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Abstract: The number of accidents involving elderly individuals has been increasing with the increase
of the aging population, posing increasingly serious challenges. Most accidents are caused by reduced
judgment and physical abilities, which lead to severe consequences. Therefore, studies on support
systems for elderly and visually impaired people to improve the safety and quality of daily life
are attracting considerable attention. In this study, a road surface condition distinction method
using reflection intensities obtained by an ultrasonic sensor was proposed. The proposed method
was applied to movement support systems for elderly and visually impaired individuals to detect
dangerous road surfaces and give an alarm. The method did not perform well in previous studies of
puddle detection, because the alert provided by the method did not enable users to avoid puddles.
This study extended the method proposed by previous studies with respect to puddle detection
ability. The findings indicate the effectiveness of the proposed method by considering four road
surface conditions. The proposed method could detect puddle conditions. The effectiveness of the
proposed method was verified in all four conditions, since users could differentiate between road
surface conditions and classify the conditions as either safe or dangerous.

Keywords: surface condition distinction; ultrasonic sensor; reflection intensity; movement support
system; accidents involving falls; road surface condition; puddle condition; elderly individuals;
visually impaired individuals

1. Introduction

There has been a rapid increase in the number of elderly individuals worldwide, and the problem
of an aging society has become severe in recent years. Accidents involving elderly individuals,
caused by reduced judgement and physical abilities, have increased. In addition, accidents involving
visually impaired individuals have increased, thus posing a social problem.

Movement support systems are necessary to improve the safety of elderly and visually impaired
people in their daily lives. Real applications of movement support systems include the employment of
wheelchairs and walking canes for movement support. However, individuals moving without the help
of a caretaker face a high risk of accidents (such as falling), despite using movement support systems.
Hence, it is necessary to improve the safety of movement support systems.
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Previous studies [1–4] involved the implementation of ultrasonic sensors to support the
movements of elderly and visually impaired individuals. For example, studies examined barrier
detection to improve the safety of user movements [5,6]. However, these methods are unable
to detect dangerous ground surfaces. Furthermore, studies also examined material distinction
characteristics [7,8]. The methods examined the reflected waveform as a 2D image, and introduced
a pattern-matching approach based on benchmark patterns. However, the study limitations included
a narrow distance range and difficulty in dealing with phase differences. Additionally, extant research
used safety light curtains to detect dangerous regions [9]. However, light curtain systems involved
high-costs, given their large scale.

In order to solve the above-mentioned problems, a previous study investigated a material
distinction method that used reflection intensities obtained by an ultrasonic sensor [10]. The method
was developed to detect dangerous road surfaces and to raise alerts regarding the existence of these
surfaces to prevent elderly individuals from falling. However, the method involved misrecognitions in
puddle detection, and it was not possible for the user to avoid surfaces with puddles in the absence
of accurate alerts related to puddles. Therefore, the present study extends the results obtained by
previous research to propose an improved detection method that considers the puddle condition.
The effectiveness of the proposed method was verified based on experimental results. The results
indicated that the proposed method was a useful road surface condition distinction method that could
be applied in movement support systems, and was effective in helping elderly and visually impaired
individuals avoid accidents, such as falling.

The paper is organized as follows. Section 1 presents an overview of the literature and
a discussion of the problem. In Section 2, the road surface condition distinction method is introduced.
The proposed distinction method with respect to the puddle condition is examined in Section 3, and the
effectiveness of the proposed method is evaluated based on the experimental results. Section 4 discusses
the conclusions.

2. Road Surface Condition Distinction Method Using Reflection Intensities Obtained by
Ultrasonic Sensor

2.1. Introduction of Ultrasonic Sensor

An ultrasonic sensor is a type of sensor used to detect acoustic energy at wide frequency ranges
exceeding 20 kHz. Ultrasonic sensors can be divided into different types, according to the differences in
their applications. Generally, there are two main types of ultrasonic sensors. The first type of ultrasonic
sensor is an active type, which detects the reflection of ultrasonic waves sent by the sensor itself.
The applications of an active type of ultrasonic sensor include range finders, fish-finders, fathometers,
sonars, and medical diagnosis devices. The other type of ultrasonic sensor is passive, which only
receive ultrasonic waves. They are applied in detecting leaks in gas pipes and water pipes and in
detecting corona discharges owing to insulation failure. This study involved the examination of
an aerial ultrasonic sensor.

Range finders use ultrasonic waves [11] as distance detectors that employ reflection characteristics
and the lag time between sending and receiving ultrasonic wave. Sending and receiving units of
ultrasonic waves are required when an ultrasonic sensor is used to construct a distance detector.
A single unit structure applies a common unit for sending and receiving; this is in contrast to
an independent unit structure, which involves two separate units for sending and receiving. This study
used an independent unit structure, as an ultrasonic sensor with an independent structure displays
less interference and deterioration. Figure 1 shows the structure of the independent type ultrasonic
sensor. Figure 2 shows the circuit configuration for the transmission portion and the reception portion
of the ultrasonic sensor. The distance between the sensor and the object is estimated according to the
following equations:

V = 331.5 + 0.6 t, (1)
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L = V· s
2

. (2)

In the equations above, V (m/s) denotes the velocity of sound, t (◦C) denotes the temperature,
S (s) denotes the arrival time of ultrasonic wave, and L (m) denotes the distance between the sensor
and the object.

Figure 1. Structure of the independent type ultrasonic sensor.
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Figure 2. Circuit configuration for ultrasonic sensor: (a) Transmission portion; (b) Reception portion.

2.2. Road Surface Condition Distinction Method Using Ultrasonic Sensor

The ultrasonic wave reflects disorder if roughness is present on the object surface. In this manner,
the reflection of the ultrasonic wave decays. Hence, the roughness of the object can evidently affect
the reflection of the ultrasonic wave. Additionally, the detecting distance influences the reflection
intensity of the ultrasonic wave. Therefore, the present study proposed the application of a road
surface condition distinction method that employed reflection characteristics involving relationships
between object roughness and detecting distance. Figure 3 shows the characteristics of reflection
influenced by the roughness and detecting distance. As shown in Figure 3, given that the reflection
intensity and the detecting distance can be obtained by the ultrasonic wave reflection between the
sending unit and the receiving unit, the condition of the road surface can be recognized by measuring
reflection intensity and detecting distance in the proposed method.
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Figure 3. Characteristics of reflection influenced by roughness and detecting distance: (a) Difference 
in reflection intensities by surface roughness; (b) Difference in reflection intensities by  
distance detection. 
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Figure 3. Characteristics of reflection influenced by roughness and detecting distance: (a) Difference in
reflection intensities by surface roughness; (b) Difference in reflection intensities by distance detection.

3. Evaluation Experiments of the Proposed Method

3.1. Purpose of the Experiment

A testing experiment was implemented in the proposed method to detect puddle condition on the
road. The experimental results were evaluated, and they confirmed the effectiveness of the proposed
method in detecting the road conditions.

3.2. Experimental Methods and Conditions

An independent type T/R40-16 ultrasonic sensor (produced by NIPPON CERAMIC CO., LTD,
Tottori, Japan) with a center frequency of 40 kHz (a wave length of 8.5 mm) and −6 dB directivity
of 50 deg was applied as the sending and receiving unit in the detection of reflection intensity.
The experimental environment is shown in Figure 4. Table 1 lists the setting of detecting distances based
on the objectives. Figure 5 shows the measurement object. The experiment involved testing different
types of road surface conditions, such as puddles, asphalt surfaces, soil, and lawns. The reflection
intensity of each type of road surface condition was measured according to the testing distances listed
in Table 1. Given that the reflection intensity was not sufficiently strong, the detecting distance for
soil and lawn were set in a narrow range. Furthermore, the incident angle of the ultrasonic wave
was set at 90◦. The experiment was conducted on a sunny day with a temperature of 13 ◦C and
a humidity of 57%.
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3.3. Experimental Results and Study

The reflection waves for each road surface condition are shown in Figures 6–9. The waves are
summarized in Figure 10.

The exponential approximations of the detected data are expressed in Equations (3)–(6).
Equation (3) represents the approximation of the puddle condition, Equation (4) represents the
approximation of the asphalt condition, Equation (5) represents the approximation of the soil condition,
and Equation (6) represents the approximation of the lawn condition.

v = 14.837 e−0.011d, (3)
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v = 11.138 e−0.013d, (4)

v = 11.045 e−0.016d, (5)

v = 6.9184 e−0.019d. (6)

In the equations, v (V) denotes the reflection intensity, and d (cm) denotes the detecting distance.
In Equation (3), since the detecting ranges of 70 cm and 80 cm for the puddle exceed the possible
ranges, they were not included in the approximation.
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Figure 6. Experimental results of the reflection wave with respect to puddle.
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Figure 8. Experimental results of the reflection wave with respect to soil.
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The results shown in Figure 10 clearly indicate that the reflection intensity decayed at
an exponential rate according to the increase in detecting distance. Additionally, the reflection
observed in the puddle condition was most intensive when compared with that of other conditions.
The experimental conditions in decreasing order of reflection intensities were ranked as asphalt, soil,
and lawn. The results confirmed that the intensity of a smooth surface was high and that the intensity
of a rough surface was low. The findings revealed that the characteristics of an ultrasonic wave
included disordered reflection for an object involving rough surface.

Threshold 1 between asphalt and puddle could be synthesized based on the experimental results
as represented by the red solid line shown in Figure 10. Threshold 2 between asphalt and soil could be
synthesized as shown by the blue solid line in Figure 10. Threshold 1 is expressed by Equation (7),
and Threshold 2 is expressed by Equation (8), as given below:

v = 12.797 e−0.012d, (7)

v = 10.518 e−0.014d. (8)

Road conditions were recognized by using distinction thresholds. If the detected intensity
exceeded Threshold 1 (Equation (7)), it was identified as a puddle. If the detected intensity was lower
than Threshold 2 (Equation (8)), it was identified as lawn or soil. If the detected intensity was between
Threshold 1 (Equation (7)) and Threshold 2 (Equation (8)), it was identified as asphalt.

The approach detailed in this study could be used to divide the recognition of a road surface
according to three conditions. The safety condition was identified using the information obtained by
the proposed method. Typically, asphalt ground was considered safe, while the probability of slipping
and falling on a puddle was high, especially for elderly and visually impaired individuals. The users
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can avoid dangerous road surfaces by employing the proposed method to effectively distinguish
between road surface conditions.

4. Conclusions

This study involved the development of a road surface condition distinction method by
considering puddle conditions. Four types of road surface conditions were investigated in this
study. The effectiveness of the proposed method was verified in all four conditions. The experimental
results indicated that two thresholds as defined by the proposed method could be used to identify
road surface conditions. The road surface conditions could be recognized as either safe or dangerous.
The effectiveness of the proposed method was confirmed by the experimental findings.

Thus, employing the proposed method in road surface condition distinction for movement
support systems, such as wheelchairs and walking canes, can help prevent accidents (e.g., falling down)
for elderly and visually impaired individuals. The proposed method can also to be applied
to automobiles.
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