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Abstract: In this paper, we investigate alternative distributed clustering techniques for wireless sensor
node tracking in an industrial environment. The research builds on extant work on wireless sensor
node clustering by reporting on: (1) the development of a novel distributed management approach
for tracking mobile nodes in an industrial wireless sensor network; and (2) an objective comparison of
alternative cluster management approaches for wireless sensor networks. To perform this comparison,
we focus on two main clustering approaches proposed in the literature: pre-defined clusters and ad hoc
clusters. These approaches are compared in the context of their reconfigurability: more specifically,
we investigate the trade-off between the cost and the effectiveness of competing strategies aimed
at adapting to changes in the sensing environment. To support this work, we introduce three new
metrics: a cost/efficiency measure, a performance measure, and a resource consumption measure.
The results of our experiments show that ad hoc clusters adapt more readily to changes in the sensing
environment, but this higher level of adaptability is at the cost of overall efficiency.
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1. Introduction

Since its introduction in the 1980s and 1990s for military defense applications, wireless sensor
network (WSN) technology has expanded in scope to include a wide range of civilian applications
such as infrastructure security, environmental and habitat monitoring, industrial sensing, and traffic
control [1]. More recently, there has been considerable interest in deploying WSN technology at the
lowest level of factory automation systems [2]. For example, Figure 1 shows the basic problem tackled
in this paper: distributed dynamic cluster formation to track mobile wireless sensor nodes in a factory
environment. In this figure, we show a set of static wireless sensor nodes (Anchor Nodes and Sink
Nodes) that are used to track mobile wireless sensor nodes: the Anchor Nodes provide distance
estimates of the Mobile Nodes to the Sink Nodes, where the localization calculation takes place.

Industrial wireless sensor networks (WSNs) have become a research trend due to the advances
in processing power for micro-computers and reduced battery consumption of embedded battery
powered devices. General WSNs are composed of wireless sensor nodes, which are small with limited
processing and computing resources and are inexpensive compared to traditional sensors. Sensor
nodes are used to sense, measure and gather information from the environment and transmit the data
to a user or data acquisition system.

Hardware and software technologies are currently available to provide sophisticated monitoring,
control, and diagnostics of industrial systems at lower costs than ever before. There are, however,
a number of implementation challenges when these new technologies are applied in industrial
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environments. Given the distributed nature of many of these systems, management and coordination
are key challenges. Reliability and robustness given harsh industrial conditions, which can
arguably require higher reliability requirements than other commercial systems, is another key
implementation issue.
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Given the harsh, uncertain, and dynamic conditions present on the factory floor, WSNs applied
in this domain must be capable of rapidly adapting to change in order to support the flexibility and
responsiveness required of the system as a whole. More specifically, the WSN should be capable of
allowing sensor nodes to be added and/or removed from the system on-the-fly to support changes in
the configuration of the shop floor, and also be capable of handling signal loss that occurs during the
tracking process as a result of blockage and/or noise from machinery.

As a result, the wireless sensor network must be dynamically reconfigurable: i.e., it should have
“ . . . the ability to repeatedly change and rearrange (its components) in a cost effective way” [3]. Given
the limited battery life of wireless sensor nodes, “cost effective” in this context relates to reducing the
amount of communication and the corresponding energy consumption of the system.

This paper addresses this set of challenges with the following contributions. First, we develop a
novel distributed management approach for tracking mobile nodes in a 400–676 node network subject
to harsh industrial conditions presented by signal blockage and noise. Although Mobile Node tracking
can be accomplished using a centralized WSN management approach, we propose a distributed,
agent-based approach to achieve the flexibility and responsiveness required of factory automation
systems. As illustrated in Figure 1, we propose dividing the factory environment into sensor zones,
consisting of groups of static Anchor Nodes that are clustered around fixed Sink Nodes. Each cluster
zone is managed by the Sink Node and is responsible for tracking Mobile Nodes that pass through its
geographic area.

Secondly, we provide an objective comparison of alternative distributed cluster formation
techniques for wireless sensor node tracking. Our focus here is to quantify the trade-offs associated
with competing reconfigurable systems approaches: although various reconfigurable system designs
have been proposed in the literature [3], the trade-offs associated with these alternative designs is
still an open issue. To accomplish this, we focus on two main approaches proposed in the literature:
(1) pre-defined clusters based on efficient geographical partitioning of sensor nodes around cluster
heads; and (2) ad hoc clusters that are formed “on the fly” during tracking. We compare these
approaches in the context of their reconfigurability, and in particular, how cost effectively they modify
or adapt to meet new or changed requirements; to perform this comparison, we develop two new
metrics: (1) an efficiency/cost based metric; and (2) a performance-based metric. As well, we compare
the tracking performance of these approaches using a tracking accuracy metric.
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In the next section, we provide a summary of related work on wireless sensor node localization
and tracking. Next, we describe the WSN architecture and the clustering approaches explored in this
research. In Section 4, we present our experiments with these clustering approaches then provide our
conclusions and future work in Section 5.

2. Related Work

Individual sensors are incapable of solving the tracking task themselves, but instead must be
organized in a collaborative manner that allows their individual measurements to be used to triangulate
the target node. In this section, we provide an overview of the current work on how objects are located
using wireless sensor nodes, and on how wireless sensor networks can be coordinated to track
target nodes.

2.1. Wireless Sensor Network Localization

The term “localization” refers to the process of calculating a node’s physical position, or location,
in space. In recent years, a variety of approaches have been proposed that fall into two general
categories: range-based and range-free localization [4]. The former category refers to protocols that use
absolute point-to-point distance or angle estimates to calculate the location of a wireless sensor node;
the latter category refers to protocols that make no assumptions about the availability of point-to-point
distance or angle estimates, but instead rely on the structure of the network.

Although range-free techniques require less sophisticated hardware than range-based
techniques [5], they typically assume an isotropic network where the hop count between two nodes
is proportional to their distance [6]. Given the presence of non-isotropic conditions on the shop
floor resulting from signal loss due to noise and blockage and the need to reconfigure the network
configuration to adapt to change, we have chosen to use range-based localization in this research.

Two commonly used approaches to estimate point-to-point distance between nodes for
range-based localization are Received-Signal-Strength (RSS) and Time-of Arrival (ToA). RSS measures
the power of the signal at the receiver and calculates the distance according to the propagation loss
model. ToA measures the propagation time of the received signal (typically radio signals for large
distances or ultrasound for small distances) and determines the distance by multiplying it by its
own speed. In general, RSS is an easier parameter to implement, while ToA may achieve a higher
accuracy [7]. For this research, we have chosen to use ultrasound-based ToA because of its higher
accuracy, and also to align our current simulation work with our previous experimental work [8] using
the Cricket platform [9].

2.2. Wireless Sensor Node Clustering Strategies

Clustering in wireless sensor networks is a matter of interest not only as a method of data
aggregation but also as a backdrop to support other wireless sensor network protocols such as routing
and localization. The approach is used to organize fixed sensor nodes, distributed over a wide
geographic area, into smaller groups, or clusters, that are responsible for specific regions in the
tracking zone.

The first problem that researchers must tackle when considering wireless sensor node clustering, is
how these clusters are defined. Horling et al. [10] show the importance of this decision by comparing of
the characteristics and trade-offs of different organizational types. They propose a multi-agent system
design to explore geographic coalitions (i.e., size and shape of the sector) and functional differentiation,
and perform experiments to determine the effect of sector size on communication load, load disparity
between agents, average communication distance, and quality of tracking. Their results support the
use of agents for these systems, but show that further work is required to fully understanding the
effects of organizational trade-offs.

Recent research on WSN clustering strategies has focused primarily on improving the efficiency
of the overall network. For example, the desire to reduce the time and cost associated with replacing
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batteries in sensors has motivated research on partitioning the WSN in ways that minimize overall
energy consumption. Bandyopadhyay and Coyle [11] propose a distributed randomized clustering
algorithm for homogeneous wireless sensor networks: i.e., networks where every wireless node
can become a cluster head with a probability that minimizes the total energy spent in the network.
Yu et al. [12] present an energy-efficient dynamic clustering technique to route sensed information from
the field sensors to a remote base station in large-scale sensor networks. In a network of homogeneous
wireless sensor nodes, a probabilistic approach is employed to determine the cluster heads.

Sun et al. [13] propose a distributed cluster formation technique to increase security in wireless
sensor networks. The proposed distributed protocol first divides the nodes into mutually disjoint
cliques. Then, all the normal nodes in each clique agree on the same clique memberships. Finally,
while external attackers can be prevented from participating in the cluster formation process, inside
attackers that do not follow the protocol semantics can be identified and removed from the network.

Research has also focused on efficient geographical partitioning of sensor nodes around cluster
heads. One particular method of interest that has been used to define clusters is the Voronoi
diagram [14]. This method divides a set of points into regions, or cells, that each contains all points
that are closest to a specified “seed” location. In the context of Figure 1, seed locations correspond to
sink nodes and points correspond to anchor nodes.

Chen et al. [15] propose a dynamic clustering technique based on Voronoi diagrams to track
acoustic targets in wireless sensor networks. Given a heterogeneous wireless sensor network where
wireless nodes possess different capabilities, the authors envision a hierarchical cluster that assumes
the role of cluster head for the nodes with higher capabilities that are sparsely distributed in the
network field. Voronoi diagrams are used by the cluster heads to muster an appropriate number of
sensor nodes and dynamically form the clusters, and also to ensure only one cluster remains active at
each time to track the mobile target.

Boukerche et al. [16] adopt a range-based approach to localize the wireless sensor networks.
As such, using average size of a hop, hops are mapped to distance units. To overcome the scalability
limits of a DV-hop technique that is imposed by the large communication cost, the authors propose an
approach based on Voronoi diagrams.

In a previous study, the authors [17] have proposed an adaptable cluster formation technique
that employs Voronoi tessellations to define the cluster zones to be used to track Mobile Nodes in
congested noisy environments. The technique partitions the tracking space into a number of regions,
each of which are to be monitored by one cluster comprised of a sink node and multiple anchor nodes.

Ad hoc deployment of large number of wireless sensor nodes is proposed as an alternative
approach to the explicit cluster formation techniques described previously. Due to the unique
characteristics and behaviours of ad hoc networks, there is a growing interest in developing protocols
for ad hoc wireless sensor networks including clustering, location discovery protocols, and position
based routing protocols among others.

Savarese et al. [18] presented a clustering based solution to the problem of location discovery in
wireless ad hoc networks with no Mobile Nodes or wireless nodes with limited mobility. The proposed
localization algorithm is an anchor based method that relies on the a priori coordinates of sparsely
located anchor nodes. Clusters of nodes surrounding anchor nodes cooperatively establish confident
position estimates through assumptions, checks, and iterative refinements. Once established, these
positions are propagated to more distant nodes, allowing the entire network to create an accurate map
of itself.

Basagni [19] proposes a distributed approach to the clustering of quasi-static and mobile ad hoc
networks. The proposed approach groups the nodes by following a new weight-based criterion that
allows the choice of the nodes that coordinate the clustering process based on node mobility-related
parameters. The proposed algorithm is executed at each node with the sole knowledge of the identity
of the one hop neighbors.

Table 1 provides a summary of the recent work on wireless sensor node clustering strategies.
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Table 1. Recent work on wireless sensor node clustering strategies.

Authors Network Type Localization Clustering
Technique Notes

Horling et al. [10] heterogeneous range-free pre-defined
(static)

Use of software agents
for clustering

Bandyopadhyay and
Coyle [11] homogeneous range-based pre-defined

(static) Energy efficiency

Yu et al. [12] homogeneous range-based pre-defined
(dynamic) Energy efficiency

Sun et al. [13] homogeneous range-based pre-defined
(static) Security

Chen et al. [15] heterogeneous range-free pre-defined
(dynamic) Voronoi cells

Boukerche et al. [16] heterogeneous range-based pre-defined
(static) Voronoi cells

Gholami and
Brennan [17] heterogeneous range-free pre-defined

(dynamic) Voronoi cells

Savarese et al. [18] heterogeneous range-based ad hoc map-based

Basagni [19] homogeneous range-based ad hoc Weight-based criterion
to determine CH

This work has primarily focused on the properties of specific clustering approaches (e.g., energy
efficiency, security, etc.). Although some work has been done on node clustering strategies that
dynamically adapt to changing industrial conditions, very little work has been done on the trade-offs
between competing approaches to this problem. In the remainder of this paper, we tackle these open
issues by combining a multi-agent approach with the recent work on efficient sensor node partitioning
using Voronoi clusters. In the next section, we describe this general approach. Although considerable
work has been accomplished on WSN node management, the trade-offs between alternative clustering
approaches are not well understood. In this paper, we compare two general approaches that span the
different clustering approaches proposed in the literature. In order to assess the adaptability of these
approaches, the comparisons are performed in a harsh, industrial environment with a network. In the
next section, we provide a description of the general architecture of the WSN used in this research
along with an overview of the clustering approaches.

3. Distributed Clustering Techniques

3.1. The Wireless Sensor Network Architecture

The proposed WSN consists of the three basic types of wireless sensor nodes shown in Figure 1:
(1) Sink Nodes; (2) Anchor Nodes; and (3) Mobile Nodes. Sink Nodes are equipped with a powerful
processing unit, an RF transceiver unit, a high capacity memory unit, and a long-lasting power
supply unit to support two key agent types: (1) a Mediator Agent (MA) that is responsible for cluster
formation and management, as well as inter cluster communication; and (2) Locator Agents (LA) that
are responsible for Mobile Node tracking. For our proposed approach, a unique LA is assigned to each
Mobile Node tracked by the cluster.

Anchor Nodes are responsible for sensing the distance to a particular Mobile Node and
transmitting the distance estimations to a Sink Node. It is generally assumed that the location of these
nodes with respect to a global frame of reference is either known a priori or can be acquired at any
point in time. The processing capabilities of these nodes are much less than those of Sink Nodes since
only a single agent, the Anchor Node Agent (ANA), is required to interface these nodes with the
agent system.
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Finally, the third type of wireless sensor node, the Mobile Node, is very similar in capabilities to
Anchor Nodes, but by definition, can move from one location to another. Like the Anchor Node, a
single interface agent, the Mobile Node Agent (MNA) in this case, resides on the computing platform.
Additional details on the design and implementation of the agent architecture are provided in [8]
and [20].

3.2. Cluster Formation Techniques

In order to provide an objective comparison of alternative distributed cluster formation techniques,
we chose to simulate three clustering techniques (Table 2) that approximate the range of techniques
from the literature.

Table 2. Cluster formation techniques.

Cluster Formation Technique Protocol Cluster Head Notes

Static Contract Net Protocol (CNP) Sink Node Bidding initiate by Sink Node Agent
Dynamic Vickrey Auction Sink Node Bidding initiated by Anchor Node Agent
Ad Hoc Vickrey Auction Sink Node Bidding initiate by Sink Node Agent

It should be noted that all three techniques shown in Table 2 are heterogeneous (i.e., are
composed of multiple node types) and use range-free localization (i.e., there are no assumptions
about point-to-point distances between nodes). As well, all three techniques use bidding-based
protocols to recruit nodes to form clusters.

The first two techniques result in pre-defined clusters of Anchor Nodes that are centered on a
Sink Node cluster head. For the Static technique, the cluster formation process is initiated by Sink
Nodes using the well-established Contract Net Protocol (CNP) for distributed communication and
control [21]. In contrast, the Dynamic technique relies on Anchor Nodes to initiate cluster formation
using a Vickrey auction [22]. The implementations of the CNP and Vickrey auction protocols are
shown in Appendix 1.

The main difference between the static and the dynamic techniques is their ability to adapt to
change during operation. Typically, a cluster formation technique is regarded as dynamic when it
includes regular (periodic or event-driven) cluster head re-election or cluster reorganization procedures,
either to effectively react to network topology changes and adjust appropriately the cluster topology,
or simply aiming at the appropriate rotation of the cluster head role among the nodes to gain energy
efficiency. Given that our WSN is heterogeneous with Sink Nodes serving as cluster heads, cluster
head re-election does not occur. However, the dynamic technique differs from the static technique in its
ability to reorganize its clusters to facilitate Mobile Node tracking. As its name implies, clusters formed
by the static technique are fixed; in contrast, clusters formed by the dynamic technique can adapt by
borrowing Anchor Nodes from adjacent clusters as Mobile Nodes approach cluster boundaries. The
intention is to approximate the more dynamic pre-defined clustering approaches of [12,15] with the
dynamic technique.

The bidding-based protocols used by both the static and the dynamic techniques result in clusters
where each Anchor Node is a member of the cluster whose mean (the Sink Node or “cluster head”) is
located closer to the Anchor Node than any other. This process results in a distributed implementation
of the k-means algorithm that has the advantage of addressing the computational complexity of the
k-means problem [23]: by distributing the algorithm over a network in this manner, our approach
allows the clustering problem to be tackled in a reasonable time. Like many of the pre-defined
clustering approaches reported in the literature, the computational complexity of the static and
dynamic techniques are in the order of O(n), where n represent the number of nodes.

The resulting network topology is a set of clusters in the form of Voronoi cells [24]. For both the
static and the dynamic techniques, we use this network topology, along with the average received
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signal strength (ARSS) to determine when a Mobile Node tracking task is passed from one cluster to
the next.

The bidding-based protocols used for cluster formation also provide the static and dynamic
techniques with the ability to adapt to the shop floor environment. For example, the sensor network
shown in Figure 2 has been divided into five clusters: each managed by one Sink Node (represented
by solid triangles in the figure). In the upper figure, the Anchor Nodes have been assigned to clusters
that correspond to Voronoi cells: to identify the clusters, a different shape is used to represent Anchor
Nodes within the cluster (i.e., rectangles, crosses, diamonds) and the Voronoi boundaries have been
identified by lines. When an obstacle is introduced in the lower figure (the solid horizontal line), the
clusters reconfigure in response to the resulting signal blockage. As can be seen in Figure 2, the clusters
still conform to a Voronoi pattern wherever possible, but no longer include anchors that are blocked by
the obstacle (these anchors are assigned to adjacent clusters).
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The third technique shown in Table 2 is intended to approximate the ad hoc clustering techniques
described in the previous section. For this technique, Sink Nodes again serve the role of cluster heads,
but Anchor Nodes are temporary members of clusters that are formed for each Mobile Node tracking
task. In order to determine which Sink Node is to serve as cluster head for a given tracking task,
Sink Nodes initiate Vickrey auctions amongst themselves. The winning Sink Node then manages the
tracking task by recruiting Anchor Nodes into an ad hoc cluster. This cluster remains active until either
the Sink Node does not have enough resources (e.g., wireless nodes) to track the event (i.e., in case the
event is mobile and goes out of the detection range of the ad hoc cluster), or the Sink Node decides to
no longer track the event. At this point all the participating wireless nodes are dismissed and they will
no longer have any commitment to the ad hoc cluster (i.e., the transient organization).

4. Experimental Section

In this section, we compare the distributed cluster formation techniques described in Section 3
in the context of Mobile Node tracking in an industrial WSN. As noted previously, our aim is to
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investigate the reconfigurability of alternative clustering approaches, and in particular, how cost
effectively each approach adapts to meet new or changing requirements. To perform this comparison,
we introduce three performance measures: (1) a cost/efficiency related “load distribution” measure;
(2) a performance related “effectiveness” measure; and (3) a resource consumption measure. We follow
this with a description of our experimental design in Section 4.2 and the results of our simulation
experiments in Section 4.3.

4.1. Metrics

A reconfigurable system is generally understood to be a system that can be adapted to meet new
or changed requirements. However, as in natural systems (biological, ecological), this adaptability is
typically at the cost of efficiency. In order to quantify this trade-off in a distributed WSN, we propose
the three basic metrics described in this subsection.

4.1.1. Load Distribution

The first metric, a cost/efficiency related criterion, measures the load distribution among Anchor
Nodes. In a computer network, load distribution or load balancing is used to distribute workloads
across multiple computing resources, such as computers, central processing units (Sink Nodes), or
wireless nodes. Load distribution (balancing) aims to optimize resource use, maximize throughput,
minimize response time, and avoid overload of any of the resources.

In this research, we are interested in measuring how efficient the three clustering approaches are
at distributing the load among Anchor Nodes. To measure load distribution among Anchor Nodes, we
propose utilizing the statistical variance of the number of times each anchor is employed to estimate a
distance to a Mobile Node. The variance explains how the workloads are distributed among Anchor
Nodes by the cluster. In other words, the lesser the variance the more distributed the workloads among
wireless nodes, i.e.,

f lds “ Var pXq “
řN

i“1 pXi ´ µq2

N ´ 1
Xi “ number o f times anchor i is utilized

(1)

where N is the number of Anchor Nodes and µ is the mean of Xi i “ 1, 2, . . . , N.

4.1.2. Effectiveness of the Cluster Formation Technique

The second metric is concerned with the performance of the distributed cluster formation
techniques, and more specifically, their ability to adapt to the movement of Mobile Nodes through the
tracking zone. Since the WSN investigated in this research is composed of stationary sensor nodes (Sink
Nodes and Anchor Nodes), this form of adaptability involves “virtual mobility” of these stationary
tracking nodes. In other words, as a Mobile Node traverses the tracking zone, the clusters adapt to the
tracking task by assigning Anchor Nodes with the closest proximity to the Mobile Node tracking task.

As a metric to measure how effective a given cluster formation is and to compare the performance
of the cluster formation techniques in deploying a proper set of Anchor Nodes, we propose using the
average distance each Mobile Node is at any point in time from the estimating Anchor Nodes during
the course of WSN operation, i.e.,

f ec f “

ř

@t
ř

@i
ř

@j dt
i,j

TNM
i P tdeployed mobile nodesu , j

P testimating anchor nodesu , and t
P tquantized operation timeu

(2)

where dt
i,j is the distance from Mobile Node i to estimating anchor j at quantized time t, T is the

WSN/WAN operation period, N is the number of Mobile Nodes in the wireless network, and M is the
number of distance estimating Anchor Nodes.
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4.1.3. Resource Consumption

Wireless nodes’ battery and communication bandwidth are two main resources of a WSN every
distributed system must sparingly use.

One key restriction on the wireless networks is the limited communication band width, which
limits the number of message that can be communicated at a time among a cluster of wireless nodes
located at close vicinity with respect to each other. Hence, it, in turn, limits the rate of data transferred
among the wireless nodes.

Transmission and receipt of messages also play a significant role in the battery life of a wireless
node. In fact, wireless communication—in terms of transmission and receipt of messages—is the major
energy consumer during the system operation [4]. This is to say, the higher the rate of communication,
the more energy is consumed by the system. Therefore, it is important to consider the communication
rate when designing energy-efficient tracking techniques.

Thus, the rate of messages communicated among wireless nodes in a cluster of WSN plays a very
crucial role in the practicality of the clustering technique, hence the tracking technique, both in terms
of available bandwidth and energy consumption of wireless nodes.

f tmg “

ř

messages
period

“

msg ¨ s´1‰ (3)

4.1.4. Tracking Accuracy

Given the actual location of a Mobile Node, i, at a given time, the accuracy of the location
estimation, facc, is measured by the Euclidean distance between the estimated location of the Mobile
Node (xe, ye) and its actual location (xa, ya) at any point in time during the course of simulation, i.e.,

f acc
i,t “

c

´

xa
i,t ´ xe

i,t

¯2
`

´

ya
i,t ´ ye

i,t

¯2
(4)

4.2. Experimental Design

A simulator is used to examine the proposed cluster formation techniques in dynamic and
obstructed environments typical of industrial environments. Selecting a set of parameters of interest
for further studies, statistical design of experiments is also used to analyze the sensitivity of these
parameters to changes and fluctuations.

In this paper, we take into consideration the following ambient and medium related factors as
well as a selection of design factors for further investigations into their impact on the WSN clustering
techniques: number of Sink Nodes, number of Anchor Nodes, signal blockage level, and cluster
formation techniques. Table 3 summarizes these factors and the levels that they can take. The choice
and level of the factors used for these experiments were determined through experimental work with
a 433 MHz MICA2 based Cricket platform, which is comprised of six Cricket motes (at least one of
which was mobile). This work is reported in [25].

Table 3. Experimental factors and their levels.

Factor Levels Description

No. Sink Nodes (A)
A1 4
A2 7

No. Anchor Nodes (B)
B1 400
B2 676

Signal blockage % (D) D1 0%
D2 5%

Cluster formation technique (E)
E1 Ad hoc
E2 Dynamic
E3 Static
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To study the adaptability of the cluster formation techniques, we limit the effect of ambient
conditions to different levels of signal blockage. In a previous study, we tested the effect of other
ambient conditions such as varying temperature on the wireless sensor networks, and concluded that
air humidity, pressure and temperature have measurable but negligible impact on the wireless sensor
networks [8].

Given the factors introduced in Table 3, we can devise a statistical scheme for the experiments as
follows. We have four factors in total, three of which have two levels and one has three levels. With a
full factorial design and no blocking (one block), we will have the following design [26]:

23 ˆ 31

This design has 24 base runs; with only four replications for every treatment and two additional
replications for every run of E2 and E3 levels, the total number of experiments is 160.

To reduce the effects of external factors—either in the form of noise or disturbance—randomization
of the running order of the treatments are widely suggested [26]. In this study, we randomize
running order of the resultant treatments via Minitab 16 software. The design table is constructed in
Minitab to produce a standard run order; however, to reduce the potential influence of any external
factors, the run order is randomized to result in a randomized run order to be used to execute the
experiments accordingly.

4.3. Experimental Results

A JADE (Java Agent DEvelopment framework [27]) based simulator was employed to run
160 experiments based on the experimental design introduced in the Section 4.2; then, the results
obtained were evaluated against the criteria introduced in Section 4.1. In the sections that follow, we
report and analyze the results obtained.

Normal probability and histogram plots were used to examine the normal distribution of the
obtained response data. For all sets of experiments under each of two criteria, to an acceptable level
of approximation, the obtained response data follow a normal distribution. Moreover, for all sets of
experiments under each of two criteria, the residual plots do not illustrate any patterns of anomaly.

Before reporting on the reconfigurability and performance related measures, it is interesting to
graphically compare the three cluster formation techniques. As shown in Figure 3, the ad hoc technique
recruits only those Anchor Nodes required for tracking Mobile Nodes, and shares Anchor Nodes
between cluster heads (Sink Nodes) as can be seen by the overlapping Anchor Nodes in this figure.
The dynamic and static techniques, shown in Figures 4 and 5 respectively, result in the same Voronoi
cell pre-defined clusters.
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In the remainder of this section, we summarize the results for the four experimental factors in
Table 3. A summary of the statistical results of our experiments is provided in Table 4.

Table 4. Statistical results for the WSN simulations.

Metric
Significant at p < 0.05

Number of
Sink Nodes

Number of
Anchor Nodes Blockage Cluster Formation

Technique

Load Distribution No Yes Yes Yes
Effectiveness Yes Yes Yes Yes

Resource Consumption Yes Yes Yes Yes
Tracking Accuracy Yes No No Yes
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4.3.1. Load Distribution

As noted in Section 4.1.1, the load distribution measure explains how workloads are distributed
among Anchor Nodes: the lesser the metric (variance), the more distributed the workload is among
Anchor Nodes. For this metric, both the number of Anchor Nodes and the level of blockage are
significant: i.e., as would be expected, larger numbers of Anchor Nodes and lower levels of signal
blockage allow the workload to be distributed more evenly among nodes. The results for the main
effects of the load distribution parameter are summarized in Figure 6.

Sensors 2016, 16, 65 12 of 19 

 

Anchor Nodes. For this metric, both the number of Anchor Nodes and the level of blockage are 
significant: i.e., as would be expected, larger numbers of Anchor Nodes and lower levels of signal 
blockage allow the workload to be distributed more evenly among nodes. The results for the main 
effects of the load distribution parameter are summarized in Figure 6. 

 
Figure 6. Main effect plot for load distribution. n = 160, ANOVA, 1 df, p < 0.05. 

The main effect plot shown in Figure 6 is used to examine the differences between the level 
means for the factors listed in Table 3. For this plots, a horizontal line indicates that each level of the 
factor affects the response in the same and, as a result, there is no main effect. For example, the near 
horizontal line shown in the upper left corner of Figure 6 for Factor A, “number of sink nodes”, show 
load distribution is not affected by a change in the number of sink nodes. However, when the line is 
not horizontal, there is a main effect and the steeper the slope of the line, the greater the magnitude 
of the main effect. For example, the large slope shown in the upper right corner of Figure 6 for Factor 
B, “number of anchor nodes”, shows that load distribution is affected by the number of anchor nodes. 

As shown in Figure 7, the pre-defined clusters outperform the ad hoc technique for this metric. 
A brief inspection of Figures 3–5 may lead one to see this as an obvious result: i.e., the larger number 
of Anchor Nodes shown in the pre-defined figures (Figures 4 and 5) should result in better Anchor 
Node load distribution. However, Figures 4 and 5 show the Anchor Nodes recruited into each pre-
defined cluster: they do not show the Anchor Nodes actually used for the circular tracking task. The 
results of Figure 7 show that Sink Nodes in the Static and Dynamic techniques actually spread the 
workload among Anchor Nodes more evenly than Sink Nodes in the ad hoc technique. This is a result 
of the inter-cluster trade-off protocols used by the pre-defined clustering techniques: i.e., a tracking 
task is not transferred to an adjacent cluster until the Mobile Node reaches the boundary of the cluster; 
alternatively, tracking tasks are transferred much earlier with the ad hoc technique as can be seen by 
the broader “boundaries” between clusters (i.e., shared Anchor Nodes) in Figure 7. 

74

2000

1500

1000

500
676400

0.050.00

2000

1500

1000

500
CNPAuctionAd hoc

A

M
ea

n

B

D E

Main Effects Plot for Load Distribution
Data Means

Figure 6. Main effect plot for load distribution. n = 160, ANOVA, 1 df, p < 0.05.

The main effect plot shown in Figure 6 is used to examine the differences between the level
means for the factors listed in Table 3. For this plots, a horizontal line indicates that each level of the
factor affects the response in the same and, as a result, there is no main effect. For example, the near
horizontal line shown in the upper left corner of Figure 6 for Factor A, “number of sink nodes”, show
load distribution is not affected by a change in the number of sink nodes. However, when the line is
not horizontal, there is a main effect and the steeper the slope of the line, the greater the magnitude of
the main effect. For example, the large slope shown in the upper right corner of Figure 6 for Factor B,
“number of anchor nodes”, shows that load distribution is affected by the number of anchor nodes.

As shown in Figure 7, the pre-defined clusters outperform the ad hoc technique for this metric.
A brief inspection of Figures 3–5 may lead one to see this as an obvious result: i.e., the larger number of
Anchor Nodes shown in the pre-defined figures (Figures 4 and 5) should result in better Anchor Node
load distribution. However, Figures 4 and 5 show the Anchor Nodes recruited into each pre-defined
cluster: they do not show the Anchor Nodes actually used for the circular tracking task. The results of
Figure 7 show that Sink Nodes in the Static and Dynamic techniques actually spread the workload
among Anchor Nodes more evenly than Sink Nodes in the ad hoc technique. This is a result of the
inter-cluster trade-off protocols used by the pre-defined clustering techniques: i.e., a tracking task
is not transferred to an adjacent cluster until the Mobile Node reaches the boundary of the cluster;
alternatively, tracking tasks are transferred much earlier with the ad hoc technique as can be seen by
the broader “boundaries” between clusters (i.e., shared Anchor Nodes) in Figure 7.
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Figure 7. Interval plot for load distribution. n = 160, ANOVA, 1 df, p < 0.05.
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Figure 8. Main effect plot for effectiveness. n = 160, ANOVA, 1 df, p < 0.05.

4.3.2. Effectiveness of the Cluster Formation Techniques

For the purposes of this study, effectiveness is a measure of the average distance between a Mobile
Node and the Anchor Nodes that track it: the lower the average distance, the more effective the cluster
formation technique. For this metric, both the number of Anchor Nodes and the cluster formation
technique are significant. More specifically, the greater the number of Anchor Nodes, the shorter the
distance between Mobile Nodes and tracking Anchor Nodes (due to a higher concentration of Anchor
Nodes in the network). This result is shown in the main effect plot for effectiveness in Figure 8.
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As shown in Figure 9, of the three clustering techniques, the ad hoc technique results in the closest
spacing between Mobile Nodes and their tracking Anchor Nodes. This result is supported by Figure 3,
which shows a tight clustering of Anchor Nodes around the Mobile Node path.
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Figure 9. Interval plot for effectiveness. n = 160, ANOVA, 1 df, p < 0.05.

4.3.3. Resource Consumption

As noted in Section 4.1.3, resource consumption is represented by the rate of messages exchanged
between sensor nodes: i.e., as message rate increases, processor load and battery consumption increases.
For this measure, all of the experimental factors described in Section 4 are significant. The main effect
plot for this measure is shown in Figure 10.
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The results for the first two factors are a direct consequence of increasing the number of
participants in the bidding process. More specifically, as the number of nodes (Sink Nodes and
Anchor Nodes) increase, more CNP and Vickrey auction messages are sent. The third factor, signal
blockage, impacts the number of messages received: i.e., as blockage increases, signal paths are limited,
and consequently, message exchange decreases.

Figure 11 provides a comparison of the clustering techniques for this measure. As can be seen
in this figure, the ad hoc approach results in the highest message rate, and as a result, the greatest
consumption of network resources. This heavy resource consumption is exacerbated by the load
distribution and effectiveness results described previously. More specifically, in addition to resulting
in a higher number of messages per second to support its protocol, the ad hoc technique involves fewer
Anchor Nodes in these communications. Given the direct link between communications and battery
life, the ad hoc technique will result in a much shorter mean time between failure of sensor nodes, than
the two pre-defined clustering techniques.
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4.3.4. Tracking Accuracy

Figure 12 provides a comparison of the three techniques on the basis of tracking accuracy. Given
that our measure of tracking accuracy is based on the Euclidean distance between estimated and actual
location, the lower the measure, the better the tracking accuracy. As can be seen in this figure, tracking
accuracy improves with the relative adaptability of the clustering technique. Comparing the Static
technique with its fixed clusters to the dynamic technique with its ability to share Anchor Nodes
between clusters, we see an improvement in tracking accuracy. Similarly, the ad hoc technique’s ability
to freely form clusters results in the best tracking accuracy.

These results are a consequence of the quality of service issues that occur as Mobile Nodes
reach the boundaries of sensor node clusters. For example, fixed clustering techniques like the static
technique can result in deteriorating conditions (lost estimations, weak signals, etc.) as Mobile Nodes
reach the boundary of the tracking cluster since they only deploy Anchor Nodes within their cluster; in
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contrast, a very adaptable technique like the ad hoc technique does not have any restrictions concerning
Anchor Node commitments to clusters when choosing among available Anchor Nodes.
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Figure 12. Interval plot for tracking accuracy. n = 160, ANOVA, 1 df, p < 0.05.

5. Conclusions and Future Work

In this paper, we compare distributed clustering techniques for wireless sensor networks on the
basis of their reconfigurability, and in particular, on the basis of their ability to adapt to changes and
disturbances during Mobile Node tracking. The clustering techniques are intended to span a range of
pre-defined clusters based on efficient geographic partitioning of sensor nodes around cluster heads
(in this case, in the form of Voronoi cells) and ad hoc clusters that are formed “on the fly” during the
tracking task.

All three of the clustering techniques showed that they are capable of reconfiguring their structures
to adapt to changing shop floor and Mobile Node tracking conditions. However, as would be expected
given the basic designs of the three techniques, the ad hoc approach resulted in better cluster formation
effectiveness; in other words, the ad hoc approach appears to be more adaptable to the Mobile Node
tracking task than the pre-defined clustering approaches. This higher effectiveness of the ad hoc
approach is at the cost of poorer load distribution though. As a result, the trade-off for higher
adaptability in this case is the potential for an unbalanced depletion of resources (i.e., wireless node
battery life) and, correspondingly, unpredictable performance of the overall network.

In this paper, we merely focused on distributed dynamic cluster formation techniques as a solution
to the reconfigurability and adaptability required of a tracking system to position/localize mobile
wireless sensor nodes in factory environments. However, distributed dynamic clusters are only one
component of such a tracking system. Details of network architectures and protocols as well as the
multi-agent system to manage such a tracking system are to be reported in our future papers.

Our current work in this area is focused on developing a multi-agent cluster management system
to encourage maintenance by reclaiming and replacing nodes over time. For this work, we are
investigating the use of homogeneous wireless sensor networks that provide minimal setup and
changeover effort due to their hardware indifferences.
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