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Abstract: Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an
effort to accurately measure human body energy expenditure. However, calorimetry requires the
subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to
develop a patch-type sensor module with an embedded incremental radial basis function neural
network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG
electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement
index (MI) monitoring. The embedded incremental network includes linear regression (LR) and
RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is
constructed by building a collection of information granules through CFCM clustering that is guided
by the distribution of error of the linear part of the LR model.

Keywords: energy expenditure; linguistic regression; radial basis function neural network;
context-based fuzzy c-means clustering

1. Introduction

More than one-third of adults and almost 17% of youth were obese in 2009–2010 [1].
Excess nutrient and energy imbalances are considered to be a major cause of chronic diseases, such as
diabetes and obesity [2], indicative of the need for a better understanding on how energy expenditure
(EE) can be assessed and quantified. Body fitness and athletic performance can also be evaluated by
monitoring energy expenditure and physical activities [2,3]. The conventional method to estimate
energy expenditure is by using a gas system that can measure the oxygen consumption (VO2) and
carbon dioxide (VCO2) in the exhaled air. The method uses a gas system and is highly accurate.
However, the people tested have to wear a mask during physical activities that imposes practical
limitations, since the tube needed to connect to the gas analyzer has a finite length. Furthermore,
the equipment is expensive and cumbersome. Researchers have tried to develop a small sensor and
algorithm to estimate the energy expenditure.

To estimate energy expenditure, two commonly used methods include the monitoring of heart
rate (HR) and sensing of movements. Spurr et al. developed the FlexHR method that uses the resting
metabolic rate (RMR) and exercise activity to estimate energy expenditure [4]. The FlexHR point is
the highest HR in the RMR compared to the lowest HR during exercise. If the HR is lower than the
FlexHR, then energy expenditure is estimated based on the RMR, whereas if it is higher, then the
estimation is based on the linear relationship between energy expenditure and VO2. This method
has been extensively applied in research lately. However, the accuracy of the elicited results requires
them to be fitted to a linear regression model to develop the estimation formula. Another method
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uses movement sensors that capture the motion of the trunk [5,6], chest [7,8], hip [9], and waist [10],
for estimating the daily energy expenditure [11]. Movement sensors contain a tri-axial accelerometer
that measures acceleration in the vertical, horizontal, and mediolateral planes. It can monitor various
physiological and movement parameters that can be used in conjunction with the subject’s gender,
age, height, and weight, to estimate the energy expenditure with a generalized algorithm [12–14].
Another use of the movement sensor is that it can indicate the exercise intensities, which can help to
differentiate the increases in HR due to activity or due to emotional stress [15]. To increase the accuracy
of this method, the number of sensors placed on the human body, and at different body postures, must
be increased in order to obtain various parameters [16]. An alternative method employs a combination
of the HR and motion sensors to estimate energy expenditure [17–19]. Here, motion sensors are
used to exclude any increases in the HR for reasons other than exercise [20]. The effectiveness of
this combined-sensor method remains unclear because it may underestimate high-intensity activities,
while overestimating low-intensity ones [21]. Its accuracy has been evaluated through laboratory
experiments, but a free-living environment is more complex than that found in a laboratory in terms of
parameters, such as the stride length and speed.

Another approach adopted to improve the accuracy is to use machine learning. Dong [22] used
wearable multisensors to extract features of different activities for the construction of the artificial neural
network and linear regression. In [23], the authors presented three regression techniques, namely,
least squares regression, Bayesian linear regression, and Gaussian process regression, with the data
from treadmill walking using hip-worn inertial sensors. The results show that the nonlinear methods
have better prediction accuracy. Wang [24] presents a portable-accelerometer and electrocardiogram
sensor system with a machine learning-based model for energy expenditure. Lin [25] estimated the
daily energy expenditure using a wearable sensor module with a neural network based on an activity
classification algorithm. They employed forward and backward search strategies for feature selection.
Radial basis function neural network (RBFNN) and generalized regression neural network (GRNN)
models were employed as energy expenditure estimation models. The existing literature on the
aforementioned lists techniques that have been performed based on how well the regression or neural
networks are known from the numerical data.

Energy expenditure estimation techniques that use heart rate, movement, and combined methods
have been described in the literature. These methods are based on built linear models. However,
because of the various activities involved in daily life, the data set cannot always be kept online,
which may reduce the accuracy of estimation in these models. Therefore, in this study, we propose a
patch-type sensor with an embedded network architecture that can integrate the nonlinear components
as input variables for energy expenditure estimation. We call this embedded network architecture the
incremental RBFNN.

The structure of the incremental RBFNN comprises two parts, as shown in Figure 1. The first layer
is the construction of a standard regression model, which could be treated as the preliminary construct
capturing the linear part of the data, thereby forming the backbone of the entire construct. Next,
all modeling discrepancies are compensated by a collection of receptive fields that become attached to
the regions of the input space where the error is localized. The receptive fields are in the subspaces of
the original input space rather than in the entire input space. The incremental RBFNN is reconstructed
by building a collection of information granules formed by using the context-based fuzzy c-means
(CFCM), which is guided by the distribution of error of the linear part of the model. The so-called
CFCM is the input space and is conditioned based on linguistic landmarks. We determine the optimal
context of the input variables by successive trials and errors in order to realize a high accuracy output.
Simply, the principle of the designed architecture can be summarized as follows: (a) adopt the construct
of a linear regression as a first-principle, “global” model; and then (b) refine it through a series of
“local” receptive fields that capture the remaining and more “localized” nonlinearities of the system.
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Figure 1. General flow of the development of the incremental RBFNN. 
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examined using physical training protocols, such as the zigzag run, a 20 m shuttle run, the Burpee 
test, and a side-step test. The movement detection was strongly correlated to conventional agility 
tests (R2 = 0.80–0.91). The results verified its applicability to the evaluation of the exercise state of 
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detection. Motion artifacts were incurred and led to an error rate that was less than 2% with a 
commercial stress ECG monitor (CASE System, GE Medical, Westborough, MA, USA). The sensor 
node included 3.3 V Li-ion rechargeable batteries with a continuous operation period of two hours. 
The distances for transmission can achieve more than 400 m in an open field using the ZigBee 
telecommunication. The technical details of the sensor design can be found in a previously 
published study [26]. 

Figure 1. General flow of the development of the incremental RBFNN.

The main scope of this study is to estimate the EE of walking and running which are the most
common activities for adults in modern lifestyles. The rest of this paper is organized as follows:
in Section 2, we illustrate the system architecture that includes the entire generation of the system and
the structure of the patch-type sensor. The embedded incremental RBFNN is described in detail in
Section 3. Section 4 then provides the experimental design and results in accordance to a two-part
protocol. First, the experiment is conducted using a submaximal treadmill protocol in a laboratory.
Then, we instructed the participants to walk and run on a school playground as naturally as possible.
Finally, conclusions are summarized in Section 5.

2. System Architecture

2.1. General System Description

The function of the entire system is wireless monitoring of the energy expenditure of the
participants using a cheap and lightweight sensor. The users can be monitored at any time during
the day and upon engagement in different physical activities. The system includes one inverse
triangle patch-type sensor and a portable computer to display the heart rate and movement index (MI).
The sensor node is small in size (6 × 9 cm2) and lightweight (41 g) and can be patched on the chest
of the user for collecting physiological data. The physiological data include HR, MI, humidity, and
temperature. The sensor has the ZigBee RF module that can wirelessly transmit the information to a
personal computer. The analysis software is embedded in the portable computer. The physician could
check the physiological condition of the user using the portable computer.

2.2. Sensor Module

The sensor board consisted of a three-axis accelerometer, three ECG electrodes, a voltage converter,
and a Li-ion charger. Two quasi-triangular flexible PCB boards are combined in the sensor, as shown
in Figure 2. The MI is the summation of the motion indices along all the three axes x, y, and z. It can
detect the movement acceleration signal in the range of −6 g to 6 g. The agility was examined using
physical training protocols, such as the zigzag run, a 20 m shuttle run, the Burpee test, and a side-step
test. The movement detection was strongly correlated to conventional agility tests (R2 = 0.80–0.91).
The results verified its applicability to the evaluation of the exercise state of the users. The HR detection
was designed based on the use of a bandpass filter for R-wave detection. Motion artifacts were incurred
and led to an error rate that was less than 2% with a commercial stress ECG monitor (CASE System,
GE Medical, Westborough, MA, USA). The sensor node included 3.3 V Li-ion rechargeable batteries
with a continuous operation period of two hours. The distances for transmission can achieve more
than 400 m in an open field using the ZigBee telecommunication. The technical details of the sensor
design can be found in a previously published study [26].
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has a three-layer structure: an input layer that feeds feature vectors into the network, a hidden layer 
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3. Incremental RBFNN

The overall design process of the incremental RBFNN is shown in Figure 3. The development
of the incremental RBFNN consists of two phases. First, we design the linear regression (LR) phase,
which is treated as the preliminary global model representing the linear part of the data. Next,
the modeling error obtained by the LR is compensated by the local RBFNN. In the design of RBFNN,
the hidden layer is constructed using fuzzy granulation realized via CFCM clustering.
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For simplicity, we assume that the incremental RBFNN under consideration has two inputs,
x1 and x2. We firstly design the LR model in the input-output space. On the basis of the original data
set and error obtained by the LR model, the nonlinear data sets are formed in a collection of input-error
pairs. The contexts are produced from the input-error pairs and are characterized by the triangular
membership functions.

3.1. RBFNN

The RBFNN is attractive in that it can be used for functional approximations, prediction,
interpolation, and nonlinear modeling [27], which makes it useful in many applications. The RBFNN
has a three-layer structure: an input layer that feeds feature vectors into the network, a hidden layer
that calculates the outcome of radial basis functions, and an output layer that calculates a linear
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combination of basic functions. The receptive fields wi of the ith hidden unit in the hidden layer are
calculated as follows:

wi = φi (||x− vi||) = exp

[
− (x− vi)

2

2σ2
i

]
(1)

where x is a multi-dimensional input vector, and φi is the ith radial basis function in the hidden layer.
Additionally, vi is the center of the Gaussian basis function associated with ith hidden unit, and σi is a
width parameter of ith hidden unit. The output of the hidden units is normalized between 0 and 1.
The output of RBFNN is determined as follows:

E =
n

∑
i=1

giwi (2)

where gi is the weight from the hidden unit to output E. From the above equation, we can determine
on whether the performance is highly depended on the receptive fields and on the connections of the
neuron in the output layer of network. The RBFNN is a two-layer feed-forward network. The training
process of the RBFNN is divided into two stages: (a) first, the centers from the input to the hidden
layer are determined; and (b) the weights are then determined from the hidden to the output layer.
Once we have formed the receptive field, the optimization of the weights of the neuron in the output
layer becomes straightforward [28,29]. Since the centers and widths are fixed after they are chosen,
the RBFNN often results in an unsatisfactory performance when the input patterns are not particularly
clustered. Therefore, the CFCM clustering is used in conjunction with the RBFNN to determine good
locations for the radial basis functions.

3.2. Local RBFNN Based on CFCM Clustering

CFCM clustering partitions a collection of input vectors into several fuzzy groups and estimates
a cluster center in each context, such that a cost function of dissimilarity measure is minimized.
In what follows, we shall briefly describe the CFCM clustering algorithm. The given data belong to
corresponding membership values. The partition matrices were induced by the lth context and are
denoted and defined as follows

U =

{
uik ∈ [0, 1] |

c

∑
i=1

uik = wlk ∀k and 0 <
N

∑
k=1

uik < N ∀i

}
(3)

where wlk is a membership value of the kth data point implied by the lth context. The underlying
objective function can be expressed in the standard format as follows:

Q =
c

∑
i=1

N

∑
k=1

um
ik (xk − vi)

2 (4)

where m is any real number greater than 1, uik is the degree of membership of xk in the kth cluster,
and ||·|| is a distance function between any measured data and the ith center cluster. The minimization
of the objective function is realized by iteratively updating the values of the partition matrix and
the prototypes, as shown above. The update of the partition matrix uik and the cluster center vi is
computed as follows

uik =
wlk

c
∑

j=1

(
||xk−vi||
||xk−vj||

) 2
m−1

(5)

where uik pertains to the partition matrix induced by the lth context. The prototypes produced for the
Euclidean distance are calculated in accordance to
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vi =

N
∑

k=1
um

ikxk

N
∑

k=1
um

ik

(6)

The cluster centers of Equation (6) estimated by CFCM clustering are used in the hidden layer of
RBFNN described in Section 3.1.

The main design procedure of incremental RBFNN consists of the following steps:

[Step 1]: Perform LR modeling from the original input-output data points. Here, the residuals
obtained by LR are used as output variables in the design of the local RBFNN, based on
CFCM clustering.

[Step 2]: Generate contexts in the residual (output) space. These contexts are produced through
a uniform distribution, while the contexts are characterized by triangular membership
functions with a half overlap between neighboring contexts. The cluster centers in each
context are then estimated using CFCM clustering. Here, the number of the final clusters is
c × p, where p is the number of contexts, and c is the number of clusters in each context.

[Step 3]: Design the RBFNN based on CFCM clustering. Here, the number of nodes in the hidden
layer is equal to that of the final cluster. The weights are obtained using least squares
estimation (LSE) in one-pass, without back-propagation (BP).

[Step 4]: Combine the outputs of LR and RBFNN as follows

Y = z + E (7)

where Y is the final output of the incremental RBFNN, as shown in Figure 3. The z and E
are the outputs of the LR and the local RBFNN, respectively. Therefore, the modeling error
based on LR as the global model is compensated by the local RBFNN, based on specialized
CFCM clustering using the concept of information granules.

4. Experimental Design and Results

To evaluate the function of incremental RBFNN and realize the final goal applied under free-living
conditions, the design of the experiment consisted of two parts, namely, a laboratory, and a field test.

4.1. Laboratory-Based Experiment

The participants were tested on a treadmill using the submaximal Bruce protocols in the laboratory,
as shown in Figure 4. The treadmill’s initial velocity was set at 9.72 m·s−1, and with a 10% gradient.
The incline of the treadmill was increased by 2% at three-minute intervals. The participants walked
and ran until they felt exhausted. For men, the test time lasted approximately 12 min, whereas for
women the test time lasted approximately 9–10 min. The HR and MI were recorded in real-time by the
patch-type sensor. The VO2 and EE were measured by the gas system. The physical characteristics of
the subjects are listed in Table 1.

Table 1. Physical characteristics of the participating subjects (N = 30).

Variable
Men (N = 17) Women (N = 13)

Mean Range Mean Range

Age, year 26 ± 2.1 24–27 25.8 ± 3.2 23–28
Height, cm 169 ± 6.7 167–180 162.1 ± 6.3 155–165
Weight, kg 65.2 ± 9.6 59–70 52.1 ± 9.4 48–57

BMI, kg·m−2 22.8 ± 7.1 20–23 19.8 ± 4.1 18.6–21.7
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Figure 4. Experimental setup on the treadmill.

HR and MI are the two major factors used to estimate EE. Thus, they were considered as
two inputs to the incremental RBFNN. The total number of data pairs is 252. In order to solve
the data scarcity problem, we divided the data set into training and test datasets as a commonly
used solution. The training datasets were randomly selected from approximately 60% of the entire
dataset, and the testing dataset from the remaining 40%. The data were normalized between 0 and 1.
Ten iterations were used for all experiments. The training data were used for the construction of
the incremental RBFNN. However, the testing data were used for the verification of the network.
Thus, the resultant network is not biased towards the training dataset, and it is likely to have a better
generalization capacity to new data. The nonlinear data we called “error” can be calculated using the
RMSE Euclidean value, as shown in Equation (8).

RMSE =

√
∑N

K=1
(
EEk − EE′k

)2

N
(8)

where N is the length of the training or testing datasets, EEk is the estimated EE, and EEk’ is the
measured EE.

The error values constituted the context dataset. These contexts are generated through the
triangular membership functions, and are equally spaced along the domain of an output variable.
The membership matrix is initialized between 0 and 1, as shown in Figure 5 (context p = 3).
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The centers can be generated by fuzzy c-means clustering based on each of the contexts. Given “p”
contexts and “c” centers per context, c × p clusters can be obtained. Figure 6 shows the cluster centers
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generated by the three contexts and the three clusters. The cluster centers can be the same as those of
the RBFN hidden layer. Therefore, the RBFN model can be constructed as follows: HR and MI are used
as the inputs of the input layer, nine units as the hidden layer—based on the number of contexts—and
the clusters, and the EE as the output layer.
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The estimation of the performance was evaluated by the RMSE as the number of context, and
the cluster increased from three to six and from two to six, respectively. Table 2 shows the RMSE
results for the training and testing data. The result elicited from the best fitting model is shown in
bold (p = 3, c = 3). The comparison of the RMSE with previous work is shown in Table 3. The RBFNN
we used was a 2–10–1 network, employed a BP algorithm, and 1000 epochs with a learning rate of
0.01. The linguistic model (LM) we used consisted of three contexts and three clusters which were
determined by trial and error. The CFCM-RBFNN used the hidden layer that increased from 3 to 20 in
the experimental design.

Table 2. RMSE in the incremental RBFNN model for the training and testing datasets.

Treadmill Data (Training Data)
Number of Contexts

3 4 5 6

Number of clusters
per context

2 0.5237 0.5089 0.4798 0.4557
3 0.4722 0.4436 0.4182 0.3834
4 0.4367 0.3832 0.3605 0.3276
5 0.3935 0.3659 0.3050 0.2425
6 0.3691 0.3245 0.2528 0.1821

Treadmill Data (Testing Data)
Number of Contexts

3 4 5 6

Number of clusters
per context

2 0.6913 0.7506 0.7375 0.7563
3 0.6627 0.7109 0.7197 0.8622
4 0.6944 0.7903 0.7819 0.8641
5 0.7321 0.7162 3.6389 10.938
6 1.0113 1.1930 99.955 261.54

Table 3. Comparison of RMSE values for treadmill data.

Trn_RMSE Txt_RMSE

RBFNN [22] 0.73 0.97
LM (p = 3, c = 3) 0.65 0.95

RBFNN-CFCM [18] 0.64 0.95
Incremental RBFNN 0.47 0.66
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4.2. Field Test

The final goal is to realize the accurate estimation of EE under free-living conditions. After the
laboratory tests, all of the participants were encouraged to complete four exercise tests in the open
field. The first was comfortable walking, the second jogging, the third was a quick walk, and the last
was slow running. Each test course was performed in approximately two minutes in an oval track field.
The experimental procedure was designed to progress as naturally as possible. The structure of the
RBFNN thus constituted the reference basis of the experimental laboratory test. The data obtained for
walking, jogging, fast walking, and slow running, respectively consisted of 157, 60, 63, and 99, sample
pairs. The prediction performance is shown in Figure 7. As indicated in the Figure 7, the experimental
results revealed that the proposed network showed good prediction and generalization performance
in all cases of normal walking, brisk walking, slow running, and jogging, for the training and testing
datasets, respectively. Table 4 lists a comparison of the RMSE data collected using the RBFNN and
LM methods.
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Figure 7. (a–d) Prediction performance of energy expenditure by the incremental RBFNN. (a) Normal
walking in school playground; (b) Brisk walking in school playground; (c) Slow running in school
playground; (d) Jogging in school playground.

Table 4. Comparison of RMSE values for field exercise data.

Activity Method Trn_RMSE Txt_RMSE

Walking
LM 0.75 1.06

Incremental RBFNN 0.60 0.95

Brisk walking
LM 1.47 1.82

Incremental RBFNN 0.96 1.68

Slow running
LM 0.79 1.44

Incremental RBFNN 0.61 1.07

Jogging
LM 2.0 2.58

Incremental RBFNN 1.32 2.45
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5. Conclusions

This study has shown that the incremental RBFNN is effective for estimating the EE.
The significant advantage of this model is that it starts from the linear regression model and then uses
a refined version of this regression model by adding granular patches. This leads to a final model that
is quite different compared to the preliminary version of the linear model. The other important design
is related to the application of the CFCM clustering for the calculation of the center value, which is
a process that can reduce the iteration times and optimize the network structure. The output space
can be optimized by the context number and the number of clusters. The experimental results have
been compared with the LM, RBFN, and CFCM-RBFNN, which indicate that the sensor module that is
based on the incremental RBFNN, has the ability to estimate the EE during walking and running both
in laboratory and free-living settings. Moreover, in future work, the same approach of the incremental
modeling could be explored in other domains, such as pattern recognition and classification, which
could be especially useful for application to the e-health monitoring field.
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