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Abstract: Bisphenol A (BPA) is an estrogen-mimicking chemical that can be selectively detected
in water using a chemical sensor based on molecularly imprinted polymers (MIPs). However, the
utility of BPA-MIPs in sensor applications is limited by the presence of non-specific binding sites.
This study explored a dual approach to eliminating these sites: optimizing the molar ratio of the
template (bisphenol A) to functional monomer (methacrylic acid) to cross-linker (ethylene glycol
dimethacrylate), and esterifying the carboxylic acid residues outside of specific binding sites by
treatment with diazomethane. The binding selectivity of treated MIPs and non-treated MIPs for BPA
and several potential interferents was compared by capillary electrophoresis with ultraviolet detection.
Baclofen, diclofenac and metformin were demonstrated to be good model interferents to test all MIPs
for selective binding of BPA. Treated MIPs demonstrated a significant decrease in binding of the
interferents while offering high selectivity toward BPA. These results demonstrate that conventional
optimization of the molar ratio, together with advanced esterification of non-specific binding sites,
effectively minimizes the residual binding of interferents with MIPs to facilitate BPA sensing.

Keywords: bisphenol A; diazomethane; non-specific binding sites; site-selective chemical modification;
treated molecularly imprinted polymers

1. Introduction

Bisphenol A (BPA) is a household name of which many consumers are aware [1]. It is classified by
the U.S. Environmental Protection Agency as an endocrine disrupting compound and thus interferes
with the action of natural hormones in the body that are responsible for human behaviour, development,
homeostasis and reproduction [2–4]. It may be reasonably anticipated to be a human carcinogen in the
breast and prostate due to its tumor promoting properties [5]. BPA is a synthetic monomer, extensively
used in the production of epoxy resins, polysulfone thermoplastics, polycarbonate plastics and thermal
paper receipts [6,7]. Worldwide, over five million metric tons of BPA are produced annually for use in
a variety of products, including baby bottles, food containers and beverage cans [8,9]. BPA has been
detected in rivers among top manufacturing competitiveness index countries [10–15]. There is a need
to detect this toxic chemical in a variety of scenarios, including aquatic environments, sewage effluents,
and non-dietary sources, as well as human urine and blood [16–19]. A robust experimental study has
shown that developmental exposure of pregnant rats to 25 µg of BPA per kg body weight per day
can cause adverse effects on fertility (decreased sperm count), neurodevelopment (masculinization
of spatial learning in females) and lead to increased female body weight late in the life of their
offspring [20]. This low-dose perinatal exposure can also affect mammary gland development in male
and female offspring [21]. A liquid chromatography-tandem mass spectrometry analytical method was
used to directly and simultaneously measure unconjugated BPA, BPA glucuronide and BPA sulfate in
the urine of pregnant women in their second trimester [22]. Near universal and high exposure to BPA
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and its conjugated metabolites was found among pregnant women, raising additional concerns for
their fetal development. Creatinine-standardized BPA concentrations decreased over childhood, from
1 to 8 years of age [23]. BPA concentrations were positively associated with consuming food stored or
heated in plastic, consuming canned food and beverages, and handling cash register receipts.

One efficient technique to detect BPA is to use a molecularly imprinted polymer (MIP) as a
recognition element in separation systems, chemical assays, colorimetric devices, electrochemical
sensors, or fluorescent sensors [24–31]. MIP synthesis creates imprinted sites that are similar in size
and shape to BPA. These imprinted sites are capable of behaving very selectively and efficiently in
rebinding the target molecules [32,33]. MIPs are inexpensive to produce for industrial applications [34].
A potentially very important problem with MIPs is the presence of non-specific binding sites, as this
often limits the use of MIPs in sensor applications [35,36]. Recent research has reported relative binding
efficiencies of 0.46–0.48 for BPA structural analogs such as 2,4-dichlorophenol and p-nitrophenol [37].
Selectivity coefficients of 2.5–2.7 were observed for hydroquinone, 8-hydroxy quinolone, phenol and
4-nitrophenol, all of which have similar structures to the BPA molecule [38]. Other potential competitor
interferents that are commonly found in water include pharmaceuticals and personal care products.
Hence, there is a clear and pressing need to develop techniques that either minimize the formation
of non-specific sites during the synthesis of MIPs or allow for blocking of non-specific binding sites
after the polymer preparation. For the most demanding sensor applications, both techniques can be
combined to enhance the selectivity of binding only the target analyte molecule.

This study examined both the site-selective chemical modification (SSCM) technique, which
employs partial esterification of the residual carboxylic acid groups using diazomethane [39–41],
and optimization of the template to functional monomer to cross-linker molar ratio [42,43]. The aim
was to eliminate non-specific binding sites in the MIP. The binding selectivity of diazomethane-treated
molecularly imprinted polymers (TMIPs) and non-treated MIPs, as well as diazomethane-treated
non-imprinted polymers (TNIPs) and non-treated NIPs, toward BPA was evaluated, by capillary
electrophoresis (CE) with ultraviolet (UV) detection, against three widely prescribed pharmaceutical
compounds (baclofen, diclofenac and metformin) which are abundantly distributed in environment
waters [44]. In our previous article [40] we tested cross reactivity with the same compounds and
also used competitive CE-UV binding tests. The present article contains more data on the systematic
optimization of the TMIP to demonstrate an improvement of selective binding results.

2. Materials and Methods

2.1. Materials

BPA, baclofen (BFN), diclofenac sodium salt (DFC), diethyl ether, ethylene glycol dimethacrylate
(EGDMA), methacrylic acid (MAA) and metformin hydrochloride (MF) were purchased from
Sigma-Aldrich (Oakville, ON, Canada). 2,2′-Azobis(2-methylpropionitrile) (AIBN) was obtained
from Pfaltz and Bauer (Waterbury, CT, USA). Triethylamine (TEA) was acquired from Fluka (Buchs,
Switzerland). Sodium phosphate dibasic was supplied by Fisher Scientific (Fair Lawn, NJ, USA).
All chemicals were used as received without any further purification except diethyl ether, which was
distilled from lithium aluminum hydride. High performance liquid chromatography (HPLC)-grade
methanol and acetonitrile, and spectro-grade acetone, were all purchased from Caledon (Georgetown,
ON, Canada).

2.2. Apparatus and Analytical Instruments

A diazomethane generator kit (“Mini Diazald apparatus” (Aldrich part # Z108898), Clear-Seal
flask (Aldrich part # Z100358)); and a separatory funnel with polytetrafluoroethylene stopcock and
Clear-Seal joint (Aldrich part # Z100382) was obtained from Sigma-Aldrich. CE-UV analysis was
performed on a laboratory-built system [40]. The background electrolyte (BGE) was composed
of 10 mM Na2HPO4 in deionized distilled water (DDW) to attain pH 7.5 ± 0.2. A Shimadzu
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liquid chromatography system with UV detection was used to determine the hydrophobicity of
BFN, BPA, DFC and MF using acetonitrile/methanol/DDW (1:1:1) as the mobile phase at a flow
rate of 0.8 mL/min through a Phenomenex reversed phase C18 column (4.6 mm × 250 mm, 4 µm
packing material).

2.3. Preparations of MIP and NIP Particles

MIP1 through MIP9 were prepared using different molar ratios of BPA to MAA while keeping
EGDMA constant, as listed in supplementary Table S1. All MIPs were prepared by following a
previously reported procedure [40]. For direct comparison of binding test results, non-imprinted
polymers (NIPs) were prepared analogously but in the absence of BPA.

2.4. Diazomethane Preparation and Treatment of MIP and NIP Particles

Due to the potentially explosive and toxic nature of diazomethane, this reaction must be
performed behind a safety shield in a fume hood. Diazomethane was prepared from N-methyl-
N-nitroso-p-toluenesulfonamide (Diazald®), Reference [45] following a literature procedure [46], using
an Aldrich mini Diazald apparatus, as detailed elsewhere [40]. The final solution of CH2N2 gas,
dissolved in diethyl ether, was protected from shock and stored in a freezer (at –15 ◦C). The NIP or
unwashed MIP particles (670 mg) were dried overnight in an oven at 50 ◦C and suspended in diethyl
ether (50 mL). An ethereal diazomethane solution was added to the suspension of particles in order
to methylate their carboxylic acid groups (Scheme 1). BPA was then removed from the TMIPs with
5% TEA in methanol.
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Scheme 1. Methylation of carboxylic acid functional group with diazomethane. R represents the
molecularly imprinted polymer or non-imprinted polymer matrix.

2.5. Competitive CE-UV Binding Tests

MIP, TMIP, NIP or TNIP particles were suspended in 10 mM Na2HPO4 (pH 7.5) BGE containing
100–200 ppm of BPA, BFN, DFC and MF to evaluate their bindings under sonication for 20 min to
assist with uniform dispersion of particles throughout the suspension and rapid access of molecules
to all binding sites. After the particles were precipitated by centrifugation at 10,000 rpm for 10 min,
the concentrations of BPA, BFN, DFC and MF in the supernatant were determined by CE-UV analysis.
All binding tests were carried out in duplicate, and percentage binding was calculated as 100%× (peak
area before binding–peak area after binding)/peak area before binding.

2.6. Electrophoretic Mobility of Polymers

The ionic charge states of MIPs, NIPs, TMIPs and TNIPs particles were determined by CE-UV
analysis after mesityl oxide was also analyzed as the neutral marker to provide a reference migration
time (tref). The electrophoretic mobility µep of each polymer was calculated as

µep = (Ltot Ld/V) (1/tp − 1/tref)

where Ld is the capillary length from the inlet to the detector, V is the high voltage applied across the
total capillary length Ltot, and tp are the migration times of the particles, respectively.
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3. Results and Discussion

3.1. Optimization of Template to Functional Monomer Molar Ratio

Although other functional monomers (e.g., 4-vinylpyridine and N-methacryloyl-L-phenylalanine)
have been used to prepare MIPs for specific recognition of BPA in sensor applications, they either
exhibited a maximum response at a high pH of 10 or required special synthesis in an organic chemistry
research lab. Hence a commercially available monomer, MAA, with a pKa value of 4.66 was deemed
preferable in the present work. Previous work by another research group had the molar ratio of
BPA:MAA varied from 1:1 up to 1:8; the best MIP performance (i.e., the largest BPA peak area) was
attained at a molar ratio of 1:4 but a large amount of 4-phenylphenol was also bound [47]. The molar
ratio of BPA to MAA in our present work was varied from 1:9 down to 9:1 in an attempt mainly to
reduce non-specific binding sites in the MIP. This straightforward approach could be an effective
method to enhance the selectivity of MIP toward BPA without the use of diazomethane treatment.
All MIP and NIP particles were tested for their BPA selectivity, using DFC and MF as negatively
and positively charged interferents, respectively. As the molar ratio of BPA to MAA increases, the
binding selectivity of MIP for BPA, defined as the % binding for BPA relative to those for DFC and
MF, is enhanced without compromising the 99% binding of BPA (as can be seen in Figure 1). DFC
exhibits a slightly higher affinity towards MIP7, MIP8 and MIP9 than the other MIPs, probably due
to stronger hydrophobic interaction with these former MIP particles as the ratio of MAA to EGDMA
and BPA decreases and the polymer becomes less negatively charged. Obviously, MIP9 shows the
lowest binding affinity toward MF, both individually and in mixture, which, in conjunction with
the electrophoretic mobility data, indicates that this polymer has the lowest negative charge among
the MIPs. All percent binding results of BPA, DFC and MF (individually and in mixture), as well as
electrophoretic mobility, are presented in Figure 1 for each MIP prepared with a different BPA mole %.
A significant decrease in % binding for MF and slight increase in % binding for DFC are clearly seen
when going from MIP1 to MIP9, all of which exhibit a constant 99% binding for both BPA (individual)
and BPA (mixture).
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Figure 1. Percent binding results of bisphenol A (BPA), diclofenac (DFC) and metformin (MF)
(individually and in mixture) and electrophoretic mobility for each MIP prepared with a different
mole % of BPA. For clarity, error bars are represented by the size of symbols.

For comparison purposes, the study tested the binding affinity of BPA (individually and in
the three-component mixture) toward NIPs. When the ratio of MAA to EGDMA decreased upon
going from NIP1 to NIP9, as shown in supplementary Table S2, the binding affinity of DFC and BPA
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toward the NIPs increased due to elevated hydrophobic interactions and in the case of DFC, decreased
electrostatic repulsion—that is the same trend as with MIPs. The binding affinity of MF decreased
from 70% ± 1% to 50% ± 1% individually and from 73% ± 1% to 56% ± 1% in mixture. While the
direction of this trend is consistent with the results in MIPs, the magnitude is far less pronounced.
These decreases observed with the NIPs were neither so significant in range (from highest to lowest)
nor related to the electrophoretic mobility values (which indicate a fairly constant electronic charge to
particle size ratio for all of the polymers). The apparently higher values of electrophoretic mobility for
NIPs do not necessarily mean higher electronic charges, but rather smaller sizes than MIPs, due to the
absence of imprinted cavities in the NIPs (vide infra).

3.2. Esterification of MIPs with Diazomethane

To enhance selective binding with the target analyte molecules, diazomethane treatment was
chosen as an alternative or combined approach to reduce or eliminate non-specific binding sites
in the MIPs. In Figure 2, all TMIPs showed diminished binding affinity toward MF, a positively
charged compound. In particular, TMIP1 revealed the lowest binding affinity toward MF, at 9% ± 1%
individually and 10% ± 1% in mixture.
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Figure 2. Percent binding results of BPA, DFC and MF (individually and in mixture) and electrophoretic
mobility for each diazomethane-treated molecularly imprinted polymers (TMIP) prepared with a
different mole % of BPA. For clarity, error bars are represented by the size of symbols.

Unlike our MIPs, BPA binding affinity toward TMIP1 in the three-component mixture shows
a slightly lower binding affinity of 91% ± 1%. As the molar ratio of BPA is increased in Figure 2,
the binding affinity of TMIPs is enhanced up to 99% (both individually and in the mixture for TMIP4

to TMIP9), presumably as a result of an increase in the number of specific binding sites. Efforts
to determine the BPA binding affinity toward TMIP10 (10:0:7 BPA:MAA:EGDMA) were to no avail
because the particles could not be uniformly dispersed in water samples. All TMIPs show less binding
affinity than MIPs toward DFC, particularly TMIP1 at only 6% ± 1% individually and 8% ± 1% in
mixture. TMIPs also show significantly less binding affinity toward MF when compared to MIPs,
which indicates a decrease of electrostatic interactions between MF and the polymer. Comparing
the binding affinity of MF in the three-compound mixture, TMIP1 demonstrates the most dramatic
decrease, dropping to 10% from 73% for MIP1. All binding results are presented in Figure 2 for each
TMIP. The separation of BPA data points at the top from those for DFC and MF near the bottom is
a very distinctive and impressive illustration of the high selectivity offered by TMIPs toward the
target analyte. One rationale for using such a large excess of template (9:1 template: monomer to



Sensors 2016, 16, 1697 6 of 12

synthesize TMIP9) is that EGDMA can act as both a cross-linker and a functional monomer to form
BPA:EGDMA complexes in the pre-polymerization mixture. Comparing with our previous results
obtained using a molar ratio of 1:8:7 for BPA:monomer:crosslinker in the preparation of TMIP [40],
the present selectivities are better. Noticeably, all TMIPs prepared using 6 to 24 mole % of BPA show
less binding affinity toward DFC than the previous result of 16%; particularly the TMIP prepared using
6 mole % of BPA bind DFC at only 6% individually and 8% in mixture.

In comparison with TMIPs, TNIPs show higher non-specific binding affinities toward MF and
DFC (supplementary Table S3). Interestingly, many TNIPs also have a significantly higher binding
affinity toward BPA than NIPs. One plausible explanation is that the ester functional group affords
stronger interaction with BPA than the carboxylate functional group. This is an important finding in
the sense that, by converting acids into esters, the number of binding sites for BPA was increased in all
TNIPs. The increased proportion of EGDMA (which is also an ester) could potentially be beneficial
in shaping the binding sites. This would help explain why TMIP9 performed better than TMIP1 in
binding with BPA despite a decrease of the MAA monomer molar ratio from 9 (for TMIP1) to 1 (for
TMIP9). Also, when looking at the supplementary Tables S2 and S3, every NIP or TNIP shows a much
better affinity for BPA than the cross reactive compounds. So, the imprinting factors are apparently
not very high. However, as pointed out by Vasapollo et al in their review article, an even better
MIP evaluation than imprinting factor is the selectivity for different molecules [48]. The imprinting
factor must be considered along with selectivity results since a good binding result may just be due
to particular physicochemical properties of the target molecule rather than the presence of specific
imprinted sites. The non-specific binding properties of MIP, NIP, TMIP and TNIP particles were
further investigated by CE-UV analysis of baclofen (BFN), which is a derivative of γ-aminobutyric
acid (primarily used to treat spastic movement disorders). Although its strongest acidic pKa is 3.9
and its strongest basic pKa is 9.8 [49], the BFN peak was not separable from the BPA peak and hence
appeared to be a neutral compound. As summarized in supplementary Table S4, the binding results
for BFN are unexpected—significantly lower than those discussed above for BPA and fairly similar to
those for diclofenac sodium. It is well known that BPA has a pKa value between 9.9 and 11.3 [50] and
an octanol–water partitioning coefficient (Kow) value of 103.4 [51]. The latter property indicates that
BPA is a significantly more hydrophobic compound than BFN, which has a log partition coefficient
(log P) value of −0.80 ± 0.02 [48] or a partition coefficient (P) value of 0.16. Figure 3 presents the
percent binding results of BFN for each MIP and TMIP prepared with a different mole % of BPA.
On a full binding scale from 0% to 100%, the interferences of baclofen binding with the MIPs and
TMIPs were low and the differences among them were insignificant. Despite the scatter of data points
between 5% binding and 20% binding, BFN behaves similarly to DFC (see Figures 1 and 2), which has
a different pKa value of 4.0 [52] and a larger molecular size. Their non-specific binding mechanisms
(including hydrophobic and ionic interactions) are worthy of more systematic investigation.

In order to gain a better understanding of the non-specific binding mechanisms, high-performance
liquid chromatography with UV detection was used to analyze standard solutions of BFN, BPA, DFC
and MF (individually or in mixture) on a reverse-phase column. The retention time of each organic
compound, analyzed individually as summarised in supplementary Table S5, would serve as a
direct indication of its hydrophobicity. As illustrated in Figure 4, their order of elution was MF first,
DFC second, BFN third, and BPA last. This indicated that MF is the least hydrophobic and BPA
is the most hydrophobic of the four compounds. The fact that the least hydrophobic compound
was able to bind non-specifically with the MIPs (from 32% to 84% in Figure 1) emphasizes a real
need to perform SSCM on the MIPs by treating them with diazomethane. Apparently, moderately
hydrophobic compounds such as BFN and DFC bind non-specifically with the MIPs not more than 29%
(see Figure 1), whether they are zwitterionic or negatively charged in aqueous samples. Site-selective
chemical modification with diazomethane, however, can decrease their non-specific bindings down to
23% (see Figure 2).
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Figure 4. HPLC analysis of a mixture of MF (200 ppm) at 2.5 min, DFC (200 ppm) at 3.6 min, BFN
(200 ppm) at 4.1 min and BPA (100 ppm) at 6.6 min. Mobile phase: CH3CN/MeOH/DDW (1:1:1 v/v);
flow rate, 0.8 mL/min; UV detection at 200 nm.

3.3. Average Size of MIPs and NIPs Vs TMIPs and NTIPs

The average sizes of MIP, NIP, TMIP and TNIP particles were determined by scanning electron
microscopy (SEM). The SEM images in Figure 5 show both the size and the size distribution of
polymer particles. MIP particles were approximately 169–190 nm in diameter and NIP particles were
approximately 112–115 nm. Similarly, TMIP particles were >180 nm in diameter and TNIP particles
were >137 nm. These particle sizes were confirmed by dynamic light scattering (DLS) analysis shown
in Figure 6 that reported a diameter of 208 ± 2 nm for MIP, 157 ± 1 nm for NIP, 212 ± 2 nm for TMIP,
and 208 ± 1 nm for TNIP. Such similar sizes of the TMIP and TNIP particles are consistent with their
electrophoretic mobility values presented in Figure 2 and supplementary Table S3.
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4. Conclusions

Blocking non-specific binding sites of MIP with diazomethane treatment is a more efficient
approach than optimization of the template to monomer to cross-linker molar ratio, to produce TMIPs
that can significantly reduce potential interferences during the selective extraction of BPA in water
analysis. The binding affinity of TMIP particles is up to 99%, higher than the 86.6%–95.5% recovery
reported recently [37]. These materials can be readily applied as a recognition element in colorimetric,
electrochemical or fluorescent sensors to detect BPA in environmental waters. Baclofen, diclofenac and
metformin are good for use as model interferences to test all TMIP-based sensors for accurate BPA
determination. For trace environmental analysis, a relatively large volume of water can be sampled in
order to minimize the problems associated with template bleeding. Conventional sorbent materials
cannot easily handle any large volume of environmental water (to concentrate a target compound
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at trace levels) due to rapid saturation of their non-specific binding sites by the diverse population
of competitor interferents present. Although diazomethane treatment of NIP particles can produce
TNIP particles with an enhanced binding affinity for BPA, their non-specific binding with MF and
DFC is undesirably double that of TMIP particles; this makes TMIP particles definitively superior and
advantageous over TNIP particles in chemical sensor applications where BPA must be detected in
water containing interferents at significant concentrations. Our TMIP nanoparticles demonstrated a
specific affinity for BPA, comparable to the colloidal nanoparticles functionalized by a BPA aptamer
(with a dissociation constant Kd of 54 nM) [53]. Non-specific binding of competitor interferents
due to hydrophobic interactions can be ameliorated by modifying aqueous samples with a small
portion of organic solvent such as methanol. Further research is underway to study the TMIP material
properties, binding isotherms, sorption capacity, porosity and robustness in our chemical sensor
research. The study will include data on quantifying BPA in water and give the limit of quantification,
thereby allowing readers to compare the merits of this strategy to regulatory guidelines for BPA
analysis, as well as its utility in application to the analysis of other organic compounds of concern.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/10/1697/s1,
Table S1: Preparation of MIPs using different molar ratios of BPA to MAA while keeping EGDMA constant,
Table S2: Percent binding results for BPA, DFC and MF (individually or in mixture) and electrophoretic mobility
for NIPs, Table S3: Percent binding results for BPA, DFC and MF (individually or in mixture) and electrophoretic
mobility for various TNIPs, Table S4: Percent binding results for BFN (individually) with various MIPs, NIPs,
TMIPs and TNIPs, Table S5: HPLC-UV peak heights, peak areas and retention times for BFN, BPA, DFC and MF.
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AIBN 2,2′-azobis(2-methylpropionitrile)
BFN baclofen
BGE background electrolyte
BPA bisphenol A
CE capillary electrophoresis
DDW distilled deionized water
DFC diclofenac sodium salt
DLS dynamic light scattering
EGDMA ethylene glycol dimethacrylate
HPLC high performance liquid chromatography
Kd dissociation constant
Kow octanol-water partitioning coefficient
MAA methacrylic acid
MF metformin hydrochloride
MIP molecularly imprinted polymer
NIP non-imprinted polymer
P partition coefficient
SSCM site-selective chemical modification
SEM scanning electron microscopy
TEA triethylamine
TMIP treated molecularly imprinted polymer
TNIP treated non-imprinted polymer
UV ultraviolet
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