake model has never been applied in road curb tracking for LIDAR data processing. By modeling road 

area, a vehicle can determine the path of its movement. By modeling dynamic obstacles on the road, a 

vehicle can determine places to avoid. The presented framework aimed to provide a novel framework 

for the application of multi-beam LIDAR under various road environment. Unlike the frameworks 

presented before, the purpose of the presented framework is to dig deep into the process of the application 

of multi-beam LIDAR to find a better way to organize the information flow. The robustness and the  

real-time performance are contradictory to some extent. The way to solve this problem is by finding a 

way to combine processes as much as possible. By combining different process together, information 

loss is eliminated between different procedures. What’s more, the process time is reduces because the 

application of local vicinity information. The framework is tested under various road conditions and 

proved to be able to model the road curb and the dynamic road obstacle robustly on-line. Further research 

will focus on simultaneous location and mapping using multi-beam LIDAR by integrating local and 

global information. 
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