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Abstract: With the aim of developing multiple input and multiple output (MIMO) coupling systems
with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural
control integrated design methodology is proposed in this paper. Firstly, the modal information from
the finite element model of the structure of the antenna panel is extracted, and then the mathematical
model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator
(LQR) controller is added to the model in order to control the actuators and adjust the shape of
the panel. Finally, the engineering practicality of the modeling and control method based on finite
element analysis simulation is verified.
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1. Introduction

Satellites in geostationary orbit have a wide coverage area and are able to carry out a continuous
observation of the area, which plays an important role in meteorological observation compared with
low Earth orbit satellites. However, because of their large distance from the Earth, they need a greater
antenna reflector surface area, so the deployable antenna is an eligible candidate for the restrictions of
launch conditions. However, when the antenna panel is exposed to the thermal environment, it will
bring about thermal deformation because of the uneven temperature field on the reflection surface
structure, which will thus deteriorate the accuracy of the antenna.

However, the accuracy of the antenna reflector surface is a standard and plays an important role
in the evaluation of the performance of the antenna. Additionally, it is not only closely related to
the shortest wavelength of the antenna, but also has an effect on the electrical performance index,
such as antenna gain, beam width, and especially the sidelobe level. Usually, the accuracy of the
antenna reflector surface is related to the frequency of the work; the higher the frequency, the more
stringent requirements on the surface accuracy, so the accuracy must be on the micron scale for the
high frequency of operation of the 5 m antenna. Therefore, high precision reflectors and active control
methods are needed to improve the accuracy of the antenna panel surface, so that the surface accuracy
of large aperture large reflector antennas can achieve micron scale precision [1].

According to the literature survey, scholars use a variety of methods to adjust the accuracy of mesh
antenna reflectors; Natori et al. [2] adjusted the accuracy for space very long baseline interferometry
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(VLBI) mission, and in [3], the shape accuracy adjustment of a flexible mesh antenna reflector by
back up cable was presented. In addition, the theory of the shape accuracy adjustment of a flexible
mesh antenna reflector, formula, and steps for adjustment were given for the improved mesh shape
deployable antenna structure [4]. In order to adjust the accuracy of the antenna reflector in space,
a piezoelectric actuator has been successfully used to compensate for the deformation panel, which
is a typical electromechanical system. However, the reflector is a redundant parallel mechanism
which leads to the freedom of the actuators more than the number of the degrees of freedom of the
reflector, so it is difficult to control the actuator to adjust the deformation. In general, the modeling of
an electromechanical system is mainly divided by the structural and control designers in the design
phase; in this case, structural designers conduct the mechanical structure modeling based on a series
of mechanical principles, and their contribution mainly focuses on its mechanical properties analysis,
such as natural frequencies and mode shapes. Tieying Jiang [5] developed a dynamic equation of the
structure based on Newton’s law and its corollary, but this model often failed to provide support in the
control design method for control designers; on the other hand, control designers completed the design
of electromechanical system modeling according to past experience. For example, Haiqiang Tan [6]
established the force/position hybrid control model of a flexible manipulator, and designed the
controller based on these models. This method is practical for simple electromechanical systems, but
for complex electromechanical systems, the derived dynamical model is inconsistent with the actual
model because of the lack of mechanical knowledge of the control designers, and the control method
based on this model cannot achieve satisfactory results in practice.

Therefore, Gawronski [7] proposed a method of modeling and controlling by using the
input–output data. Gawronski applied an open loop test of the antenna model by using a system
identification procedure to record the input–output data, eventually obtaining equations of the
controlled system. However, this method required experimental testing, and was not applicable in the
structural design process. With the improvement of the complexity and performance requirements
of electromechanical systems, the traditional method wherein structure and control are designed
separately is not suitable. Consequently, some scholars have proposed modeling and controlling by
using a finite element model. Firstly, the structural designers designed the structure based on the
design specifications, and the controlled object model was obtained by the finite element analysis of
the structure, then the control designers designed the control algorithm on the basis of the structure;
for example, Gawronski [8] established the dynamic approximate model separately for 34 m and 70 m
aperture antennas of the Deep Space Station (DSS) series by the finite element models of Jet Propulsion
Laboratory(JPL)/Iterative Design of Antenna Structures(IDEAS), which were approximate models
for the dynamics of pitch and azimuth drive and cross-coupled approximate dynamic models [8–11].
Additionally, Peter [12] built the finite element equation of the structure of the Gregor Solar Telescope,
and obtained the state space equation of the telescope by extracting the first 30 order natural frequencies
and modes with commercial software. These methods both built models by modes based on the
structure, which can reflect the characteristics of the structure effectively, and the model could have
a high accuracy. However, these modeling methods are used in single input–single output systems,
and are limited for multiple input and multiple output (MIMO) systems.

In this paper, a method of structural control integrated design is proposed for a large antenna
reflector electromechanical adjustment system. Firstly, the mathematical model of the reflector antenna
adjustment system is established based on Hamilton principle; then, the MIMO control law is designed
by the Linear Quadratic Regulator (LQR) on the basis of the model; finally, the accuracy of the model
and the feasibility of the control algorithm through the simulation analysis are verified, and the design
of the electromechanical adjustment system is eventually realized.

2. Materials and Methods

A 5 m diameter deployable antenna panel structure is shown in Figure 1, and the structure
is composed of a retainer plate, an upper left plate, a lower left plate, an upper right plate, and
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a lower right plate. The truss structure of the antenna panel is shown in Figure 2, and it is composed
of the main reflector and the supporting truss, where the main reflector is an integrated forming
structure which is a composite sandwich structure of carbon fiber panels and aluminum honeycomb.
The upper and lower panels are made of T300 carbon fiber. The specifications of the Honeycomb
core are 4 mm × 0.03 mm, and the reflector thickness is 70 mm. The supporting truss is connected
through the expansion mechanism, and the panel is locked after being expanded by the locking device.
The support truss is mainly made of high-modulus carbon fiber named M55J, and the cross-section is
150 mm × 150 mm.
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Figure 2. Truss structure of the antenna panel.

There are many active supporting points on the antenna panel truss for the piezoelectric actuator
mounting point, which is used for shape adjustment of the antenna reflector; of note is that there are
dozens of actuators on the reflector to adjust the shape of the panel, as in [13], so that it has dozens of
degrees of freedom.

2.1. Modeling Based on Hamilton Principle

It is assumed that the antenna reflector is free to move, and this problem is solved by using the
method of separation of variables, so:

V(x, y, t) = ψ(x, y)q(t) (1)

where ψ(x, y) is a function only related to the location of x and y in Figure 1, which indicate the vertical
and horizontal coordinates of a point on the panel, respectively. q(t) is a function only related to the
time t.
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When the antenna reflector is deformed, the deflection surface equation is:

w(x, y, t) =
N

∑
i=1

ψi(x, y)qi(t) (2)

where ψi(x, y) is the ith modal function of the coordinates (x, y), and qi(t) is the ith modal coordinates
of the moment t.

The antenna is deformed under the influence of the temperature field, and the adjustment process
is ignored; therefore, the final state is still in the static state, so the kinetic energy is zero.

The potential energy of the antenna reflector panel is

P =
D
2

∫
Ω

[(
∂2ω

∂x2

)2

+

(
∂2ω

∂y2

)2

+ 2µ

(
∂2ω

∂x2
∂2ω

∂y2

)
+ 2(1 − µ)

(
∂2ω

∂x∂y

)2]
dΩ (3)

where D is the bending stiffness, µ is Poisson’s ratio, ω is the curved surface deflection at this time,
and Ω is the reflection panel surface area.

At this time, the generalized virtual work of the antenna reflector is:

W = τw(x0, y0, t) = τ
N

∑
i=1

ψi(x0, y0)qi(t) (4)

In Equation (4), τ is the motor input, qi(t) is the ith modal coordinates of the time t, and ψi(x0, y0)

is the ith modal function of the coordinate (x0, y0).
Ignoring the kinetic energy of the system [14]:

∆ = T − P + W = −P + W (5)

Using a variational method [15] for Equation (5):

∫ t f

t0

δ∆dt = 0 (6)

According to Hamilton principle, one can obtain the following equation:

∫ t f

t0

[
N

∑
i=1

N

∑
j=1

qjk(i, j)− τ
N

∑
i=1

ψi(x0, y0)

]
δqidt = 0 (7)

From Equation (7), one can derive the following equation:

N

∑
j=1

qjk(i, j)−τψi(x0, y0) = 0 (8)

By rewriting Equation (8) in Matrix forms, one can obtain:

KX = Bτ (9)

So far, one can derive the relationship between external force applied to the antenna reflector and
the displacement of the corresponding actuating point.

Where X = [q1, q2, q3, · · ·, qN ]
T
(1,N) is the modal displacement corresponding to the first of the

Nth points, τ = (τ1, τ2 . . . τS) is the input force of the external motor on the S points, K is the stiffness
matrix of N × N dimension, and B is the input matrix of N × S dimension corresponding to the
S inputs,
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B =


ψ1(x1,y1) ψ1(x2,y2) ... ψ1(xS,yS)

ψ2(x1,y1) ψ2(x2,y2) ... ψ2(xS,yS)
...

...
...

...
ψN(x1,y1) ψN(x2,y2) ... ψN(xSyS)


(N×S)

Thus, the stiffness of the antenna reflector surface of the ith row and the jth column can be
obtained by:

k(i, j) = D
∫

Ω

[
∂2ψi
∂x2 · ∂2ψj

∂x2 + ∂2ψi
∂y2 · ∂2ψj

∂y2 + µ

(
∂2ψi
∂x2 · ∂2ψj

∂y2 + ∂2ψi
∂y2 · ∂2ψj

∂x2

)
+ 2(1 − µ) ∂2ψi

∂x∂y · ∂2ψj
∂x∂y

]
dΩ (10)

So, the stiffness matrix of the antenna reflector surface is obtained below:

K =


k(1, 1) k(1, 2) ... k(1, N)

k(2, 1) k(2, 2) ... k(2, N)
...

...
...

...
k(N, 1) k(N, 2) ... k(N, N)


N×N

Additionally, X is known as the state coordinate, assuming that Y is the actual physical
coordinate, so:

Y = CX (11)

where C is the output matrix of dimension R × N, corresponding to the R outputs,

C =


ψ1(x1,y1) ψ2(x1,y1) ... ψN(x1,y1)

ψ1(x2,y2) ψ2(x2,y2) ... ψN(x2,y2)
...

...
...

...
ψ1(xR,yR) ψ2(xR,yR) ... ψN(xR,yR)


R×N

By virtue of Equations (15) and (17), we can get the deformation equation of the S inputs and R
outputs of the antenna reflector:

Y = CK−1Bτ (12)

Based on the above theoretical method, the deformation Equation (13) of the antenna reflector is
derived, and the transfer matrix of the external force and the actual displacement is obtained:

Z = CK−1B (13)

Therefore, the displacement after the ith adjustment of the antenna reflector is:

Y(k + 1) = Y(k) + Z ∗ τ(k) (14)

Among them, Y(k) is the displacement before the kth adjustment, and τ(k) is the external force of
the kth adjustment.

According to Equation (13) and the matrix composition of this equation, the modal coordinates
and the mode shape function of the reflection panel are needed before one can get the reflecting surface
model, and all above matrices we could get from finite element analysis.

2.2. Modal Analysis

In order to obtain the modal coordinates and mode shape function of the reflector, we first need to
select the modes. Once we obtain a series of modes after modal analysis by the finite element software,
it usually contains some modes with little influence on the deformation, which could be ignored.
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So, in order to obtain a simple antenna reflector deformation control equation, we select the mode
which reflects the bending or torsion of the reflector antenna surface deformation as the target mode.

The finite element model of the antenna reflector is shown in Figure 3. The model is built with
a triangular element, and the main reflector is made of SHELL181 which is suitable for the analysis
of thin or medium shell structures, and the supporting truss is made of BEAM188 which is suitable
for the analysis of slender beams or moderately deep beams. The nodes on the four corners of the
retainer plate and the center circle are fully constrained in all directions, and the other support points
are constrained in the x and y directions.
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We could obtain the mode shapes and natural frequencies of the antenna panel by commercial
software. Taking the vertical and horizontal coordinates x,y as physical coordinates, and the antenna
panel deformation z on the point of coordinates (x,y) as the normalized mode shape coordinates, we
can obtain the modal coordinates of each point on the surface of each modal order. Then, we can
obtain the fitting surface and the corresponding fitting function by the surface fitting function of the
mathematics software.

After obtaining the fitting surface and the corresponding surface function, we selected a modal
surface which was twisting or bending according to the comparison chart of each order surface fitting,
and deleted the orders that had a translation or repeat; eventually we selected eight order modes 1, 2,
5, 6, 8, 9, 10, 12 as mode shape functions to calculate the stiffness matrix for the lower left plate, and
then we obtained the results as shown in Figure 4.

The first order mode shape function ψ1(x, y) can be obtained, and similarly, the ith order mode
shape function ψi(x, y) can also be obtained. Eventually, we could get the model of the adjustment of
the antenna reflector shape by using the stiffness matrix and Equation (14) above.

Moreover, the actuator is added to the reflective surface model. The piezoelectric ceramic actuator
is used as the reflective surface. By taking the stack type piezoelectric ceramics as an example, we are
able to obtain the relationship between the input voltage and the output displacement by static and
dynamic experimental studies of the actuator [16]:

∆x = nd33V (15)

where ∆x is the output displacement of the actuator, n is the number of piezoelectric ceramic sheets
which form a laminated piezoelectric stack, d33 is the piezoelectric strain coefficient of the piezoelectric
ceramic chip in the polarization direction, and V is the input voltage.
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The application of a piezoelectric actuator in active vibration control is studied in [17], and the
relationship between the input voltage and the actuator output force is obtained as:

τ = KTnd33V (16)

where τ is the output force of the actuator and KT is the equivalent stiffness matrix of the piezoelectric
ceramic stack.

The relationship between the required displacement of the actuator and the output force of the
actuator is:

τ = KT∆x (17)

Equation (17) can be used within Equation (14), and the dynamic relationship between the input
force and output displacement of the panel is then:

Y(k + 1) = Y(k) + Zτ(k) (18)

where Y(k + 1) is the displacement after the kth adjustment, v is the displacement before the kth
adjustment, Z is the transfer matrix of the external force and the actual displacement, and τ(k) is the
external force of the kth adjustment.
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3. Controller Design

The adjustment system of the panel is a typical MIMO system, and there is a high degree of
coupling between the systems. Generally, for a multivariable coupled system, the traditional design
method is to design each single variable controller for each individual channel, and then a multivariable
controller is composed of these controllers; however, because of the strong coupling relationship of the
system, the controller designed in the traditional method cannot meet the control indexes. Therefore,
the discrete LQR controller [18] is designed to control the system.

According to the transfer matrix model Equation (14) obtained in the last section, the expression
of the state space expression of the plant can be obtained as follows:
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{
X (k + 1) = X (k) + ZU (k)
Y (k) = X (k)

(19)

where X (k) = [X1 (k) , X2 (k) , · · · XN (k)]T represents N states, and Z is the transfer matrix of the
external force and the actual displacement. The linear quadratic optimal control of discrete systems
is a method to search for the control law of the state feedback, which causes the quadratic function
to take the minimum value. According to the discrete system shown in Equation (19), the quadratic
objective function is selected as below:

J =
∞

∑
k=0

(
XT (k) QX (k) + UT (k) RU (k)

)
(20)

where Q and R are the weight matrices of the state variables and the control variables, which are
invariable real symmetry positive definite matrices.

By the maximum principle, the linear quadratic optimal control law is obtained:

U (k) = −
(

BTSB + R
)−1

BTSX (k) = −KX (k) (21)

where S is the solution of the Riccati equation, and the algebraic Riccati equation is shown as:

S − ITS + ITSB
(

BTSB + R
)−1

BTS − Q = 0 (22)

According to the discrete control model shown in Equation (21), the state weight matrix is Q, and
the control weight matrix R is obtained, so the discrete linear quadratic optimal control law can be
obtained as:

U (k) = −KX (k) (23)

where K is the state feedback matrix to be determined.

4. Simulations

According to the modeling method of Section 2, the lower left plate is shown as an example in
Figure 5. Furthermore, by distributing eight actuators on nodes 1–8 on the panel used for adjusting the
plate, the 8 × 8 model Z was established as shown in Table 1, corresponding to nodes 1–8. Where Zij
is an influence factor of node i on node j.
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Table 1. Transfer matrix of the lower left plate.

Zij 1 2 3 4 5 6 7 8

1 0.0525 0.0084 −0.0054 −0.0110 0.0109 0.0282 0.0003 0.0103
2 0.0159 0.1496 0.0767 0.1016 0.1156 0.0767 0.1149 0.1272
3 −0.0066 0.0679 0.1310 0.1565 0.1099 0.0529 0.1193 0.0904
4 −0.0377 0.0674 0.1311 1.2854 1.1341 0.5207 0.6880 0.6321
5 −0.0009 0.0963 0.0993 1.1489 1.2822 0.6277 0.6924 0.7184
6 0.0287 0.0696 0.0546 0.5478 0.6400 0.4287 0.3442 0.3723
7 −0.0044 0.1027 0.1159 0.7100 0.6995 0.3391 0.4702 0.4207
8 0.0083 0.1177 0.0897 0.6568 0.7283 0.3698 0.4233 0.4854

In order to verify the accuracy of the model, a verification via numerical simulation is needed.
At first, external force is applied to the model on nodes 1–8 in several conditions, and then the output
displacement Y1 of the model could be calculated by the approximate input and output model in
Equation (14). At the same time, the same external force is applied on nodes 1–8 in the same conditions
as in commercial finite element code ANSYS (Figure 5), so we could read the output displacement Y2

of the corresponding eight nodes through the simulation analysis. Finally, the results of comparing Y1

and Y2 under several conditions are shown in Table 2.

Table 2. Comparison of the approximate model and the ANSYS model.

Forced Number Force (N) Approximate Model (mm) ANSYS Model (mm)

1 1000 0.1300 0.07527
2 −500 0.0512 0.11062
3 1000 0.3795 0.25606
4 −500 0.1831 0.06539
5 1000 1.0748 0.85711
6 −500 0.9403 0.80501
7 1000 0.5097 0.52377
8 −500 0.5132 0.46679

By comparing the results, we see that the two groups of data are obviously different, but the
changing trends of the two sets of data are the same. Therefore, we can draw the conclusion that the
approximate model established is able to reflect the structural properties of the ANSYS model, and it
can be used to design the controller and the control algorithm. After obtaining the mathematical model,
we firstly design a univariable Proportion-Integral (PI) controller and a multivariable PI controller
with the traditional control method; taking node 1 as an example in Figure 6, we can see that node
1 could reach the reference position after adjustment by the univariable PI controller, but could not
reach it by the multivariable PI controller. So, we propose the use of a LQR controller.

According to the discrete control model of the lower left plate shown in Equation (19), we obtain
Q and R by repeated trial and error, and take Q = diag(5000,2000,2000,10000,10000,15000,5000,50000)
as the state weighted matrix, and R = diag(1,1,1,1,1,1,1,1) as the control weighted matrix. Therefore,
we could obtain the feedback matrix K of the eight actuators for the lower left plate according to
Equation (23), as shown in Table 3, Kij is an feedback factor of node i on node j.

By taking the temperature deformation of a moment in the vernal equinox as the initial
displacement, using the LQR control algorithm, calculating the input force, and finally applying
the force into the corresponding nodes of the ANSYS model, the results of adjusting each node can be
obtained as shown in Figure 6.
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It can be seen in Figure 7 that the initial displacements of the eight nodes are far away from zero, 
and the maximum displacement is more than 90 μm. However, after adjustment, the displacements 
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to 5.9 μm after the adjustment, therefore reducing the RMS by 84.3%. On the other hand, the RMS for 
the lower left panel before the adjustment was 52.7 μm, and it decreased to 24.2 μm after the 
adjustment, so the RMS was reduced by 54% on the lower left panel. Additionally, we know that the 
approximate model established is able to represent the relationship between the input force and the 
output displacement of the actual model. The difference between the approximate model and the 
ANSYS model does not affect the design of the controller. 
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Table 3. Feedback matrix K of the eight actuators for the lower left plate.

Kij 1 2 3 4 5 6 7 8

1 18.7700 −1.1285 0.5362 0.8827 0.8241 −3.5113 0.2569 −0.3165
2 −1.0920 12.8232 −3.4966 2.1748 3.3688 −0.5431 −4.3024 −6.2003
3 0.4759 −3.3923 11.8982 −1.0247 2.8461 0.0475 −4.6879 −0.3009
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6 −3.5954 −0.5427 −0.0066 0.5836 −4.8108 9.8095 0.2140 −1.0532
7 0.2784 −4.5508 −5.0232 −5.7180 −4.5889 0.2099 22.1431 −2.8526
8 −0.2797 −6.7561 −0.0268 0.3542 −8.3148 −1.0323 −2.9019 18.9238

It can be seen in Figure 7 that the initial displacements of the eight nodes are far away from zero,
and the maximum displacement is more than 90 µm. However, after adjustment, the displacements in
the second regulating decreased obviously, and the eight nodes almost reached the target surface after
5–8 adjustments. At the same time, we extracted the node coordinates from ANSYS and calculated
the RMS for the eight nodes. The RMS is 37.5 µm before the adjustment, and it decreased to 5.9 µm
after the adjustment, therefore reducing the RMS by 84.3%. On the other hand, the RMS for the lower
left panel before the adjustment was 52.7 µm, and it decreased to 24.2 µm after the adjustment, so the
RMS was reduced by 54% on the lower left panel. Additionally, we know that the approximate model
established is able to represent the relationship between the input force and the output displacement
of the actual model. The difference between the approximate model and the ANSYS model does not
affect the design of the controller.
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In this paper, a method for the integrated design of structure and control is proposed for 
deformation; this method reduced the structure information greatly, and it strengthened the 
exchange of the structure and the controller, so that the information of the structure could contribute 
to the control portion of the design. And the structure could be improved by the feedback information 
that affects the performance of the structure. Finally, the ANSYS simulation experiment indicates that 
this method of structural control integration is effective. 
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5. Conclusions

In this paper, a method for the integrated design of structure and control is proposed for
deformation; this method reduced the structure information greatly, and it strengthened the exchange
of the structure and the controller, so that the information of the structure could contribute to the
control portion of the design. And the structure could be improved by the feedback information that
affects the performance of the structure. Finally, the ANSYS simulation experiment indicates that this
method of structural control integration is effective.
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