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Abstract: A cyber-physical system (CPS) is composed of tightly-integrated computation,
communication and physical elements. Medical devices, buildings, mobile devices, robots,
transportation and energy systems can benefit from CPS co-design and optimization
techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to
progress in real-time computing, control and artificial intelligence. Multidisciplinary or
multi-objective design optimization maximizes CPS efficiency, capability and safety, while
online regulation enables the vehicle to be responsive to disturbances, modeling errors and
uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys
the run-time cooperative optimization or co-optimization of cyber and physical systems,
which have historically been considered separately. A run-time CPVS is also cooperatively
regulated or co-regulated when cyber and physical resources are utilized in a manner that is
responsive to both cyber and physical system requirements. This paper surveys research that
considers both cyber and physical resources in co-optimization and co-regulation schemes
with applications to mobile robotic and vehicle systems. Time-varying sampling patterns,
sensor scheduling, anytime control, feedback scheduling, task and motion planning and
resource sharing are examined.
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1. Introduction

A cyber-physical system (CPS) is “the next generation of system that requires tight integration
of computing, communication, and control technologies to achieve stability, performance, reliability,
robustness, and efficiency in dealing with physical systems of many application domains” [1].
A cyber-physical vehicle system (CPVS), ranging from automobile to aircraft and marine craft, is
composed of tightly-coupled locomotion, computational and communication components. Historically,
CPVS development has been driven by advances in closely-related (but not identical) autonomous
vehicle research [2,3] and cooperative vehicle control to increase system capacity and improve safety
and efficiency [4–7]. CPS research generally aims to synergistically integrate control, computing,
communications and physical systems in novel ways that leverage interdependent behavior.

CPSs have broad applicability and have been the topic of numerous committee workshops and
reports [8–13] focused on identifying and addressing next-generation opportunities and challenges.
Consumer devices, such as smartphones, multimedia players and gaming systems, respond to voice
commands, and wearable electronics are ubiquitous. Smart buildings are equipped with advanced
sensors, pervasive networking and efficient energy management systems [14]. Advances in medical
devices can lower costs and improve patient care [15–18]. New software-enabled functionality, increased
connectivity and physiologically closed-loop systems have the potential to reduce human error that can
cost lives [15,19,20]. A new energy service system dubbed the “smart grid” promises to utilize CPS
technologies to increase configurability, adaptability, reactiveness and self-manageability [21], but will
simultaneously require CPS breakthroughs in security to monitor, manage and thwart threats both to the
physical entities comprising the grid, as well as the cyber attacks on its networked components [22].
Most relevant to the work in this paper is the application of CPS research to vehicle systems. In this
domain, CPVS research offers an increase in autonomy, reconfigurability, reliability, system capacity,
safety, energy efficiency and robustness [23].

Human beings are the quintessential CPSs possessing heavily interdependent cyber (mind) and
physical (body) subsystems. Analogous to this mind-body paradigm, advanced CPVSs utilize both
cyber and physical resources. However, unlike the symbiotic mind-body awareness humans have, to
date, cyber and physical subsystems are unaware or only partially aware of the other. Typically, the
cyber system receives performance feedback and calculates trajectories and control inputs for only the
physical system. In this way, the cyber system serves the needs of the physical system. This particular
role in CPVS has received a great amount of research attention, most prominently in the form of control
theory, path planning and real-time system (RTS) theory. It is also likely that the physical system is
accomplishing a mission objective that services the goals of the cyber system, for example surveillance,
safe transportation, science data collection, etc. In this way, the physical system serves the needs of
the cyber system. This role, however, has historically been dominated by humans in-the-loop who
design high-level plans, set waypoints, control or modify tasks either through an interface or direct
software manipulation.

Comprehensive holistic CPVS co-design would account for cyber and physical resources spanning
the life-cycle of a system or system of systems [24]. This would include a priori co-design of the
structure, electromechanical and processing components, baseline software, communication protocols
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and subsystem composability and compositionality [25]. Holistic CPS run-time system design optimizes
and regulates electromechanical and processing element operation in accordance with mission goals
and system actuation, processing and energy constraints [26]. While either the a priori or run-time
CPVS design challenges could serve as a worthy survey topic, this paper focuses on run-time CPVS.
Continuing the analogy above, humans are not able to choose their bodies (i.e., the physical “hardware”),
and yet, still optimize perception, decision and action for their holistic mind-body system considering
both physical (body) and cyber (mind) resources. We consider CPS run-time co-design from the
perspective of co-optimizing and co-regulating available physical and cyber resources for a single vehicle
after the physical hardware has been manufactured. This means that models and algorithms must capture
preexisting characteristics and properties of the physical system, as they are not modifiable.

Emerging CPVS research extends the traditional independently-designed subsystem architectures for
modern vehicles toward methods of interdependent and integrated CPVS co-design. In Figure 1, we
show the often segregated design techniques contrasted with the tight coupling and integration in a
co-designed CPVS.

Figure 1. An evolution toward integrated cyber-physical vehicle system (CPVS)
run-time co-design.

CPVS research calls for new models, new abstractions, new performance metrics, new design
methodologies, new integration methods for large-scale systems, new methods of reasoning about
uncertainty and a revolution in how we think about computing [23,27]. While the depth offered by
separately modeling and analyzing physical and cyber subsystem behaviors is useful, aberrant system
behavior (i.e., when the laws of compositionality or composability do not hold) [25] may be undesirable
at best and dangerous at worst. Accounting for as many subsystem interactions as possible can reduce
the negative side effects of such behaviors, as well as providing provable holistic system characteristics
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(e.g., stability) [25]. Integrated analyses and strong co-design through coupling of cyber and physical
components can enable more efficient, safe, secure and capable systems as we increase the level of
autonomy in CPS devices and vehicles.

This paper contributes a survey of optimization and real-time control or regulation work as it
relates to CPVS design. We assimilate work across domains, but focus on aerospace applications
and offer a meta-level analysis for how the emerging CPS research community has merged modeling
and analysis methods from both cyber and physical perspectives. We offer suggestions about future
directions and outstanding challenges to achieve more holistic CPVS co-optimization and co-regulation.
Below, we first present a brief history of CPS followed by an overview of modern vehicle design and
operational challenges. We then provide a broad review of interdependent co-design techniques for
control (regulation) and optimization of CPVS and conclude with thoughts on remaining CPS challenges
and research needs.

2. History of CPS

The term “cyber,” as a prefix, stems from the field of research known as “cybernetics”, the scientific
study of control and communication in the animal and the machine [28]. Cybernetics as a field of
research in the modern era began in the 1940s with Norbert Wiener, Warren McCulloch, Ross Ashby,
Alan Turing and Grey Walter. Since then, however, semantically, “cyber” is usually associated with
information technology, computers and the Internet or to denote control in the computer or electronic
context [29]. Perhaps the most fitting definition of the word “cyber” from “cybernetics” stems from
Plato’s The Alcibiades and is “the study of self-governance” [30]. As a field of research, CPS strives to
improve self-governance for machines, infrastructure and devices.

In this paper, we denote as “physical” the tangible actuation, sensing, energy storage, structural and
mechanical components of a vehicle system. We use the term “cyber” for the intangible computation
and communication functions performed by the CPS similar to the body/mind analogy in animals.
This means “cyber” resources refers to available “bandwidth” for computing activities typically in the
form of task schedules, utilization of processor cores, etc. “Physical” resources are those physical
components that host vehicle systems and give rise to locomotion and direct environment interaction
(e.g., manipulation) functions.

In the last century, advances in communication, control and computing were primarily used as
individual tools in their respective domains. For example, advances in communication were used
strictly for communicating between humans without integration into more complex systems. However,
as technology has advanced, the integration of the tools and techniques within each domain into
more complex systems has provided a new frontier fusing communication, control and computing.
An excellent exposition on CPS research and its history can be found in [1]. We highlight select key
events on a timeline in Figure 2.
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Figure 2. Cyber-physical system (CPS) history.

3. Cyber-Physical Vehicle Systems

Modern automotive, marine and aerospace applications employ multiple layers of abstraction in
software (objects) and hardware (modules) to effect locomotion, internal and external communication
and data manipulation, such that mission goals are safely achieved. Autonomy is no longer a question of
“if”, but instead a question of “how much”. Each vehicle sector, aerospace, automotive and marine, has
wrestled with determining the best levels of autonomy for each mission given current technology and
expected operator knowledge and skill.

There are numerous architectures for designing CPVS, often stemming primarily from the robotics
community. These architectures are typically a variant of a sense-plan-act paradigm [31], a reactive
architecture [32] or guidance, navigation, planning and control loops [33]. The various levels of
abstraction in modern autonomy architectures provide corresponding evaluations of performance and
system guarantees that have become important indicators of the success of each subsystem. For example,
in control theory, stability guarantees are an extremely important indicator of safety for the reactive
subsystem. At the planning layer, metrics, such as completeness (guarantees that the algorithm will find
a solution if it exists), optimality (guarantees that the algorithm will find the best solution) and complexity
(maximum time and memory required by the algorithm to execute), are used to assess performance.

In general, the layers of abstraction in a system architecture can be decomposed into three basic
components: the lowest level reactive, control or acting layer, an intermediate execution, guidance or
sequencing layer and a high-level planning or deliberation layer [31,32,34]. The reactive or control layer
consists of low-level tight control of physical actuators typically employing feedback control techniques.
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The execution or guidance layer translates higher-level plans into reference trajectories or sequences of
actions for the reactive layer. Finally, the planning or deliberation layer consists of a task and motion
planning/scheduling algorithm. The planning layer typically requires combinatoric search to optimize
a continuous, discrete or hybrid state-space based on goals, constraints and metrics. A co-optimization
scheme for planning CPVS tasks and motions generates a desired physical trajectory through space/time
along with a real-time computing schedule [35–37]. Graph and state-space exploration techniques are
employed to generate optimal or desirable paths through a set of discrete states.

3.1. Vehicle Control and Optimization Techniques

At its core, CPVSs must achieve their locomotion and task-level mission objectives while meeting
safety and efficiency constraints. Planning and control therefore require sensing critical information,
selecting actions in the presence of uncertainty and translating high-level plans and objectives into
achievable goals for the control and guidance subsystems. Low-level control also requires specifying
actuator and configuration commands to all CPVS subsystems. Accomplishing these goals amidst
environmental and system disturbances and mitigating the other challenges as described below in
Section 3.2 has been the topic of much research in the past century.

Vehicle and environment “robustness” to uncertainties related to external disturbances, sensor noise
and modeling errors has been studied across the CPS disciplines. Although the precise metrics
for “robustness” in this context vary by research community, a dictionary definition of robustness
generally applies across research domains: “capable of performing without failure under a wide range of
conditions” [38]. For the physical system safety-critical functionality may require expensive high-quality
redundant components with predictable performance. Robust and resilient operation may also require the
implementation of physical filtering and fusion schemes using mechanical and electronic components.
For cyber systems, it requires digital filtering, data fusion and both retrospective (diagnostic) and
predictive (prognostic) analysis of system performance. At each abstraction layer, performance feedback
is often used to refine information input to the subsumed layer. Feedback inherently increases robustness
to noise and disturbances by using knowledge about the past to decide the future [39].

Digital control is perhaps the most widely-used method for computing feedback control or regulation
outputs to a CPVS to provide a robust response to model uncertainties and disturbances. Typically,
controllers are designed in either the digital domain directly or in the continuous-time domain and then
discretized [40,41]. However, these control systems are usually fixed-gain controllers, which assume
worst-case environmental challenges and are, thus, not co-designed with the cyber system in mind.

From the cyber perspective, real-time system (RTS) research focuses on task scheduling, itself
an optimization problem, to provide execution guarantees for hard-deadline tasks and best-effort
execution for soft-deadline tasks. RTS-centric CPS research has repurposed task execution and
scheduling paradigms to accommodate and provide guarantees for classes of tasks appropriate for
physically-embodied, highly-dynamic CPS. One example involves characterizing and scheduling tasks
with varying execution period [42,43].

Trajectory or physical motion optimization has typically been the domain of continuous-time
mathematical analysis, but has also grown to include graph search and probabilistic methods [44].
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Motion planning for CPVS generally finds trajectories for the vehicle over a continuous or discretized
(waypoint or knot point) state-space that minimizes cost metrics, such as fuel or energy use, elapsed time
and safe clearance from obstacles subject to constraints related to system dynamics and consumable
resources (e.g., energy). The conventional physical state-space may be augmented or transformed
through an appropriate mapping to manage problem complexity [45,46]. Optimal control techniques
generate trajectories that minimize costs while meeting constraints using methods, such as co-location
and dynamic programming [47].

A number of results from the control and RTS communities have improved our understanding of
control and optimization for coupled CPVS. Anytime control [48–50], feedback scheduling [50–52],
networked control system (NCS) [53–55], hybrid systems [46,56–58], time-varying sampling [59–61]
and sensor scheduling [62–66] are particularly relevant, covering a spectrum of topics related to an
increasingly holistic co-design approach to CPVS. A more thorough discussion of these domains and
research can be found in [67].

Because control and optimization of CPVS are the primary subjects of this paper, we describe
additional advances to facilitate CPVS co-design and integration in Sections 4 and 5.

3.2. CPVS Co-Design Challenges

Each CPVS domain presents common and unique challenges to CPVS co-design. These challenges
can be decomposed into several categories that cut across cyber and physical components of the system.
A true co-design will address CPVS challenges across all of the layers, loops and abstractions of
the CPVS architecture. Co-design and co-operation challenges cutting across all CPVS domains are
discussed below.

3.2.1. Energy Management

Energy management is paramount in any untethered CPVS, as fuel or battery storage resources
are almost always scarce. Due to the large power consumption requirements of most CPVS physical
propulsion or locomotion mechanisms relative to computational systems, most work to minimize energy
use in vehicle systems has focused on minimizing energy used for physical locomotion and actuation.
Energy-optimal solutions have therefore focused on optimizing trajectories (physical motions) and
feedback control or regulation responses.

Recent technological advances have pushed CPVS toward smaller vehicles with more “intelligence”
requirements for payload and vehicle data acquisition, processing and coordination. The reduction in
vehicle size has reduced energy requirements for locomotion, while the increase in onboard computing
and communication capacity requires more power for components powering computation. The result
is that some CPVS now demand as much or more power for computation as for propulsive and other
physical actuation systems. This shift, in turn, requires that small data-centric CPVS be co-designed to
optimize energy usage over cyber and physical resources. This requires optimizing cyber resources by
regulating real-time task schedules, activation of processor cores and communication devices and CPU
clock rates.
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The automotive sector has been particularly concerned with energy management as hybrid battery/fuel
vehicles have emerged [68–72]. In unmanned ground vehicle and field robotics applications, recent
work has examined optimal trajectories that account for spatial coverage, energy and time [73,74].
Because energy requirements of propulsive effectors enabling locomotion dwarf other power consumers
in commercial automobiles, aircraft, rotorcraft and space launch systems, energy management has
typically taken the form of optimal control over the physical vehicle (position, velocity) state [75–77].
Small unmanned aircraft system (UAS) and small spacecraft (CubeSat) provide more opportunities to
optimize allocation of cyber and physical resources, as will be discussed later.

3.2.2. Fault Detection and Diagnosis

In any CPS, including humans, fault detection, diagnosis and recovery is critical to robust and
resilient system operation. These fault management capabilities can be achieved through a combination
of hardware for sensing and redundancy and software for data processing and decision-making [78].
Because there is rarely a bijective relationship between signal inputs and decisions, significant computing
resources are often dedicated to detecting and then diagnosing problems. On the physical side,
fault-tolerant or redundant electronics [79] and sophisticated algorithms based on models of physical
systems [80,81] are frequently used.

From the cyber system perspective, software faults, generally exposed by rare events and/or complex
function and data interactions [82], are managed by careful design of software [83,84] and explicit fault
detection algorithms [85]. Rigorous adherence to good software engineering practices can reduce the
likelihood of software faults/failures [82]. Detection and robustness to adversarial attacks on the CPS
wherein estimation and control could be compromised are also critical for mission success [86,87].

Interestingly, a software fault detection scheme that is co-designed to detect both cyber and
physical faults must simultaneously detect faults in its own algorithm and models thereby complicating
co-designed fault detection schemes. However, co-designed fault tolerance methods must be developed
to account for the interactions between software-controlled physical and information systems, an
important area for future work.

3.2.3. Computational Resource Management

For CPVS with computing resources limited by size, weight, power or some combination, judicious
management of memory, disk space, CPU time, communication systems, sensors and actuation is critical
given ever-increasing computational requirements to handle in situ data acquisition and processing.
This is particularly critical or emerging spacecraft, robotic and small UAS applications, where powerful
computer components are expensive or impossible due to volume and power limitations.

“Anytime” or “imprecise computing” control techniques offer the benefits of conserving cyber
resources at the cost of suboptimal physical system performance [48,49]. In these algorithms,
computational resources are traded for suboptimal solutions as needed, and then, solutions are refined as
resources become available [50]. Juxtaposed with anytime control, which improves controller decision
quality as a function of available deliberation time [48], feedback scheduling dictates the quality of
computing of the cyber system by applying feedback techniques to real-time scheduling [88].
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3.2.4. Human Interaction

Engineered CPVSs are ultimately designed to support human needs [89]. As a result, even
highly-autonomous vehicles will interact with humans at some point, even if only to receive mission
goals, then deliver payload or data during or after the mission ends. Automotive [90], aerospace [91]
and marine [92] applications have frequent interaction with human operators or passengers, which
necessitates consideration of human characteristics, tendencies, limitations, etc., in CPVS co-design.
Even long-duration spacecraft missions have human scientists as the “end-user” and, therefore, must
consider appropriate data formats, communication protocols and operator interactions to maximize
mission return.

The human factors research community has studied physical (hardware), cognitive (liveware) and
organizational (software) interactions and has made many recommendations [89]. In the aerospace
sector, approximately 70%–80% of mishaps are the result of human error, and yet, all too often,
investigations are conducted without a “human error framework” to classify human error and recommend
appropriate interventions [93]. However, in most vehicle sectors, this issue is being addressed in part
thanks to CPS research efforts to devise ways to more closely integrate and monitor human and machine
interactions [94–96].

3.2.5. Unanticipated Scenarios

The space of possible unanticipated environment and vehicle states is theoretically infinite, while
most CPVS are limited to deliberating over continuous and discrete state parameter/value sets that the
designer has prescribed a priori. As a result, a CPVS may encounter an unanticipated scenario it either
cannot sense, recognize or ultimately handle even if recognized. Human beings (and other animals)
excel in their adaptability to unanticipated situations through recognizing the novelty of a situation, as
well as modifying actions accordingly. Often, the design approach to increase robustness is to anticipate
as many scenarios as possible, design with them in mind (e.g., gain-scheduling, state-space partitioning)
and then rely on adaptive, uncertainty or learning algorithms to manage scenarios for which a model has
been devised, the parameters of which can then be learned [97,98].

More challenging is handling unanticipated situations that can only be accurately represented
through the definition of new continuous and/or discrete state features. Emerging machine learning
techniques [99] for new state features and model definitions through data clustering, filtering, and
understanding show promise for this purpose, but they are not yet sufficiently mature to have been
pervasively infused into CPVS. Complementing notions of robustness against unanticipated scenarios
are algorithms capable of self-analyzing and self-repairing models to increase autonomy levels in
CPVS [100].
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4. Control of Cyber-Physical Vehicle Systems

Control or regulation of actuators is ubiquitous across CPS generally. For CPVS particularly, in the
most general sense, control or regulation makes use of algorithms and feedback to calculate inputs for
cyber and physical effectors that provide services, translocate or reorient the vehicle, ensure safety and
achieve objectives [101,102]. We refer to holistic, integrated, tightly-coupled CPS modeling and control
of both cyber and physical effectors as co-regulation. Here, we focus on a few advances that more
holistically consider cyber and physical resources in the co-regulation of effectors.

4.1. Anytime Control and Monitoring

Anytime control allows control solutions to be refined or improved as a function of available cyber
resources [103]. In some cases, anytime control methods can be shown to be an adaptation of receding
horizon control (RHC), wherein a control input is calculated by solving an optimal control problem
over a specified time interval [104,105]. Research into the limits of RHC, such as the effects of
slow update rates [106], or the bounds on computational time to ensure stability [107], provide an
impetus for pursuing anytime control algorithms. We provide an overview of anytime control techniques
in [67,108,109] and report here on anytime control and monitoring techniques.

Researchers have investigated algorithms, the solutions of which degrade “gracefully” with reduced
cyber resources, and the subsequent usage of these algorithms as building blocks for a real-time
system [110]. In this vein, Zilberstein et al. provide a comprehensive survey of intelligent systems
composed of many “anytime” algorithms [111]. In the context of such a real-time system with many
anytime algorithms cyber and physical co-design can be made more robust by providing a supervisory
monitor that accounts for uncertainty in the algorithm itself, as well as the cost of monitoring the
process [112]. Optimal scheduling of anytime algorithms has also garnered attention [113]. However,
much of the difficulty in computational resource management stems from an inability to use such
algorithms, as they lack support in many real-time operating systems (RTOSs) and because of their
inherent non-determinism [114].

4.2. Feedback Scheduling

Feedback, as a principle, offers robustness to off-nominal conditions by using past measurements to
compute future inputs to the system and has been applied in many domains. Most related to control of
CPVS, and a departure from control of the physical system, is feedback scheduling. Feedback scheduling
adjusts cyber resources based on the needs of the cyber system [115]. It accomplishes this by adapting
traditional control theory to regulate the task schedule in the RTS. This, in turn, contributes to regulating
the CPS as a whole.

In this scheme, sampling periods of various control tasks are adjusted, and subtasks (parts of a
task) are scheduled using feedback from execution time measurements and feedforward from workload
changes [116]. Cervin et al. have developed a sound framework for feedback scheduling of control
systems and have provided MATLAB toolboxes for simulation and analysis of real-time control
systems [117–120].
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Feedback scheduling algorithms can be computationally intense. A simple (i.e., linear) model that
relates the cost of control performance to cyber resources would provide an excellent tool for feedback
scheduling, which can then less expensively design task schedules [52].

4.3. Time-Varying Sampling and Sensor Scheduling

Uncertainty in sampling rate can be caused by transmission delays in a NCS, jitter and/or missed
deadlines in the RTS, etc. Research investigating the design of controllers under uncertain delays has
resulted in more robust systems. Typically, as in NCS research, these approaches consider a small
range of possible sampling rates and stability, and robustness guarantees are given for that range under
time-varying control schemes [59]. Successful optimal controllers under these circumstances using a
linear matrix inequality (LMI) approach have been designed [60,61].

In many control systems, sensors are read at a higher rate than the control is output to the actuators,
guaranteeing up-to-date measurements of the physical system state. Sensor scheduling is a technique
used to determine which sensors or sensor modes should be read next to minimize error in the
control system [62,63]. This often occurs where many sensors or sensor modes provide readings for
similar phenomena. Markov decision process (MDP) formulations typically find an optimal policy for
scheduling sensors [64–66].

4.4. Event-Triggered Control

Event-triggered control, also known as Lebesgue sampling [121], provides an efficient means
of achieving acceptable physical system feedback regulation with minimal computational resource
overhead. Event-triggered control contrasts with time-triggered or periodic control in that control tasks
are triggered and subsequently executed when the system state deviates a certain threshold from a
predetermined value [122]. This approach results in more efficient allocation of cyber resources due
to “as-needed” or “on-demand” physical system control task execution. While researchers have begun
to advance Lebesgue sampling or hybrid approaches to CPS control [43,123–126], it is a relatively
unexplored area of research compared to time-triggered control or Riemann sampling [121]. An
excellent introduction to event-triggered and self-triggered control can be found in [122].

4.5. Coupled Cyber-Physical Co-Regulation

Finally, our recent co-regulation work is similar to feedback scheduling and time-varying sampling
and control. We propose a linear model relating sampling rate to controller performance, which is then
added to the linear time-invariant (LTI) model of the physical system [67,108,109,127]. Assuming a
physical system modeled as:

ẋp = Apxp + Bpup

where ẋp is the physical state vector, Ap the system matrix, Bp the control matrix and up the physical
control input, we seek a system of the form:

ẋc = Acxc + Bcuc
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where components with subscript c are the cyber system analogs to the physical model components.
This allows us to write the coupled CPS as:

ΣCPS :

{[
ẋp

ẋc

]
=

[
Ap

Ac

][
xp

xc

]
+

[
Bp

Bc

][
up

uc

]

In Figure 3, we depict this co-regulation scheme as a traditional control systems block diagram.

Figure 3. CPVS co-regulation scheme.

The physical and cyber systems are modeled independently, but coupled through feedback control.
State estimates of the physical system are leveraged in the cyber controller, and cyber states are used to
calculate the discrete-time-varying physical system controller.

In [67,127], using feedback control techniques, we design two discrete-time varying controllers for
the physical system. The first utilizes gain-scheduling, where controller gains are “scheduled” (Note that
this is not the same as RTS task scheduling, but rather controller gains are selected at each time step
for the system linearized over various operating points.) over sampling rates of the control task. The
second controller uses forward-propagation Riccati-based control to propagate the control gain from
one discrete time step to the next. We then design controllers for the cyber system, which adjust the
control task execution rate (i.e., sampling rate) according to the error in tracking the reference trajectory.
Finally, we introduced CPS metrics to measure important physical and cyber performance. These metrics
capture a portion of RTS utilization, the error of the system trajectory with respect to its reference value
and the control effort of the physical actuators. We used these metrics in a CubeSat CPVS co-regulation
application to provide a domain-inspired characterization of potential savings in control effort and to
make cyber utilization realizable [127].

This co-regulation scheme has illustrated CPS tradeoffs possible over a series of domains including a
spring-mass-damper system [108] and inverted pendulum [109], as well as the CubeSat domain [127].
In all cases, co-regulation consistently demonstrated good physical system tracking performance, while
significantly reducing computational load. This abstraction approach to CPS co-regulation allows an
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engineer to leverage the wealth of traditional state-space control design techniques and to treat the
scheduling of tasks as a control problem wherein interactions between cyber and physical states are
represented in a common framework. It also provides the benefits of time-triggered control, such as
ease of RTS scheduling and hard timing guarantees, while also offering the benefits of “on-demand”
event-triggered control to reduce cyber resource utilization.

This work is distinct from feedback scheduling in that we seek to couple the resulting cyber system
“dynamics” model to the physics-based model, so that both can be co-regulated in each execution of the
control task. This also allows us to apply feedback control techniques and analysis to the coupled CPS.
This work is similar to optimal sampling pattern techniques (discussed in Section 4.3 in that it allows for
variable sampling instants. However, whereas that work focuses on optimality over a planned trajectory,
our technique focuses on increasing robustness to system disturbances and deviations from planned
trajectories through proportional feedback control, which determines the sampling rate. Additionally,
our feedback co-regulation scheme could be used to supplement optimal sampling pattern techniques by
accepting the optimal sampling pattern as the reference trajectory and using feedback co-regulation to
offer minor adjustments based on off-nominal conditions.

5. Trajectory and Task Optimization and Planning for Cyber-Physical Vehicle Systems

Optimization is fundamental to most engineering disciplines. Quite generally, an optimization process
finds values over a design vector or state-space that maximize utility (or minimize cost) subject to
specified constraints and system dynamics [44,128,129]. Engineering optimization is pervasive to system
design, analysis and operation. Optimization has evolved from a time where human engineers would
specify small-scale subsystem optimization problems to multidisciplinary optimization efforts where a
vehicle or other complex system is co-designed with respect to a potentially large suite of heterogeneous
design parameters [130,131]. As such, optimization is a natural tool for CPS. In this paper, we refer to the
holistic application of optimization to CPS as co-optimization with a focus on CPVS. Below, physical
trajectory and real-time computing optimization efforts are summarized, followed by a discussion of
emerging work in co-optimization.

5.1. Physical Trajectory Optimization

A “physical” optimization problem is typically described by a state-space ~x(t) of CPS platform
positions and velocities, as well as any moving subsystems (e.g., a gimballed payload). The
cooperative team state can be described by a family of state-space vectors ~xj(t) for each vehicle j in
the team. Network connectivity for cooperative planning and control [132,133] can be described by a
graph Gx with edges Exi,j between vehicle pairs (i, j) that directly communicate. Vehicle dynamics
are given by the physics-based equations of motion, while network connectivity is usually a function
of physical separation distance. Vehicles can carry sensors and/or deploy immobile sensors; vehicles
and immobile sensor nodes both host processing and communication resources. The CPS community
has investigated how to best optimize CPVS team physical trajectories (CPVS positions, motions) to
best support networking [134] and to optimize information acquired by a sensor CPVS team [135].
For example, Song et al. [135] propose use of the Fisher information matrix to optimize observations
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over a wireless sensor network (static or mobile). This manuscript focuses on the CPVS challenges
faced in a single CPVS rather than a networked team, with full recognition that CPVS networks present
a suite of distributed physical, processing and communication challenges also important to recognize
and address. For rigid body vehicles, such as cars, planes or mobile robots, optimization generates
a potentially long-term path or trajectory designed to accomplish the mission while meeting physical
actuation, collision and sensing constraints while minimizing costs, such as consumed energy and
traversal time. Geometric solutions minimize traversal length as in the Dubins solution [136] for
turning-constrained vehicles applied to many domains [137,138] with several extensions [139,140].
Geometric solutions are computationally-efficient to find, but difficult to generalize to new objectives.
Computational optimal control [44,141] has also been frequently applied to physical vehicle trajectory
optimization based on necessary conditions for optimality [142,143]. While optimal control can be
computationally expensive and solution convergence difficult to guarantee, optimal control methods
provide a fully general means of identifying optimal trajectories over a design (state) vector with
generalized cost terms and constraints. Time and energy costs are most frequently defined for physical
vehicle trajectory optimization [144–146], and methods, such as nonlinear programming [147] and
quadratic programming [148], have been applied.

Geometric and optimal control methods can solve boundary value problems (BVPs) where a
vehicle travels to a single destination. Optimal physical trajectories can also be computed through
multiple goal or destination points, the traveling salesman problem [149,150]. Solution methods,
such as dynamic programming [151,152], have been developed with many variants. The Bellman
equation [151] considers immediate and expected future reward to optimize actions in a discrete
state-space. The introduction of uncertainty gives rise to Markov chain [153] discrete state dynamics
for which stochastic dynamic programming (SDP)/MDP methods can be applied to generate optimal
policies [154]. Randomized algorithms, such as genetic algorithms, simulated annealing and particle
swarm optimization [129] can explore large search spaces.

5.2. Computing (Cyber) System Optimization

The real-time systems community has also capitalized on optimization techniques to ensure that
computing and networking systems are efficiently utilized. A real-time or “cyber” task allocation and
scheduling problem is defined over tasks i ∈ τ with processing and memory load requirements pi and mi,
respectively. Communication over a distributed processing system can be described by graph Gc with
edges Eci,j between processor pairs i, j that directly communicate. Multi-core systems can assume full
connectivity and shared memory, while distributed computing systems must optimize task allocations
over required data transfer and connectivity constraints, as well as processor load balancing.

Task allocation and scheduling methods optimally distribute hard and soft real-time computational
tasks over single-core and multi-core processing architectures [115,155]. Metrics include task priority,
expected or worst-case execution time and memory, arrival time and hard or soft real-time deadline.
Schedulers, such as rate-monotonic [156] and earliest deadline first [157], laid a foundation for the
mathematics of scheduling. Optimal solvers also exist for multi-processor [158] and GPU [159]
architectures. Networked CPSs have been studied from the perspective of optimally positioning and
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moving wireless sensor network elements as discussed above. From the cyber perspective, the CPS
workload to be optimally managed across the team is defined as “the amount of measured and/or
processed data per unit of time that is communicated between various CPS nodes [CPVS] and which
affects not only various local parameters (e.g., buffer utilization), but also macroscopic metrics (e.g.,
CPS throughput)” [160]. A cyber-oriented CPVS optimization approach would therefore minimize CPS
workload while also ensuring that computational resources onboard each CPVS are not over-utilized
given necessary vehicle-specific real-time tasks plus network-based workload.

5.3. Co-Optimization

A rich set of CPS optimization methods have arisen from the “physical trajectory optimization” and
“real-time computing” communities. The mathematics of CPS optimization shares a common heritage
motivating our focus on CPS optimization problem formulation rather than devising new solution
methods. Physical trajectories are now beginning to consider cyber costs related to limits in data
acquisition and onboard processing for applications, including sensor networks [161] and cooperative
motion planning [25]. Real-time embedded computing has been extended to CPS [162] by considering
the physical environment in cost and constraint formulations, using processor voltage scaling and
core shut-down to manage computing power [163] and thermal loads [164] with constraints related to
component reliability [165].

In the context of the UAS, missions have been optimized by leveraging optimal control to design
physically-efficient trajectories that satisfy actuator and structural constraints [166]. Trajectory costs
include mission time [167] and total energy consumption [168]. UAS cyber systems are typically
optimized separately to ensure that real-time computational and information-sharing task deadlines
are met. The primary real-time computing cost term is processing and communication system energy
use [169–171].

In our previous work [35], we optimized a UAS inspection mission over an integrated CPS cost
function, including mission time, physical actuator and computing system energy consumption, payload
information (gaps) and processor utilization. More recently, we added physical (battery, motor) and
computing system thermal costs and constraints [172].

This has laid a foundation for recent and future CPS optimization research. For example, processor
power and thermal regulation [164] consider physical environment impact on cores, but do not optimize
physical mobility/actuation (e.g., by demanding less torque, thereby lowering heat production in the
(self-driving) car’s engine compartment). Similarly, in our own work [35,172], a UAS trajectory is
itself optimized over cyber-physical terms, including the energy used and heat generated by propulsion
and computing systems as a function of physical state and processor utilization trajectories. To offer
the benefits of dynamic sampling alongside the critical guarantees of time-triggered sampling, very
recently, optimal sampling and control techniques have arisen. Bini et al. proposed an optimal
control formulation that simultaneously optimizes control inputs and sampling pattern trajectory. They
also proposed a computationally-feasible quantization-based method to approximate the optimal control
solution and proved optimality for first order systems [173]. Kowalska et al. recently proposed varying
time control (VTC), a similar optimal control problem over control inputs and sampling instants. In



Sensors 2015, 15 23035

this formulation the optimal control problem is solved for a receding horizon with a computationally
tractable algorithm [174], but loss of optimality guarantee [173].

5.4. Co-Optimization Example

Cyber and physical optimizers often minimize time and energy (power) use while maximizing the
accomplishment of mission objectives. Mobile systems, such as UAS, carry limited energy resources,
resulting in hard energy constraints, while vehicle stability, environmental hazards, etc., impose real-time
transit and computing constraints. In our previous work [35,172], we developed a suite of physical, cyber
and combined cost function to optimize UAS pipeline inspection. A gimbal-mounted camera onboard a
UAS provided imagery, which was processed by a real-time task. The objective was to minimize cost as
a function of aircraft airspeed and execution rate of the image processing task. We briefly describe this
approach to offer an example of how a co-optimization scheme may be designed.

Let Jp and Jc represent physical and cyber cost terms, respectively. The CPS optimizer cost function
must then minimize total integrated cost:

JCPS = Jp + Jc (1)

Physical cost, Jp, includes time, T , and energy, Ep, cost terms:

Jp = βp2T + βp1Ep (2)

where βp1 and βp2 are weighting terms. Time, T , and total energy, Ep, consumption by physical systems
(servos, motors) over the mission to final time tf are given by:

T =

ˆ tf

0

dt, E =

ˆ tf

0

Pp(v(t))dt (3)

A single real-time task, τ, executes at variable rate rτ(k) to acquire and process payload images.
Cyber cost, Jc, consists of a term proportional to real-time utilization, Uτ, and an entropy-inspired term,
H , which gives a measure of information gathered about the pipeline:

Jc = βc1Uτ + βc2H (4)

where βc1 and βc2 are weighting terms. We have assumed that power use is proportional to total cyber
utilization cost

Uτ =
N∑
k=1

rτ(k)

rτ,max

(5)

where N is the total number of task execution cycles, k, in the mission. The information term, H ,
couples UAS airspeed, v(t), and task execution rate, rτ(k), as the UAS. A measure of scene overlap in
the image, Ω, reduces entropy by providing pipeline data from multiple perspectives ~x(t):

H =
1

N − 1

N∑
k=2

e−αΩ(v(t),k) (6)

See [35,172] for additional details of JCPS and Pareto front analyses.
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6. Discussion

Above, we have described run-time CPVS co-optimization and co-regulation from the dual
perspectives of the physical control and real-time computing communities. Because CPS represents an
emerging interdisciplinary community, CPS constituents necessarily offer methods that most naturally
apply to problems rooted in the researcher’s particular background and experiences. While reading the
above content, a CPS researcher with a control theory background may have thought primarily about the
stability and convergence properties of the co-regulation scheme summarized above and envisioned an
optimal sequence of equilibrium states and accelerated maneuvers for the co-optimized CPVS trajectory.
A CPS researcher with real-time computing background may have thought critically about the fact that
we have, to-date, only co-optimized over a single payload data processing task [175] and co-regulated
over a single “cyber task” associated with feedback control [127], whereas a typical embedded real-time
computing system would optimize and regulate a far larger suite of soft and hard real-time computing
and communication tasks.

In future co-optimization research, it will be important to extend the single-vehicle CPS to consider
the suite of additional processing and communication tasks required for a complex vehicle system, such
as an automobile or aircraft, to capably manage all of its embedded resources, as well as its motions and
(low-bandwidth) contact with “the cloud” and other networked vehicles. Co-optimization can also be
extended to networked CPVS teams to ensure that information collection, energy use, processing and
communication resources are all managed optimally while respecting individual CPVS energy, time and
physical environment (e.g., collision) constraints. Similarly, future co-regulation research for a single
vehicle must consider the management of auxiliary physical controls, e.g., a payload gimbal, as well
as primary rigid-body motion controls; the “cyber” state considered during co-regulation must, in turn,
regulate planning, guidance, navigation and payload (data) real-time processing and communication
processor and communication utilization along with feedback control task rate regulation. This extension
might be mirrored in the context of local regulation for cooperative control, e.g., consensus [133],
coupling the local coordination of motion with real-time data acquisition and management across a CPVS
team. The CPS/CPVS community is approaching a critical point where dual consideration of physical
and cyber metrics and constraints will become commonplace, both for individual CPVS and teams.

As CPS education programs emerge, so will the level of integration in research efforts. Meanwhile,
this paper and others like it will continue to encourage the community to think deeply about challenges
and potential solutions that cut across the various fields that have contributed to CPS and CPVS. As
summarized above, the control theory community has embraced state machine and graph-based models,
offering improved representation and analysis techniques for motion planning, feedback stabilization and
regulation and cooperative control systems that now consider switched dynamics and discrete task-level
or information-centric mission goals. These modeling and analysis methods are valuable to CPS
researchers from all backgrounds. Similarly, computer scientists have extended their analyses to better
consider aspects of physically-mobile systems with respect to the impact on embedded computation and
communication elements. This has resulted in improved modeling, analysis and optimization/scheduling
techniques that take into account physical vehicle motions and system dynamics, resource constraints and
environment characteristics. Collectively, the embedded control and real-time computing communities
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offer a suite of complementary methods, but work is still ongoing to deeply understand how CPS can
further mature to achieve the ideal “co-design” concept originally illustrated in Figure 1.

A CPVS is distinct from an autonomous system in that the CPVS may or may not be directly
controlled by the human operator/driver. Any safety-critical CPVS must be robust and resilient, yet an
expendable CPVS, such as a small UAS or CubeSat, may present no threat to people or property of value,
enabling tradeoffs between cost and complexity with resilience. A CPVS may be special-purpose, for
example a small UAS that can only carry a camera payload or a car with sensors that only communicate
in a WiFi-enabled region. On the other hand, the CPVS may require substantial adaptability, motivating
the need for capable and reconfigurable processing, sensing, communication and actuation systems.
The notions of co-optimization and co-regulation apply to any of the CPVS concepts referenced,
although the metrics, constraints and robustness requirements will be tailored to the needs of
each application.

Thus far, the CPS and CPVS communities have focused on the real-time operation of a system
with a given design operating in a well-modeled environment. This paper has briefly discussed the
extension of CPVS to support fault management, parameter adaptation when models are imprecise or
incorrect and, ultimately, online data processing to provide support for managing unanticipated events.
The traditional engineering community is contributing a variety of sensor data filtering and processing
methods, whereas the computer science community is contributing a variety of big data learning methods
to extract parameters and models from large datasets. The next generation of CPVS will be even more
capable, as these two groups build stronger ties, ultimately merging the physical (sensor) and information
(database) sources into new CPVS modeling and analysis tools.

In previous work, we developed and made use of several new CPVS metrics to assess
performance [35,36,67,127]. These metrics serve to illustrate how holistic CPVS performance might
be quantified in relation to a few possible measures. Additional innovative CPVS metrics are needed to
fully capture performance and safety. Learning or adaptive algorithms are desirable for their ability to
deal with unanticipated situations, uncertainties and non-determinism. This, in part, excludes adaptive
systems from infusion in safety-critical vehicle systems, as they are difficult to certify through traditional
software engineering validation and verification processes. The aerospace community, in particular, has
a strong record in safety, and pressure is being increasingly applied to make automotive vehicles safer
for drivers, passengers and property. However, these systems must rely on human operators and drivers,
who themselves are best modeled as uncertain systems, until adaptable methods can be prominently
used in increasingly autonomous CPVS. This challenge must be resolved by researchers, policy-makers
and through public acceptance and trust with the end goal of establishing acceptable levels of safety for
CPVS reflected in new metrics for CPVS performance and safety analyses.

7. Conclusions

This paper has surveyed the literature describing methods to model and analyze CPVS with a focus on
optimization and feedback-driven regulation of real-time embedded CPVS. While the literature considers
a variety of CPVS applications, examples in this paper focused on aerospace applications to motivate
how co-designed CPVS can effectively integrate methods devised across the existing communities of
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practice, in particular to incorporate critical research products from real-time computing and physical
control system fields.

Existing efforts to model and analyze systems using graph-theoretic formulations to supplement
continuous-state models now support modeling and analysis of CPVS through augmented state machine
models. Extensions to handle network, multi-core and multi-vehicle systems further extend applicability.
These methods were reviewed and followed by a deeper study of co-optimization and co-regulation
capabilities for CPVS. The paper culminates with a discussion of ongoing CPVS challenges.

The CPVS/CPS community faces substantial challenges in research, education and, ultimately,
acceptance. How can future engineers and computer scientists be trained to think most clearly about
CPS and CPVS? How can CPS and CPVS be even more holistically co-designed and analyzed despite
the increasing complexity associated with integrating design analyses across cyber and physical system
models? How can such systems be deployed, operated and ultimately trusted to be effective and safe for
human users? The answers to these questions will only become clear as CPS technologies and, indeed,
the holistic CPS community-of-practice further mature.
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