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Abstract: A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese 

traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on 

development of an error model and compensation of the BVG. A dynamic equation is firstly 

established, based on a study of the BVG working mechanism. This equation is then used to 

evaluate the relationship between the angular rate output signal and bell-shaped resonator 

character, analyze the influence of the main error sources and set up an error model for the 

BVG. The error sources are classified from the error propagation characteristics, and the 

compensation method is presented based on the error model. Finally, using the error model 

and compensation method, the BVG is calibrated experimentally including rough 

compensation, temperature and bias compensation, scale factor compensation and noise 

filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random 

walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the 

error compensation, it is shown that there is a good linear relationship between the sensing 

signal and the angular velocity, suggesting that the BVG is a good candidate for the field of 

low and medium rotational speed measurement. 

Keywords: Coriolis vibratory gyro; error model; error compensation; bell-shaped  

vibratory gyro 
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1. Introduction 

The vibratory gyroscope is a specialized branch of the gyro research field, which is gaining more 

attention from researchers [1,2]. The core component of the vibratory gyro is a micro mechanical 

structure which works in the resonant state and is therefore called the resonator. While the resonator 

rotates around the sensitive axis, the Coriolis force induces movement of the resonator’s mode shape. 

There are several different types of resonator available including fork, beam, finger, axisymmetric  

shell etc. The axisymmetric shell resonator gyroscope currently gives the best comprehensive 

performance and is widely applied in many fields [3,4]. The cylindrical resonator and hemispherical 

resonator both use a single curve surface shell. These shells have the disadvantage of vibration 

instability. The development tendency is towards micro and multi curved surface [5]. 

The bell-shaped vibratory gyro is a solid vibratory gyro, which utilizes the standing wave precession 

effect for sensory control of the angular velocity. The core component is a millimeter Chinese traditional 

bell which is named the bell-shaped resonator. The excitation and detection piezoelectric elements attach 

to the wall of the resonator, and control the resonator to produce the standing wave. The precession of 

the standing wave is proportional to the angular velocity. BVG not only has the advantages of low cost, 

low power consumption and longevity, but is also a simple structure with good anti-impact performance, 

which is well suited to the low and medium rotation angular measurement fields [6–8]. In [7,8], analysis, 

design and experiments for a BVG prototype are presented and the character of the bell-shaped resonator 

is studied which has isolating holes. The holes are designed to isolate the vibration from the fixation 

point. But the positions of the holes have an important impact on the structure, especially on the 

frequency split. This is why holes have been removed in this paper. In [9], the signal process method of 

BVG is presented, which is verified experimentally in a laboratory environment at room temperature.  

In [10], the disadvantages of traditional BVG signal processing are addressed by presenting a novel 

signal processing method using a variable structure sliding mode controller to evaluate the angular 

velocity. This method evidently improves the accuracy and bandwidth of the BVG. In [11,12], the 

effects of frequency split on error are studied and a restraint method is presented based on structure 

balance and circuit control. 

In conclusion, the BVG is still in the prototype development phase. The mathematic model, signal 

processing, standing wave characteristics and frequency splitting were studied. There is an urgent 

requirement to improve the performance of the BVG through error compensation.  

The hemispherical resonator gyro (HRG) and cylinder vibratory gyro (CVG) is currently the focus for 

many researchers. There has already been a lot of study on their error characteristics. V. A. Matveev 

wrote a book on the Solid Vibratory Gyro, which studies mainly the HRG including the mathematic 

model, signal processing method, error characteristics and application. This book describes a problem in 

the HRG development process. This research laid the foundation for a further performance study of 

HRG [4]. J. Pi has designed an error compensation method based on an imperfect observer to restrain the 

drift of HRG through the state space. The observer can compensate for errors using the imperfect model 

parameter [13]. This paper focuses on improving the accuracy of this method using a control method 

during the signal solving process, but the error compensation for HRG is not researched. X. Wang, X. 

Yangguang and L. Boran have built a temperature model for HRG and compensate the frequency based 

on the temperature [14–17]. X. Wang has studied a method to restrain the quadrature error [18]. For 
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CVG, Innalab Inc., Waston Inc. have already designed a mature product, and have studied the error 

characteristics and performance [19,20]. P.W. Loveday, Y. Wu and D. Kristiansen have studied the 

temperature characteristics and error characteristics for CVG [21–23]. However, there is no error 

compensation method in the published literature. 

This paper mainly studies the problem with the error model and compensation. A dynamic equation is 

firstly established, based on a study of the BVG working mechanism. This equation is used to evaluate 

the relationship between the angular rate output signal and the bell-shaped resonator characteristics, 

analyze the influence of the main error sources and set up an error model for the BVG. The error sources 

are classified using the error propagation properties, and a compensation method is presented based on 

the error model. Finally, the error model and compensation method are used to experimentally calibrate 

the BVG, including rough compensation, temperature and bias compensation, scale factor compensation 

and noise filter. 

2. Working Concept of the Bell-Shaped Vibratory Gyro 

The bell-shaped resonator is a core component of the BVG and looks like a millimeter-scaled Chinese 

traditional bell, such as the QianLong Bell or the YongLe Bell, shown in Figure 1. Eight piezoelectric 

elements are attached to the wall of the bell-shaped resonator, which excite the resonator and detect the 

signal to calculate the angular rate. 

 

Figure 1. Structural diagram of Bell-shaped resonator. 

2.1. Working Principle 

The eight piezoelectric elements are distributed evenly around the wall of bell-shaped resonator, as 

shown in Figure 2. Based on the inverse piezoelectric effect, the excitation electrodes excite the  

bell-shaped resonator and produce a working mode within the resonator, which is named the primary 

mode or the excitation mode, shown in Figure 3a. For the resonator, each working frequency has two 

modes, which are different by 45°. The other mode is named the secondary mode or detection mode, 

shown in Figure 3b. The two modes are coupled by the Coriolis force. The amplitude of the second mode 

is proportional to the input angular velocity and produces the standing wave precession. In Figure 4, when 

an angular velocity is applied counterclockwise to the axis of symmetry, the standing wave angle 

changes. The precession angle is  , which is proportional to the frame rotational angular velocity. 
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Figure 2. Schematic of mounted electrode. 

 

 

 

 

(a) (b) 

Figure 3. Schematic of the working principle (a) Primary mode (b) Secondary mode. 

 

 

Figure 4. Schematic of the standing wave precession. 

2.2. Excitation and Detection of Piezoelectricity 

In practical applications, the stress wave propagates on the resonator, causing a standing wave. The 

piezo elements sensitize the stress wave and solve the angular velocity. In order to reduce the influence 

of the piezoelectric elements’ quality when the resonator is rotated, the elements should be set to be near 

the constrained boundary. However, in order to improve the excitation efficiency and stability, the 

piezoelectric should be glued on a flat surface such as a cylindrical structure. 

The piezoelectric elements chosen were the PZT5A, which were polarized in the thickness direction. 

The first and fifth elements contract and expand when the alternating current signal is applied (in 



Sensors 2015, 15 23688 

 

 

Figure 5a). When the top of the elements are restrained, the force of the contraction and expansion will 

be transferred to the bending force (in Figure 5b) and excite the shell vibration. The piezoelectric 

elements and resonator are attached together by conductive adhesives. A rigid connection can be made 

between these elements by controlling the painting procedure. One pole of elements connected to the 

resonator is the GND, and the remaining elements are the input or output signals. The piezoelectric 

element senses the vibratory signal based on the piezoelectric effect. Using the third and seventh 

element feedback signals and the first and fifth excitation elements, standing wave steady control is 

achieved. The control loop includes an amplitude control loop and a frequency control loop. It should 

be given particular emphasis to the fact that the work mode of the BVG is the force-rebalance  

mode [7,21]. The sensitized angle of precession from the second and sixth elements is used as the 

controller input to drive the fourth and eight elements to restrain the precession of the standing wave. 

The amplitude of the restrain variable is proportional to the angular velocity and is used as the output 

signal of the BVG [8]. 

 

 

 

 

(a) (b) 

Figure 5. Schematic of piezoelectric principle. 

3. Error Model of Bell-Shaped Vibratory Gyro 

A bell-shaped resonator includes a hemispherical structure, a cylindrical structure and a hyperbolical 

structure. For this special multi-curved surface structure, the orthogonal curvilinear coordinate system is 

chosen to describe the bell-shaped resonator coordinates. The orthogonal curvilinear coordinate system 

uses the direction of the angle between the normal of the shell’s middle surface and the rotation axis, the 

rotation angle and the thickness to indicate a point of space. In [24], the author was given a detailed 

description of a bell-shaped resonator and deduced the curvature of a classic rotation shell. This 

coordinate system is used to research the characteristics of the bell-shaped resonator. 

3.1. Dynamic Equation of Resonator’s Bottom Edge 

The middle surface coordinates of a bell-shaped resonator on an orthogonal curvilinear coordinate 

system is shown in Figure 6. The coordinate-origin is defined as the center of the hemispherical 

structure. The direction of the z axis is the rotation axis. The radius of the hemisphere is R. The height of 

the cylinder is L and the hyperbola is S. The radius of the bottom is bR . The formula in Equation (1) can 

therefore be derived: 
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(1) 

For the three-dimensional structure of the bell-shaped resonator, a description is shown in Figure 7 

using the orthogonal curvilinear coordinate system  , ,   . The two principal radii of curvature are 

1  and 2 .   is the angle between the normal of the point and the rotation axis.   is the angle of the 

circumference.   is the direction of thickness. t  is the angle of the top and b  is the angle of the 

bottom. h  is the thickness of the resonator. The domain of definition of the resonator in orthogonal 

curvilinear coordinates is as given in Equation (2). 

 

 

Figure 6. The middle surface coordinates of a bell-shaped resonator. 

 

 

 

 

(a) (b) 

Figure 7. Schematic of bell-shaped resonator in coordinate system. 

, , 0 2
2 2

t b

h h
            (2) 

The principal radii of curvature are as follows in Equation (3). 
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 (3) 

Therefore, many relationships between the coordinate system can be established, as follows 

  1
1 2; sin ; 1;z z

z z

d d d
r

dz d d

  
         

 
 (4) 

The stress-strain relationship is as follows: 

2 , 2 , 2

2 , 2 , 2

G G G

G G G
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        
 (5) 

where   are the stress components and the subscript is the axis, and   are the strain components. 

G  is the shear modulus and 
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E
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 
. E  is Young’s modulus.   is Poisson’s ratio.   is the 
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 (6) 

where u , u  and u  are the displacements in each of the three direction separately. In paper [25], 

the equation of motion in terms of the physical components is derived for the curvilinear  , ,    

coordinate system based on tensor analysis as follows: 
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 (7) 

When the BVG is in working mode, the bell-shaped resonator is influenced by the frame angular 

velocity. For a point  , ,P    , the motion expression of the vector is expressed as in Equation (8). 

ˆˆ ˆ, , =u u u   φ φ υ υ θ θ  (8) 

where φ , υ  and θ  are the vectors of the coordinate axis and φ̂ , υ̂  and θ̂  are the unit vectors of 

the coordinate axis. The motion vector   of point P is as follows: 

ˆˆ ˆu u u    φ υ θ  (9) 

The angular velocity Ω  along the axis of symmetry in the inertial space is: 

 ˆ ˆ ˆ ˆcos sin cos sin         Ω υ φ υ φ  (10) 

According to the Coriolis Theorem, the absolute acceleration of point P in motion relative to inertial 

space can be expressed as: 

 0 2              a a Ω Ω Ω Ω   
 (11) 

where 0a  is the absolute acceleration of the bell-shaped resonator.   is the acceleration of P for the 

resonator.   is the velocity of P for the resonator. Ω  is the angular acceleration of the resonator. 

According to the Equation (11), the absolute acceleration of P is as follows:  
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 (12) 

where, a , a  and a  are the absolute accelerations in the coordinate direction. 

The natural frequency of BVG is designed to be below 10 kHz. The range is below 5000 deg/s. For 

these low velocity fields, the angular acceleration of the resonator and the angular squared term can be 

ignored. The expression of acceleration at the free edge of the resonator is then as follows: 

2 cos ; 2 sin ; 2 cosa u u a u u a u u                    (13) 

According to Newton’s Second Law, the inertial force of P is influenced by angular velocity  

as follows: 
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Substituting Equation (14) into Equation (7) derives the motion equation of the bell-shaped 

resonator’s edge when the angular velocity   is along the rotation axis: 
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(15) 

Then, substituting Equations (5) and (6) into Equation (15) derives the model of the bell-shaped 

resonator. These equations are also named Navier’s displacement equations of motion. For analysis of 

the model, it is assumed that the bell-shaped resonator is perfect. The material parameters have a 

constant value and are irrelevant to the circle angle. The model is derived using the Maple program 

which is too complex to describe in detail here. 

To solve the model, the displacement vector of an arbitrary point in the bell-shaped resonator is 

developed according to the second order normal vibration mode, which is not stretched [4]: 
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 (16) 

where  U  ,  V  ,  W   are the Rayleigh functions for the bell-shaped resonator’s second order 

intrinsic vibration mode on the three axes.  p t  and  q t  are the displacements of the vibratory  

rigid axis. 

Based on the hypothesis that the shell’s middle surface is not stretched, the sheer displacement of the 

bend shell is equal to zero, and is as follows [4]: 

0         (17) 

Substituting Equation (6) into Equation (17) gives the following formula: 
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Substituting Equations (16) into (18), the Rayleigh function of the resonator’s second order normal 

vibration mode is derived using the separation of variables method [8]. 
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(19) 

where kA  is the amplitude function of the bell-shaped resonator. For convenient calculation, kA  is 

defined to be constant with value 1. 

Substituting Equation (5), Equation (6) and Equation (19) into Equation (15), the dynamic equation 

of the bell-shaped resonator’s second order normal vibration mode using Bubnov-Galyorkin method is: 

       
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   
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
 (20) 

where  0m h W    ,   cos sinb h V      ,  
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The characteristics of the bell-shaped resonator can be derived from the precession factor and natural 

frequency using Equation (20). It is demonstrated that the BVG is a Coriolis vibratory gyroscope which 

has the advantage of vibratory gyro. The motion of the bell-shaped resonator’s edge is shown to be 

equivalent to a two-dimensional spring.  p t  is equivalent to the axis between the 0° piezoelectric 

electrode and the 180° electrode.  q t  is equivalent to the axis between the 45° piezoelectric electrode 

to the 225° electrode. Based on the Equation (20), the precession factor can be obtained as follows: 

02

b
k

m


 
(21) 

The natural frequency is as follows: 

0

0

n

c

m
   (22) 

3.2. Angular Velocity Measurement 

Electrodes 1 and 5 in the p(t) shafting are the driving electrodes. A sinusoidal signal at the natural 

frequency of the bell-shaped resonator causes the resonator to vibrate. The driving signal is generated 

directly using DSP with the Direct Digital Synthesis (DDS) algorithm and is applied on Electrodes 1 and 

5 with the DAC. DDS also supplies the exact modulating signal for calculating the amplitude and phase. 

It calculates the resonator’s vibration by detection at Electrodes 3 and 7. The bell-shaped resonator can 

be made to generate resonance by dynamically adjusting DDS through design of the amplitude loop 

controller GA, and frequency loop controller GF. Electrodes 4 and 8 are detected on the q(t) axis. By 

analyzing the standing wave’s procession, designing the rate loop controller GR, and quadrature loop 

controller GQ, and dynamically adjusting the damping torque on Electrodes 2 and 6, the gyro can be 

made to work in force rebalance mode, leaving the mode shape unchanged. At the same time, the output 

of the controller in the rate control loop is proportional to the input angular rate. The whole signal flow is 

shown in Figure 8. 

For the circuit system’s hardware application, the control loops and DDS signals are generated from 

DSP. The signal collection is done by DAC. The analog conditioning circuit is used for detection and 

driving of the piezoelectric electrodes. In the real circuit system, we use the STM32F405 as the DSP 

chip, DSP to supply ADC and AD5328 as the DAC chip. The core component of the analog conditioning 

circuit is OPA2227 9. 
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Figure 8. The circuit system signal flow. 

BVG works in forced vibration. The main vibration force is applied by exciting the piezoelectric 

element. If the bell-shaped resonator is in a steady state as described by Equation (20), a force should be 

applied to the right of equation as shown in Equation (23): 

       

       

0 0 1
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m p t bq t c p t c q t f

m q t bp t c q t c p t f

   


   




 (23) 

where  sin 2p p p pf A t    is the force applied along axis p, pA  is the amplitude of pf , p  is 

the frequency of axis p, p  is the phase of pf .  sin 2q q q qf A t    is the damp force applied 

along axis q, qA  is the amplitude of qf , q  is the frequency of axis q, q  is the phase of qf . 

For this vibratory gyro, the excitation force applied on axis p is the key factor to keep the resonator in 

a resonant state. Ideally, pf  should remain unchanged. It is assumed that the natural frequency is 

unchanged. qf  will vary based on the angular velocity  , and its amplitude, frequency and phase 

depends on the working mode of BVG. The angular velocity   is as shown in Equation (24): 

 
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 

 

     

 

2 1

0

2 1

0

4 4

4 4

n
q

n
p

c
q t q t p t

f m

kp t kp t

c
p t p t q t

f m

kq t kq t







 
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 

 

 

(24) 

where the vibration of axis p keeps the resonator in steady state depending on excitation pf . The 

angular velocity is solved based on the displacement of axis q. In the open loop mode, the angular 

velocity is as shown in Equation (25). In the force rebalance mode, the angular velocity is as shown in 

Equation (26) 
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q
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For the BVG, the force balance mode is chosen, which can improve the accuracy, restrain precession 

and improve bandwidth. The displacement of  p t  and  q t  is solved by the detection piezoelectric 

element [9]. 

  

 

Figure 9. The piezoelectric element. 

The piezoelectric elements are attached to the wall of the bell-shaped resonator as shown in Figure 9. 

The piezoelectric elements 3 and 7 measure the displacement of axis p, and the piezoelectric elements 4 

and 8 measure the displacement of axis q. Based on the piezoelectric effect, the charge of piezoelectric 3, 

7, 4 and 8 is  

    31 , 3,4,7,8i iF t d S i      (27) 

where,  iF t  is the charge of the piezoelectric element (C), and 31d  is the piezoelectric constant of 

the piezoelectric element (C/N). iS  is the area of the piezoelectric element in m2. Using the C-V 

converter circuit, the charge is converted to voltage which is collected by the ADC converter and 

provided to the DSP. For the digital process, the relationship is as follows: 

     

     

3 7

4 8

p

q

p t F t F t

q t F t F t





     


    

 (28) 

where, p  is the coefficient of displacement between the synthesized voltage of the piezoelectric 

elements 3 and 7 and q  is the coefficient of displacement between the synthesized voltage of 

piezoelectric elements 4 and 8. 



Sensors 2015, 15 23697 

 

 

3.3. Error Model 

Based on the analysis results, the angular velocity of BVG can be calculated by the following expression: 
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         



 

(29) 

During the implementation process, the loop controller selects the damp force qA , frequency q  and 

phase q . The output angular velocity is expressed as  

qA 
 (30) 

where K is the coefficient of the controller, which is applied to the motion of the axes and  

controller algorithm. 

Based on (29), the error sources of BVG include: 

(1) p , q  and n  which are all different; 

The difference between p  and q , is known as the frequency split. Many restraining methods are 

given in other studies [11,12,23]. 

(2) The frequency of the resonator includes p , q  and n , which are all influenced by temperature; 

(3) The circuit devices are influenced by temperature; 

(4) The precession factor is changed in different environments; 

(5) The drift of the control loop algorithm; 

(6) Noise. 

Error Sources (2), (3) and (4) are difficult to compensate. These can be transferred to the gyro index 

which includes zero bias and a scale factor. Therefore, the error model can be described as: 

       , q uSF T A N T v t     
 (31) 

where,  SF T  is the scale factor of the BVG which is determined by the angular velocity and 

temperature of the bell-shaped resonator.  qA   is the output of the controller.  uN T  is the bias. 

 v t  is noise. 

4. Compensation Principle 

Based on Equation (31), the error sources can be classified into three types: bias compensation, scale 

factor compensation and noise filter. The error model can be described based on Equation (31) as: 

          3 2 1 1q u uSF T SF SF A N N T v t         
   

(32) 

where 1SF  is the rough scale factor. 1uN  is the rough zero null.  uN T  is the bias due to 

temperature compensation.  2SF   is the scale factor due to angular velocity.  3SF T  is scale 

factor due to temperature. The compensation steps can be described as: 

(1) Rough compensation: calculate 1SF  and 1uN . 
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(2) Bias compensation: calculate  uN T . 

(3) Scale factor: calculate  2SF   and  3SF T . 

(4) Noise:  v t . 

4.1. Rough Compensation 

Firstly, BVG is fixed on the temperature control turntable to compensate for error, as shown in 

Figure 10. The output of BVG is qA  and the output data is stored using an industrial computer. The 

update time of BVG is 100ms. The turntable remains stationary for five minutes, and then maintains a 

speed of +100°/s. The test curve is as shown in Figure 11. 
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Figure 10. Photo of the experiment. 
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Figure 11. Rough compensation curve. 

As we can see in Figure 11, the rough null is −703.3858. The rough scale factor is 0.00242. The 

relationship between the output and angular velocity is then: 

   1 1 0.0242 703.3858C q u qSF A N A      
 (33) 
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4.2. Bias Compensation 

The turntable is kept stationary and the temperature control box is maintained at −45 °C for 2 h. The 

temperature control box is then increased from −45 °C to +55 °C. C  is stored, and is as shown in 

Figure 12. The bias instability is 20.5°/h. 
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Figure 12. C  in temperature changes. 

The second-order least square compensation bias over work temperature is as expressed in Equation (34). 

The result is as shown in Figure 13. The standard deviation is from 0.1624°/s to 0.0619°/s. 

 

 

2

1 2 3

22.52e 05 0.0056 0.1673

TN C

C

a T a T a

T T

 



     

       
 (34) 

  

-40 -20 0 20 40 60

-0.4

-0.2

0.0

0.2

0.4

0.6

-40 -20 0 20 40 60

-0.2

-0.1

0.0

0.1

0.2  

Ω
C
(
o
/
s
)

 Ω
C

Ω
T

N
(
o
/
s
)

Temperature(
o
C)

 Ω
TN

 

Figure 13. Temperature compensation. 
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4.3. Scale Factor Compensation 

The scale factor error includes the angular velocity and temperature. Initially, the turntable is set to 

work from −360°/s to +360°/s at a constant temperature of 25 °C. The test result is shown in Figure 14. 

When the input angular velocity is −360°/s, the test is −361.4°/s. This shows that the scale factor changes 

with the input angular velocity. The linearity is 0.2% as shown in Figure 15. 
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Figure 14. Scale factor changes with angular velocity. 

The second order least square compensation bias over range is as expressed in Equation (35). The 

linearity error is from 0.2% to 0.03% as shown in Figure 15. 
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Figure 15. Scale factor compensation by angular velocity. 



Sensors 2015, 15 23701 

 

 

The temperature error of the scale factor is then studied. The turntable is set to operate at 300°/s, and 

the temperature is increased from −45 °C to +55 °C. The result is shown in Figure 16. 
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Figure 16. Scale factor changes with temperature. 

The second order least square compensation bias over temperature is as expressed in Equation (36). 

The result is as shown in Figure 17. The resulting standard deviation is from 0.1663°/s to 0.0638°/s. 
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Figure 17. Temperature compensation. 



Sensors 2015, 15 23702 

 

 

4.4. Noise Filter 

Finally, the noise is presented using the FIR filter. The cutoff frequency is 200 Hz and a 50 order filter 

is used. The temperature box is set from −45 °C to +55 °C and turntable is stationary. The result is as 

shown in Figure 18. The signal performance is then evaluated using Allan variance as shown in  

Figure 19. It is shown that the bias instability is 4.67°/h (1  ) and the random walk is 0.6982°/h1/2. 
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Figure 18. Noise Filter. 
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Figure 19. Allan Variance. 

5. Conclusions 

This paper focuses on error modeling and compensation of the BVG. The dynamic equation is firstly 

established based on a study of BVG working mechanism. This equation is used to evaluate the 

relationship between the angular rate output signal and the bell-shaped resonator characteristics, the 

influence of the main error sources is evaluated and an error model of BVG is set up. The error sources 

are classified based on their error propagation properties, and the compensation method is presented 
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based on the error model. Finally, the error model and compensation method are used to experimentally 

calibrate the BVG, which includes rough compensation, temperature and bias compensation, scale factor 

compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.67°/h, 

the random walk is from 2.7821°/h1/2 to 0.6982°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based 

on the error compensation, it is shown that there is a good linear relationship between the sensing signal 

and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium 

rotation speed measurements. 

However, the performance of BVG is lower than HRG and CVG in areas such as bias instability and 

randomness and BVG is a medium/low performance gyro and has a wide gap to the micro optical gyro. 

However, we will pay close attention to these technologies. In the future, we will study how to improve 

performance. In addition to this, we will study more deeply the mathematic model of the bell-shaped 

resonator and consider using non-contact types to design this gyroscope. 
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