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Abstract: Machine learning methods have been widely used for gait assessment through the
estimation of spatio-temporal parameters. As a further step, the objective of this work is to propose
and validate a general probabilistic modeling approach for the classification of different pathological
gaits. Specifically, the presented methodology was tested on gait data recorded on two pathological
populations (Huntington’s disease and post-stroke subjects) and healthy elderly controls using data
from inertial measurement units placed at shank and waist. By extracting features from group-specific
Hidden Markov Models (HMMs) and signal information in time and frequency domain, a Support
Vector Machines classifier (SVM) was designed and validated. The 90.5% of subjects was assigned to
the right group after leave-one-subject–out cross validation and majority voting. The long-term goal
we point to is the gait assessment in everyday life to early detect gait alterations.

Keywords: gait classification; wearable sensors; inertial sensors; hidden Markov model; elderly;
hemiparetic; Huntington’s disease

1. Introduction

Wearable inertial sensors can be used to analyze human physical activity for prolonged periods
of time and with minimal subject’s discomfort. Within this context, the assessment of gait in terms
of quality and quantity is of great relevance since it provides indications of the level of physical
mobility, of the risk of fall or of the effects of a therapy [1]. The development of automatic methods to
discriminate between normal and abnormal gait and among different pathological gait patterns would
be of great interest in several clinical applications, [2,3]. This, along with the possibility to collect a
large amount of data during everyday life conditions, may open up new perspectives for the early
identification of gait disorders and for the implementation of general pre-screening procedures.

In general, pathological gaits can be classified based on their characteristic motor features
and according to the dominant observed motor disturbance [4]. The fundamental prerequisite for
the implementation of automatic methods for the classification of gait disorders is the possibility
to identify selected gait features for which the intra-pathology variability is smaller than the
inter-pathology variability.

Inertial measurement units (IMUs) including combinations of accelerometers and gyroscopes
have been successfully used for assessing gait characteristics (i.e., gait spatio-temporal parameters,
gait variability) and the quality and quantity of physical activity in both healthy and pathological
populations [5–7]. Recently, novel IMU-based approaches based on the statistical modeling of gait
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sequences using Hidden Markov Models (HMMs) have been proposed [8–16]. The inclusion of the
statistical information on the signal morphology in addition to the signal value itself (the latter is
of main interest in, e.g., classical threshold-based methods) was exploited to model gait data for
both segmentation and classification purposes [8,10]. Some examples of recent applications of this
statistically-intensive approach include discrimination between walking and jogging [8], classification
of type of walking (level walking, inclined walking and stair climbing) [17], gesture recognition [18] and
user authentication based on gait [19]. Machine learning methods such as artificial neural networks
and support vector machines (SVM) found application in automatic recognition of pathological
gait. Lakany proposed a solution for pathology detection from kinematic data obtained using
stereo-photogrammetry during gait [20]. In particular, an artificial neural network was designed
and validated to recognize 89 control subjects from 32 pathological patients affected by different gait
disorders (cerebral palsy, polio or spina-bifida), using features extracted from spatial and temporal
gait parameters. Begg and colleagues applied SVM classifiers to recognize gait changes due to ageing
from kinematic data. A dataset of gait measurements of 30 young and 28 elderly subjects obtained
from stereo-photogrammetry was considered, extracting features from foot clearance [21]. In another
study, Pogorelc and colleagues compared several classifiers including neural networks and SVM
to automatically recognize five healthy controls and four patients with hemiplegia using kinematic
data [22]; features were extracted from joint angles, relative displacements, left-right symmetry and
walking speed.

A few studies have attempted to categorize abnormal gait patterns from IMU data. Although
no classification tests were conducted, Abaid and colleagues found significant differences in the
duration of the gait phases between 10 healthy and 10 hemiplegic children using IMU data [14]. Chen
and colleagues proposed an HMM based approach for discriminating between two simulated gait
deviations (toe-in and toe-out gait) [12]. However, the method was applied and validated on four
healthy subjects only, who were asked to reproduce the two abnormal gait conditions.

The objective of the current work is to propose and validate a machine learning framework for
the definition of features to be used for the classification of different pathological gaits from IMU
data. Specifically, this work presents a methodology based on the training of class-specific HMMs
used to recognize the pathology group jointly with SVM classifiers. This mixed approach should
take advantage of each single methodology. In fact, previous HMM based solutions have shown
the capability to capture gait characteristics useful for classification [8,14], whereas gait classification
studies involving SVM classification have reported high rates in recognizing gait alteration [21–23].

Very often the validation phase of newly proposed methodologies for the gait classification,
especially in pathological populations, is overlooked or based on N-fold cross-validation approaches
that includes data from the same subject in both training and test sets [21,22]. In the present study,
we tested the proposed methodology and validated it on about 3500 gait cycles recorded on three
different populations (Huntington’s disease and post-stroke subjects and healthy elderly controls) [15].
The methodology validation was performed using a Leave-One-Subject-Out (LOSO) cross-validation
approach, so as to properly assess the algorithm behavior when evaluated on a new subject. The two
pathological populations were selected as a paradigm since they are characterized by gait patterns that
result in IMU signals with characteristic features [24–28].

The main motivation of this work is to lay the methodological foundation for mobile-based gait
assessment tools, to be possibly included in health-tracking platforms such as Google Fit or Apple Health.
The long-term goal we point to is then the gait assessment in everyday life, in the attempt to detect gait
alterations early.
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2. Materials and Methods

2.1. Subjects

The study included 15 post stroke patients (PS) (five females, ten males; mean (sd) age:
61.3 (13) y.o., height: 1.71 (0.06) m, mass: 78.7 (16.3) kg), 17 subjects with Huntington’s disease (HD)
(seven females, ten males; mean (sd) age: 54.3 (12.2) y.o., height: 1.66 (0.08) m, mass: 61.5 (10.3) kg), and
10 healthy elderly (EL) (six females, four males; mean (sd) age: 69.7 (5.8) y.o., height: 1.62 (0.08) m, mass:
63.6 (5.7) kg). Subjects were enrolled from the out-patient Movement Disorders Clinic of the University
of Genoa. Disease severity was determined by means of the Functional Ambulatory Category (FAC)
which rates gait from 5 (independent walker) to 1 (walks with physical assistance only) [29] for the PS
subjects (3.2 ˘ 1.5) and the Unified Huntington’s Disease Rating Scale (UHDRS) [30] for the HD subjects
(40 ˘ 20). The UHDRS scale quantifies the general level of impairment taking into account motor,
cognitive and behavioral aspects. Because the focus of the present study is on gait only, information
related to ambulation only was considered (normal walking and tandem walking) to define a more
specific scale named HDRS’. The level of the locomotor disability decreases with the scale score (8: not
ambulating–0: normal gait). The Declaration of Helsinki was respected, all subjects provided informed
written consent, and local ethic committee approval was obtained.

2.2. Acquisition Protocol

Three IMUs (Opal, APDM, Inc., Portland, OR, USA) featuring a tri-axial accelerometer and
a tri-axial gyroscope (unit mass 22 g, unit size 48.5 mm ˆ 36.5 mm ˆ 13.5 mm, sampling frequency
128 Hz, accelerometer range ˘ 6 g, where g = 9.81 m/s2) were located on both shanks (about 20 mm
above the malleoli with x, y and z axes pointing in vertical (VT, downward), antero-posterior (AP,
forward) and medio-lateral (ML, right), directions respectively) and over the subject’s lumbar spine,
between L4 and S2, of each participant. Although this work did not include anatomical calibration
of the IMU positioning [31–34], care was taken to align the IMU axes to the anatomical axes. IMUs
signals were low-pass filtered using a double-pass second order Butterworth filter with 5Hz cut-off
frequency. A seven-meters long instrumented gait pressure mat (GAITRite™ Electronic Walkway,
CIR System Inc., Franklin, NJ, USA) acquired at 120 Hz (spatial resolution accuracy: ˘12.7 mm; time
accuracy: ˘1 sample) was used to acquire reference data. The instrumented mat returned the foot
strike (FS) and toe off (TO) events and all relevant gait temporal parameters. The IMUs and the
instrumented mat were synchronized (˘ 1 sample) by means of a wired connection between the IMU
access point and the sensorized mat. The synchronization error was then evaluated in preliminary
tests using the signals generated when a wooden cane, instrumented with one IMU, impacted the
sensorized mat.

Subjects were asked to walk back and forth for about one minute along a 12-m walkway with
the instrumented mat placed two meters from the starting line. Subjects walked both at self-selected
comfortable speed and higher speed, wearing their own shoes. Each passage on the instrumented mat
was considered as a separate gait trial.

2.3. Gait Classification Strategy

A classification strategy was implemented for the automatic identification of pathological gaits
based on IMU data, as reported in Figure 1. The classification framework was defined through three
major steps: (i) the classification process started from implementing class-specific HMMs, whose
likelihoods of observing data given each model were evaluated; (ii) the HMM likelihoods were
included in a wider feature set, which was then classified using an SVM classifier; (iii) a majority
voting (MV) classification post-processing was cascaded to summarize the results obtained in step ii.
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Figure 1. General block scheme of the algorithm for gait classification. 
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The methodology was validated offline, by running all tests on a personal computer running 
Matlab (vers 2013b, the MathWorks, Natick, MA, USA). However, the online implementation of the 
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testing, which present, respectively, time complexity of O(NlogN) and O(N2). SVM classification and 
HMM-based gait assessment were successfully tested on Android-based smartphones in some 
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2.3.1. Classification Using Group-Specific HMM Likelihood 

HMM is a double stochastic process in which the existence of a set of discrete states is assumed 
for a given system. The first stochastic process describes how the system may jump from one state to 
another (transition probability), under the hypothesis that the next state depends only on the state at 
the present time (Markov property). The state sequence is not observed—it is hidden to the observer, 
who has access to the emissions of each state only (in practical terms, the emissions can be 
considered as the observed quantities such as sensor data that are used to infer the hidden structure 
of the modeled phenomenon). The second stochastic process yields the statistical description 
governing the emissions of each observed variable (emission probability), in terms of either discrete 
probabilities or probability density functions. HMMs have been applied to solve classification 
problems thanks to their capability of summarizing signals’ characteristics using few  
parameters [38]. For each class, a specific model was trained. New data were then classified by 
evaluating which of the available models better explains data itself (likelihood) [38]. Given the 
cyclical nature of gait, we adopted a left–right HMM characterized by two states paired to the stance 
and swing phases as defined by the TO and FS events. The two state models were trained in a 
supervised way using the FSs and TOs annotations provided by the instrumented mat, used as a  
gold standard. 

The proposed set of HMM emissions was composed of seven observed variables. Six elements 
were computed from a single shank sensor according to a previous work on gait segmentation [15]: 
ML angular velocity and its approximated derivative, AP acceleration and its approximated 
derivative, and approximated derivative of the ML and VT accelerations. The seventh element is 

Figure 1. General block scheme of the algorithm for gait classification.

To evaluate the performance of the proposed classification approach, a LOSO cross-validation
was carried out. It consists of training models using all data except those from the subject being
tested and then repeating the evaluation for all the subjects in the dataset. Such a validation
approach is particularly useful in evaluating the inter-subject generalization capability of the proposed
methodology [8,35]. The criterion for assessing the quality of classification was given by the correct
classification accuracy resulting from LOSO cross-validation. The accuracy was evaluated from the
obtained confusion matrices.

The methodology was validated offline, by running all tests on a personal computer running
Matlab (vers 2013b, the MathWorks, Natick, MA, USA). However, the online implementation of the
classification method looks feasible, given that it would only require feature extraction and SVM
testing, which present, respectively, time complexity of O(NlogN) and O(N2). SVM classification
and HMM-based gait assessment were successfully tested on Android-based smartphones in some
previous works of ours [36,37].

2.3.1. Classification Using Group-Specific HMM Likelihood

HMM is a double stochastic process in which the existence of a set of discrete states is assumed
for a given system. The first stochastic process describes how the system may jump from one state to
another (transition probability), under the hypothesis that the next state depends only on the state at
the present time (Markov property). The state sequence is not observed—it is hidden to the observer,
who has access to the emissions of each state only (in practical terms, the emissions can be considered
as the observed quantities such as sensor data that are used to infer the hidden structure of the modeled
phenomenon). The second stochastic process yields the statistical description governing the emissions
of each observed variable (emission probability), in terms of either discrete probabilities or probability
density functions. HMMs have been applied to solve classification problems thanks to their capability
of summarizing signals’ characteristics using few parameters [38]. For each class, a specific model was
trained. New data were then classified by evaluating which of the available models better explains data
itself (likelihood) [38]. Given the cyclical nature of gait, we adopted a left–right HMM characterized
by two states paired to the stance and swing phases as defined by the TO and FS events. The two
state models were trained in a supervised way using the FSs and TOs annotations provided by the
instrumented mat, used as a gold standard.

The proposed set of HMM emissions was composed of seven observed variables. Six elements
were computed from a single shank sensor according to a previous work on gait segmentation [15]:
ML angular velocity and its approximated derivative, AP acceleration and its approximated derivative,
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and approximated derivative of the ML and VT accelerations. The seventh element is selected from
waist data (ML acceleration). The seven elements of data sequences will be referred to as channels in the
text. Emission probabilities were modeled in the HMMs as Gaussian mixtures with three modes. To
use all the experimental data available, we considered the right and left shank sensors as two different
sources. Therefore, for each passage on the instrumented mat, two sets of experimental observations
were available. The sign of the waist ML acceleration was changed when organizing emission vectors
for the left side shank. This was done to have the same sign in the representation of waist data for both
sides. The impaired side in PS subjects was also annotated.

For each group analyzed (EL, PS, HD), a specific model was trained using the experimental
data recorded for the relevant group. The training was supervised using the approach reported
in [39]. Class-specific models were then used to classify new experimental data, as shown in Figure 2.
The forward-backward algorithm, implemented as it was described in the work byRabiner and
colleagues [38], was applied to evaluate the likelihoods of observing data given each class-specific
model. HMM log-likelihoods at each validation step were evaluated on a data window of the same
length, corresponding to the first 2 s from each passage on the sensing mat. The natural logarithm was
applied to likelihoods, so as to obtain log-likelihoods [38]. The classification output for each passage
was obtained by selecting the model showing the highest log-likelihoods.
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2.3.2. SVM Classifier

SVM is a geometric-based classifier that constructs boundaries maximizing the margins between
the nearest features relative to two distinct classes [40]. An excellent description of SVM algorithms
can be found in the works by Vapnik and colleagues [40]. In this work, in particular, we used the
LibSVM implementation of these algorithms [41].

To use a more exhaustive feature set, we added to the group-specific HMM log-likelihoods three
features obtained by subtracting pairs of group specific likelihoods. In this case, in order to account
for different information as above, likelihoods were evaluated on data from the whole duration of the
passage on the instrumented mat. These three features were added to extract additional information
from HMM models. In particular, the differences between log-likelihoods were proposed to obtain
features that hold information about binary classification between two of the available groups. Since
the value of the likelihood is known to depend on the length of the sequence, the difference between
log-likelihoods for two models helped analyze data from different trials of different length. Moreover,
twelve additional time and frequency domain features extracted from the IMU data were included
(Table 1); such features confirmed their capability to extract information about ambulation in previous
studies on data classification using inertial sensors [23,42].

Table 1. Features for classification.

HMM-Based Features

H1. Log-likelihood, EL model (limited to a 2-s window)

H2. Log-likelihood, PS model

H3. Log-likelihood, HD model

H4. Difference between log-likelihoods given EL and PS models
(for all available data)

H5. Difference between log-likelihoods given EL and HD models

H6. Difference between log-likelihoods given PS and HD models

Time Domain Features

T1. Mean value

Evaluated for
each channel
(84 features)

T2. Standard deviation

T3. Variance

T4. Maximum

T5. Minimum

T6. Range

Frequency Domain
Features

F1. Power at first dominant
frequency (P1)

F2. Power at second dominant frequency

F3. First dominant frequency

F4. Second dominant frequency

F5. Total power (PT)

F6. P1/PT

The complete features data set hence included 90-dimensional feature vectors (six time domain
features for each channel, six frequency domain features for each channel and six HMM-based features).
An SVM classifier was then cascaded to classify feature vectors within the three considered classes
(EL, PS and HD). Radial basis function kernels were used and SVM kernel parameters were optimized
by running a grid search across parameter configurations (upper complexity bound C and kernel
variability γ). For each of the tested feature subsets, the optimization criterion was the maximization
of the minimum class-specific accuracy.
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It is important to notice that both group-specific HMMs and SVM classifiers were evaluated using
an LOSO cross-validation approach. This implies that at each validation step, namely for each subject
to be evaluated, three HMMs were trained to evaluate likelihoods and a SVM classifier was trained
using the feature set described in Table 1, as it is summarized in Figures 2 and 3.
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N-1 subjects were used for training and the obtained classifier was tested on the features from the
remaining subject.

2.3.3. Classification Post-Processing with Majority Voting

To improve the final prediction and summarize the results, a majority voting (MV) strategy was
finally applied [43]. MV is a post-processing technique applied to the classification outcomes, where
multiple classification outcomes are merged to generate a single classification outcome. In MV, each
classification outcome generates a “vote” for the corresponding class; the class collecting more votes is
then selected as the winner of the poll.

In this paper, a vote was assigned for each subject, passage on the instrumented mat and side. For
each subject, votes for each passage and side were analyzed to generate the assignment of the subject
to the corresponding class. A slightly different approach was applied to PS patients, since, for them,
a distinction between impaired and not-impaired side is relevant. For this group, instead of summing
up votes of both sides to get a unique classification outcome, as it was done for EL and HD groups, the
MV was applied, separately to the votes collected for each side.
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2.4. Data Analysis

For each subject group (EL, PS, and HD), the accuracy of the classification obtained by solving the
classification problem using (i) the HMM-based information only; and (ii) the SVM classifier output
were computed. For the latter approach, the influence of the features on the classification output
was also investigated. In particular, three different sets of features were compared: (a) HMM-based
features; (b) time and frequency domain features; (c) full features set. The results provided by (i) and
(ii) were compared with those obtained after (iii) MV was applied using the three sets of features
previously described, Table 1.

The relationships between classification outputs and clinical scales were investigated by
correlating the majority votes with the clinical scales values. The FAC levels were used for PS patients,
whereas HDRS’ scores were used for HD patients.

3. Results

The number of passages on the instrumented mat varied from subject to subject from a minimum
of two passages to a maximum of 16, in relation to the average gait speed, Table 2. The complete
dataset analyzed consisted of 390 passages on the sensorized mat; for each passage, 4.5 strides were
counted, on average, for each foot.

Table 2. Dataset details.

Group Number of Passages Number of Strides Per Passage

Min Max Mean SD Total Min Max Mean SD Total

EL 6 15 12.4 3.1 124 2 5 3.5 0.7 862
PS 2 11 6.3 3.1 95 3 24 6.0 3.6 1144
HD 4 16 10.1 3.4 171 2 21 4.3 2.6 1467

Overall 2 16 9.3 4.0 390 2 24 4.5 2.7 3473

Gait Classification

Results for the automatic classification obtained by group-specific HMMs are reported in Part 1 of
Table 3. The overall accuracy was 66.7%. Most data were incorrectly classified as HD data.

After applying SVM classification to the features set of Table 1, the results improved significantly.
As reported in Parts 2A, 2B and 2C of Table 3, the bias toward the HD class was reduced by applying
SVM classification. In particular, by limiting the SVM classifier to HMM-based features, an overall
accuracy of 71.5% was obtained (Part 2A of Table 3). Similarly, by using time and frequency domain
features only, the overall recognition accuracy was 71.7% (Part 2B of Table 3). The inclusion of the
full feature set resulted in a classification accuracy of 73.3%, as it is shown in Part 2C of Table 3. After
the MV was applied, by using all the features, the 90.5% of the subjects were correctly classified
(Table 4). For PS patients, in order to discriminate between impaired and not impaired side, two
results for each subject are reported in Tables 3 and 4. As it is shown in Table 4, Part 2C, there were
no misclassifications from HD or PS classes to the EL class, and then misclassifications occurred only
between the two pathological conditions (PS and HD).
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Table 3. Confusion matrices. Results are reported for two different strategies: (1) solving the
classification problem using Hidden Markov Models (HMM) based information only; (2) solving
the problem using a Support Vector Machine (SVM) classifier. In the latter case, the contributions
of HMM-based features only (2A), of time and frequency domain features only (2B) and of the full
features set (2C) are presented separately. Confusion matrices refer to the classification of single mat
passages: each entry in the matrix corresponds to a passage on the mat of one foot. The amount of
passages is then doubled with respect to data in Table 2. Correct classifications are in bold.

Classification Output

EL PS HD

1. HMM-based information (maximum log-likelihood)

Actual Label

EL 176 (71%) 0 (0%) 72 (29%)
PS–not imp. side 0 (0%) 16 (16.8%) 79 (83.2%)
PS–imp. side 0 (0%) 51 (53.7%) 44 (46.3%)
HD 60 (17.5%) 5 (1.5%) 277 (81%)

Overall accuracy 66.7% of mat passages

2A. SVM classifier (HMM-based features only)

Actual Label

EL 168 (67.7%) 50 (20.2%) 30 (12.1%)
PS–not imp. side 11 (11.6%) 69 (72.6%) 15 (15.8%)
PS–imp. side 0 (0%) 93 (97.9%) 2 (2.1%)
HD 55 (16.1%) 59 (17.3%) 228 (66.7%)

Overall accuracy 71.5% of mat passages

2B. SVM classifier (time and frequency domain features only)

Actual Label

EL 182 (73.4%) 0 (0%) 66 (26.6%)
PS–not imp. side 3 (3.2%) 57 (60%) 35 (36.8%)
PS–imp. side 1 (1.1%) 78 (82.1%) 16 (16.8%)
HD 63 (18.4%) 37 (10.8%) 242 (70.8%)

Overall accuracy 71.7% of mat passages

2C. SVM classifier (all available features)

Actual label

EL 159 (64.1%) 48 (19.4%) 41 (16.5%)
PS–not imp. side 0 (0%) 71 (74.7%) 24 (25.3%)
PS–imp. side 0 (0%) 88 (92.6%) 7 (7.4%)
HD 39 (11.4%) 49 (14.3%) 254 (74.3%)

Overall accuracy 73.3% of mat passages

The evaluation of classifiers with respect to the clinical scales values is summarized in Figure 4.
Figure 4a concerns PS subjects and reports only results for the not impaired side given that the

classification showed 100% accuracy for the impaired side. In general, FAC values for data correctly
classified as PS were low, whereas misclassifications from PS to the EL class showed higher FAC values,
as shown in Figure 4.

A relation was also found between classifier output and the HDRS’ values, showing higher values,
on average, for data misclassified as PS, Figure 4b.
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Table 4. Confusion matrices obtained after majority voting (MV). Results are reported for two different
strategies: (1) solving the classification problem using HMM based information only; (2) solving the
problem using a SVM classifier. In the latter case, the contributions of HMM-based features only
(2A), of time and frequency domain features only (2B) and of the full features set (2C) are evaluated
separately. Each entry in the matrix corresponds to a subject. Post stroke (PS) subjects were reported
twice, separating the two sides contributions. Correct classifications are in bold.

Classification Output

EL PS HD

1. HMM-based information (maximum log-likelihood)

Actual Label

EL 7 (70%) 0 (0%) 3 (30%)
PS–not imp. side 0 (0%) 5 (33.3%) 10 (66.7%)
PS–imp. side 0 (0%) 10 (66.7%) 5 (33.3%)
HD 1 (5.9%) 0 (0%) 16 (94.1%)

Overall accuracy 76.2% of subjects

2A. SVM classifier (HMM-based features only)

Actual Label

EL 9 (90%) 0 (0%) 1 (10%)
PS–not imp. side 1 (6.7%) 13 (86.7%) 1 (6.7%)
PS–imp. side 0 (0%) 15 (100%) 0 (0%)
HD 1 (5.9%) 4 (23.5%) 12 (70.6%)

Overall accuracy 85.7% of subjects

2B. SVM classifier (time and frequency domain features only)

Actual Label

EL 8 (80%) 0 (0%) 2 (20%)
PS–not imp. side 0 (0%) 13 (86.7%) 2 (13.3%)
PS–imp. side 0 (0%) 14 (93.3%) 1 (6.7%)
HD 3 (17.6%) 0 (0%) 14 (82.4%)

Overall accuracy 83.3% of subjects

2C. SVM classifier (all available features)

Actual label

EL 9 (90%) 1 (10%) 0 (0%)
PS–not imp. side 0 (0%) 13 (86.7%) 2 (13.3%)
PS–imp. side 0 (0%) 15 (100%) 0 (0%)
HD 0 (0%) 2 (11.8%) 15 (88.2%)

Overall accuracy 90.5% of subjects
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scale. No data were misclassified from the HD class to the EL class. Two subjects were misclassified 
from the HD class to the PS class. 
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We proposed and validated a general probabilistic modeling approach based on IMU 
recordings for the classification of normal and pathological gaits (EL, HD and PS). The classification 
framework was defined through three major steps starting from a classification based on 
class-specific HMMs, then including the HMM likelihoods in a wider feature set to be classified 
using a SVM classifier, and finally cascading MV to summarize the results obtained. 

The classification based on the maximum class-specific likelihood evaluation [38], was only 
partially successful to solve the classification problem (overall accuracy 66.7%). The significant bias 
toward the HD class could be related to the large inter- and intra- subject gait variabilities that 
characterize the PS group [44]. In fact, if the population analyzed is characterized by a highly 
variable and asymmetric gait, the internal consistency of the stance and swing phases duration is 
likely to be poor. This circumstance can reduce the efficacy of the specific models to capture a 
common signature that can describe the group as a whole. 

The use of SVM classifiers improved the class separation thanks to their capability to define 
more complex decision boundaries. Results indicated that HMM-based and time/frequency domain 
features perform similarly when used separately, but they improve the final outcome when merged 
(up to 73.3%). An explanation could be that time and frequency domain features provide 
information about the gait variability that are somehow complementary to those contained in the 
HMM likelihoods. 

Finally, the MV step summarized results by smoothing the effects of intra-subject variability, 
providing a high overall accuracy in terms of subjects classification up to 90.5%. In fact, the large 
variability observed during each trial is smoothed by taking into account a larger amount of trials. It 
is interesting to note that, despite of a similar accuracy, before applying the MV procedure, the 
outputs for HMM-based features are more distributed across classes than those obtained using time 
and frequency domain features only. As a result, the classification based on HMM features takes 
more advantage from the voting procedure. It is noted that the proposed MV strategy treats each 
vote equally. To improve the methodology we could modify the majority voting to a weighted 
majority voting approach in which each vote could be weighted based on the classification 
uncertainty, as estimated by, e.g., cascading a logistic regression to the SVM classifier [37,45]. 
However, as a first step in the development of the method, the voting approach in which each vote 

Figure 4. Output of the classifier after MV in relation to clinical scales: (a) PS subjects (impaired side
only), in relation to the FAC scale. No data were misclassified from the PS class to the EL class. Two
subjects are misclassified from the PS class to the HD class; (b) HD subjects in relation to the HDRS’
scale. No data were misclassified from the HD class to the EL class. Two subjects were misclassified
from the HD class to the PS class.
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4. Discussion

We proposed and validated a general probabilistic modeling approach based on IMU recordings
for the classification of normal and pathological gaits (EL, HD and PS). The classification framework
was defined through three major steps starting from a classification based on class-specific HMMs,
then including the HMM likelihoods in a wider feature set to be classified using a SVM classifier, and
finally cascading MV to summarize the results obtained.

The classification based on the maximum class-specific likelihood evaluation [38], was only
partially successful to solve the classification problem (overall accuracy 66.7%). The significant bias
toward the HD class could be related to the large inter- and intra- subject gait variabilities that
characterize the PS group [44]. In fact, if the population analyzed is characterized by a highly variable
and asymmetric gait, the internal consistency of the stance and swing phases duration is likely to be
poor. This circumstance can reduce the efficacy of the specific models to capture a common signature
that can describe the group as a whole.

The use of SVM classifiers improved the class separation thanks to their capability to define more
complex decision boundaries. Results indicated that HMM-based and time/frequency domain features
perform similarly when used separately, but they improve the final outcome when merged (up to
73.3%). An explanation could be that time and frequency domain features provide information about
the gait variability that are somehow complementary to those contained in the HMM likelihoods.

Finally, the MV step summarized results by smoothing the effects of intra-subject variability,
providing a high overall accuracy in terms of subjects classification up to 90.5%. In fact, the large
variability observed during each trial is smoothed by taking into account a larger amount of trials.
It is interesting to note that, despite of a similar accuracy, before applying the MV procedure, the
outputs for HMM-based features are more distributed across classes than those obtained using time
and frequency domain features only. As a result, the classification based on HMM features takes more
advantage from the voting procedure. It is noted that the proposed MV strategy treats each vote
equally. To improve the methodology we could modify the majority voting to a weighted majority
voting approach in which each vote could be weighted based on the classification uncertainty, as
estimated by, e.g., cascading a logistic regression to the SVM classifier [37,45]. However, as a first step
in the development of the method, the voting approach in which each vote contributes equally was
preferred and any refinement of the voting procedure is then left to future developments.

Looking at the few misclassifications between PS and HD in relation to the scores of the clinical
scales (Figure 4), it is noted that two PS patients with a low level of impairment (FAC = 5) were
assigned to the HD group when testing their not-impaired side, whereas two HD patients with severe
gait impairments (HDRS’ = 6) were classified as PS. This is somehow an expected result; in fact, the
patients with clinical scores at the extreme range of the specific reference population are more likely to
be misclassified. In this regard, it is important to highlight that, because the proposed classification
method focus on the gait alterations caused by the pathology and not on the pathology itself, pathology
misclassifications are not to be considered necessarily as errors: altered gait patterns can be common
to different pathologies and mild impairments may not affect significantly gait patterns. Hence, the
direct application of the proposed methodology to different pathologies that affect gait would not be
straightforward. The inclusion of additional pathological populations would require the definition of
disorder-specific models.

5. Conclusions

The present methodology allowed to properly discriminate abnormal gait patterns using an SVM
classifier, taking advantage of HMM derived information. The use of complementary features (HMM
likelihoods and time-frequency domain features) along with an MV classification post-processing
allowed for the improvement of the classification outcomes (overall accuracy 90.5%). The few incorrect
classifications were found for those patients with clinical scores at the extreme range of the specific
reference population. As a paradigm for testing the performance of the classification methodology,
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we selected two pathological populations—Huntington’s disease and post-stroke subjects and elderly
as control group. However, it is important to highlight that the same general approach can be
extended to the classification of other pathological populations after those specific validations are
carried out. Future works will focus on this, by extending the vocabulary of recognized conditions,
improving model complexity, including gait spatial and temporal parameters as classification features
and by defining metrics for gait assessment based on the same wearable sensing sources and
methodological approach.
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22. Pogorelc, B.; Bosnić, Z.; Gams, M. Automatic recognition of gait-related health problems in the elderly using

machine learning. Multimedia Tools Appl. 2012, 58, 333–354. [CrossRef]
23. Mannini, A.; Sabatini, A.M. Machine Learning Methods for Classifying Human Physical Activity from

On-Body Accelerometers. Sensors 2010, 10, 1154–1175. [CrossRef] [PubMed]
24. Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke

hemiparesis and non-disabled controls at matched speeds. Gait Post. 2005, 22, 51–56. [CrossRef] [PubMed]
25. Koller, W.C.; Trimble, J. The gait abnormality of Huntington’s disease. Neurology 1985, 35, 1450–1450.

[CrossRef] [PubMed]
26. Yang, S.; Zhang, J.-T.; Novak, A.C.; Brouwer, B.; Li, Q. Estimation of spatio-temporal parameters for

post-stroke hemiparetic gait using inertial sensors. Gait Post. 2013, 37, 354–358. [CrossRef] [PubMed]
27. Rao, A.K.; Quinn, L.; Marder, K.S. Reliability of spatiotemporal gait outcome measures in Huntington’s

disease. Mov. Disord. 2005, 20, 1033–1037. [CrossRef] [PubMed]
28. Dalton, A.; Khalil, H.; Busse, M.; Rosser, A.; van Deursen, R.; ÓLaighin, G. Analysis of gait and balance

through a single triaxial accelerometer in presymptomatic and symptomatic Huntington’s disease. Gait Post.
2013, 37, 49–54. [CrossRef] [PubMed]

29. Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the
neurologically impaired reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [PubMed]

30. Kremer, H.; Group, H.S. Unified Huntington’s disease rating scale: Reliability and consistency. Mov. Disord.
1996, 11, 136–142.

31. Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability
of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52,
145–155. [CrossRef]

32. Picerno, P.; Cereatti, A.; Cappozzo, A. A spot check for assessing static orientation consistency of inertial and
magnetic sensing units. Gait Post. 2011, 33, 373–378. [CrossRef] [PubMed]

33. Picerno, P.; Cereatti, A.; Cappozzo, A. Joint kinematics estimate using wearable inertial and magnetic sensing
modules. Gait Post. 2008, 28, 588–595. [CrossRef] [PubMed]

34. Favre, J.; Aissaoui, R.; Jolles, B.; de Guise, J.; Aminian, K. Functional calibration procedure for 3D knee joint
angle description using inertial sensors. J. Biomech. 2009, 42, 2330–2335. [CrossRef] [PubMed]

35. Esterman, M.; Tamber-Rosenau, B.J.; Chiu, Y.-C.; Yantis, S. Avoiding non-independence in fMRI data analysis:
Leave one subject out. NeuroImage 2010, 50, 572–576. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0073152
http://www.ncbi.nlm.nih.gov/pubmed/24023825
http://dx.doi.org/10.1016/j.medengphy.2014.07.022
http://www.ncbi.nlm.nih.gov/pubmed/25199588
http://dx.doi.org/10.1016/j.patcog.2007.11.004
http://dx.doi.org/10.1109/TBME.2005.845241
http://www.ncbi.nlm.nih.gov/pubmed/15887532
http://dx.doi.org/10.1007/s11042-011-0786-1
http://dx.doi.org/10.3390/s100201154
http://www.ncbi.nlm.nih.gov/pubmed/22205862
http://dx.doi.org/10.1016/j.gaitpost.2004.06.009
http://www.ncbi.nlm.nih.gov/pubmed/15996592
http://dx.doi.org/10.1212/WNL.35.10.1450
http://www.ncbi.nlm.nih.gov/pubmed/3162109
http://dx.doi.org/10.1016/j.gaitpost.2012.07.032
http://www.ncbi.nlm.nih.gov/pubmed/23000235
http://dx.doi.org/10.1002/mds.20482
http://www.ncbi.nlm.nih.gov/pubmed/15838854
http://dx.doi.org/10.1016/j.gaitpost.2012.05.028
http://www.ncbi.nlm.nih.gov/pubmed/22819009
http://www.ncbi.nlm.nih.gov/pubmed/6691052
http://dx.doi.org/10.1016/j.measurement.2014.03.004
http://dx.doi.org/10.1016/j.gaitpost.2010.12.006
http://www.ncbi.nlm.nih.gov/pubmed/21227693
http://dx.doi.org/10.1016/j.gaitpost.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/18502130
http://dx.doi.org/10.1016/j.jbiomech.2009.06.025
http://www.ncbi.nlm.nih.gov/pubmed/19665712
http://dx.doi.org/10.1016/j.neuroimage.2009.10.092
http://www.ncbi.nlm.nih.gov/pubmed/20006712


Sensors 2016, 16, 134 14 of 14

36. Mannini, A.; Genovese, V.; Sabatini, A.M. Online Decoding of Hidden Markov Models for Gait Event
Detection Using Foot-Mounted Gyroscopes. IEEE J. Biomed. Health Inf. 2014, 18, 1122–1130. [CrossRef]
[PubMed]

37. Mannini, A.; Sabatini, A.M. A smartphone-centered wearable sensor network for fall risk assessment in the
elderly. In Proceedings of the 10th EAI International Conference on Body Area Networks, Sydney, Australia,
28–30 September 2015; pp. 471–483.

38. Rabiner, L.R. A tutorial on HMM and selected applications inspeech recognition. IEEE Proc. 1989, 77,
257–286. [CrossRef]

39. Mannini, A.; Sabatini, A.M. Accelerometry-based classification of human activities using Markov modeling.
Comput. Intell. Neurosci. 2011, 2011, 647–658. [CrossRef] [PubMed]

40. Vapnik, V. The Nature of Statistical Learning Theory; Springer-Verlag: New York, NY, USA, 2000.
41. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.

2011, 2, 1–27. [CrossRef]
42. Mannini, A.; Intille, S.S.; Rosenberger, M.; Sabatini, A.M.; Haskell, W. Activity recognition using a single

accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 2013, 45, 2193–2203. [CrossRef] [PubMed]
43. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Patt. Anal. Mach. Intell.

2000, 22, 4–37. [CrossRef]
44. Balasubramanian, C.K.; Neptune, R.R.; Kautz, S.A. Variability in spatiotemporal step characteristics and its

relationship to walking performance post-stroke. Gait Post. 2009, 29, 408–414. [CrossRef] [PubMed]
45. Mannini, A.; Sabatini, A.M.; Intille, S.S. Accelerometry-based recognition of the placement sites of a wearable

sensor. Pervas. Mobile Comput. 2015, 21, 62–74. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JBHI.2013.2293887
http://www.ncbi.nlm.nih.gov/pubmed/25014927
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1155/2011/647858
http://www.ncbi.nlm.nih.gov/pubmed/21904542
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1249/MSS.0b013e31829736d6
http://www.ncbi.nlm.nih.gov/pubmed/23604069
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1016/j.gaitpost.2008.10.061
http://www.ncbi.nlm.nih.gov/pubmed/19056272
http://dx.doi.org/10.1016/j.pmcj.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26213528
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Subjects 
	Acquisition Protocol 
	Gait Classification Strategy 
	Classification Using Group-Specific HMM Likelihood 
	SVM Classifier 
	Classification Post-Processing with Majority Voting 

	Data Analysis 

	Results 
	Discussion 
	Conclusions 

