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Abstract: Fine-scale population estimation is essential in emergency response and epidemiological
applications as well as urban planning and management. However, representing populations in
heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale
population distribution based on 3D reconstruction of urban residential buildings with morphological
operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite
(ZY-3). Specifically, the research area was first divided into three categories when dasymetric
mapping was taken into consideration. The results demonstrate that the morphological building
index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the
morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction
and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D
models and to estimate population. Final results show that this approach is effective in fine-scale
population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute
Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in
complicated urban landscapes, when detailed 3D information of buildings is unavailable.

Keywords: fine-scale population estimation; morphological operations; ZY-3; dasymetric mapping;
3D model

1. Introduction

Population estimations make indispensable contributions to the activities of organizations,
businesses and governments, since the dispersion of energy and resources among different
geographical regions is strongly dependent on the population size [1]. From an urban geographical
perspective, Clark [2] initially studied monocentric models, where the population density was
determined by the distance to the Central Business District (CBD), and proposed a negative exponential
model with a constant gradient. Though other researchers, such as Newling [3] and Parr [4], improved
this model by adding or modifying different parameters, Tobler [5] put forward that the exponential
distance decay function was an approximation for the entire urban area, whereas its repeated use away
from the urban center seemed unreasonable.

Undoubtedly, the negative exponential function was an empirical estimation [6]. Then, areal
interpolations began to be realized by many scholars, such as Tobler [7], Lam [8] and Rase [9],
who utilized census data as the model input to interpolate or disaggregate original data and obtained a
refined population distribution surface. Besides, accuracy of methods in areal interpolation was largely
improved when various ancillary data were incorporated, such as land use types, street networks
and statistical surfaces, and one of the most representative models was the dasymetric mapping.
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Wright [10] performed binary divisions iteratively to disaggregate population density from general
zones to detailed zones in Cape Cod (MA, USA) while keeping the volume preserved through a
dasymetric model. However, Wright’s model was not easy to implement, therefore, Langford and
Unwin [11] applied multivariable regression to compute population densities in dasymetric subzones.
Other researchers such as Yuan et al. [12], Eicher and Brewer [13] and Mennis [14] classified land use
into different types and redistributed census data among them. In addition, some researchers still
aimed at further optimizing this method, which included Zandbergen and Ignizio [15] who compared
the accuracy of different types of ancillary data used in dasymetric mapping; Nagle et al. [16] who
represented and quantified the uncertainties in dasymetric modeling by the Penalized Maximum
Entropy Dasymetric Model (P-MEDM); Stevens et al. [17] who produced a gridded population density
at a 100 m spatial resolution through the Random Forest model. However, it was Mennis [18] who
pointed out that the biggest challenge of dasymetric mapping was to develop standardized dasymetric
mapping techniques.

Another approach commonly accepted by many researchers was statistical modeling, which was
first proposed by Kraus [19]. To explore the relationship between population and remote sensed
variables, there were usually six categories of ancillary datasets: urban areas (Tobler, [20]) including
urban lights (Prosperie and Eyton [21]; Lo [22]; Zeng et al. [23]), land use (Kraus et al. [19]; Weber [24];
Langford and Harvey [25]; Lo [26]), dwelling units (Porter [27]; Collins and EI-Beik [28]; Lo and
Chan [29]; Lo [30]), image pixel characteristics (Iisaka and Hegedus [31]; Lo [32]; Harvey [33]),
impervious surface (Lu et al. [34] and Li and Weng [35]) and other physical or socioeconomic
characteristics (Dobson et al., [36]; Liu and Clarke [37]; Balk et al. [38]). However, some problems
have not been solved. Taking land use types as an example, the accuracy of population estimations
was largely based on the detail of land use classes and the methods ignored the heterogeneity of
population inside the same land use type. In addition, the spatial resolution of population estimation
was also limited.

With the development of society, demographic information at finer resolutions had a significant
impact on the economic, social, technological and humanitarian development of cities and is an
indispensable component used in policymaking and planning [39]. Li and Weng [40] compared
different ancillary data in getting fine-scale population estimations based on Landsat ETM+ imagery,
and two conclusions were drawn: the land use-based method performed better than impervious
surface and vegetation fractions; dasymetric mapping yielded better results than choropleth mapping.
Leyk et al. [41] coupled spatial allocation procedures with a dasymetric model to allocate population to
household microdata based on maximum entropy models, which refined the population distribution
solution to a subtract level. However, a number of experiments demonstrated that land use data could
not be used to conduct accurate population estimations at a fine scale [42]. Moreover, these methods
were constrained by the selection of the spectral response variables or by a reliable validation during
non-census years.

Considering that a large number of building units that are vertically stacked cannot be easily
identified from 2-D photographs as only the roofs are visible, the height information is essential for
the real structure of the buildings [43]. Besides, the 3D properties of urban buildings represent the
three-dimensional nature of living space [44] and serve as essentially direct factors in estimating
fine-scale populations. Wu et al. [45] used a deterministic model to estimate sub-block-level population
through building volumes derived from geographic information system (GIS) building data and
three housing statistics, and proposed a deterministic population estimation model relating with
housing occupancy rate and average number of population per floor. However, there were some
limitations that needed to be improved. For instance, researchers needed to know how to obtain
housing statistics during intercensal years and how to get building footprints and volumes without
extra model input. Alahmadi et al. [46] found that height information was helpful to improve the
prediction accuracy compared with conventional population models. Qiu et al. [43] also adopted
building volumes derived from LIDAR as an index to estimate population at the census block level.
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Xie et al. [47] estimated fine-scale population distribution from LiDAR-derived residential variables
by a morphological algorithm and refining classification of residential buildings and realized that the
height of buildings could be regarded as a crucial component for the corresponding models, but the
cost of LiDAR datasets was high and periodical LiDAR data was unavailable. The coverage of specific
areas needed to be assured ahead, then users can schedule fights to acquire data, which to a certain
degree resulted in a lack of timeliness and cost-effectiveness.

To sum up, traditional population estimation models were time-consuming to conduct or subjected
to the assumption that subzones were evenly distributed, which indicates they have limitations for
fine-scale population estimation in heterogeneous urban regions [6]. Moreover, existing methods of
estimating population in finer resolutions are subject to the availability of census data or the accuracy
of classification methods. As for 3D building models, LIDAR data was mostly used but not timely
to some degree. The above issues are supposed to be addressed appropriately. When the diversity
and variability of urban buildings are taken into account by a majority of researchers, it is necessary to
consider imagery with a finer resolution in order to improve the recognition [48], so HR imagery is
necessary. Furthermore, morphological operations are appropriate for extracting features from HR
images when spectral, texture, structure, scale and granularity are taken into account [49–51].

After considering all the factors listed before, this paper aims to acquire population distributions at
a finer scale using HR satellite data (ZY-3) to reconstruct 3D information of urban residential buildings
through morphological operations.

2. Study Area and Dataset

The study area is located in Chaoyang District, Beijing, which incorporates 42 administrative
units covered by 10,153 × 13,295 pixels with a pixel size of 2.5 m, and serves as a typical example
when the different population distribution from south to north due to unbalanced social and
economic development is taken into account. Figure 1 indicates the specific location of the study
area. Furthermore, numerous urban segments (e.g., buildings, roads, parking lots and a park) and
undeveloped regions (e.g., bare soil, grasslands, and watersheds) are included. Though there are a
variety of urban land use types, the research focused on residential buildings.
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HR imagery is essential in the extraction of urban objects since most of them are noticeably smaller
than natural features, and thus a significantly small pixel size is necessary for urban applications [52].
Accordingly, this experiment utilized two ZY-3 datasets (which principle parameters are listed in
Table 1) obtained from the Satellite Surveying and Mapping Application Center (NASG), with a
commonly Universal Transverse Mercator (UTM) coordinate system of 50N based on the WGS84
ellipsoid. The administrative map of Beijing at the county level for 2014 was obtained from the
National Geomatics Center of China. Besides, validation data referred to the statistical yearbook
downloaded from Beijing Chaoyang Statistical Information Net (http://www.chystats.gov.cn) in
2014. Furthermore, DSM was obtained from the National Administration of Survey, Mapping and
Geoinformation, and point of interest (POI) data, which was collected from an urban digital map and
incorporated five different types of buildings according to their utility (i.e., public services, financial
buildings, commercial facilities, entertainment constructions and residential buildings), is also included
since the location of buildings outperforms other ancillary datasets in population estimations [53].

Table 1. Parameters of the ZY-3 dataset.

Camera Mode
Panchromatic (pan)

Multispectral (mux)

Spatial resolution pan: 2.1 m, mux: 5.8 m
Wavelength (nm) pan: 450–800

mux: blue: 450–520, green: 520–590, red: 630–690, NIR: 770–890
Image width (km) pan: 50 × 50, mux: 52 × 52

Cloud-cover degree 0%
Orbit number 18,862

3. Methodology

In this section, specific methodology pertaining to extracting 3D information of urban residential
buildings and fine-scale population estimation would be illustrated. Detailed procedures are described
in the flowchart shown in Figure 2.

3.1. Data Preprocessing

The preprocessing of data includes image ortho-rectification, registration, multispectral and
panchromatic image fusion and extraction of the research area. Specifically, a rational polynomial
coefficients (RPC) file, which utilized the sensor’s physical and orbit parameters along with appropriate
ground control points to get the transform matrix, was firstly used for ortho-rectification of the ZY-3
datasets. As there were deviations between multispectral and panchromatic images, it was then
crucial to register the image with higher spatial resolution (pan images). The Gram-Schmidt Spectral
Sharpening algorithm was subsequently adopted for image fusion and finally the research area was
extracted by clipping from regions of interests (ROIs). All of these processes could be accomplished
automatically by the ENVI 5.1 platform.

3.2. Building Extraction

Various methods have been explored by scholars to detect urban buildings from high resolution
or very high resolution (HR/VHR) images, particularly morphological operations [49,50,54]. Because
of the high brightness in all visible bands and more evident textural features compared to many
natural objects, morphological operations are appropriate for building extraction [55]. Furthermore,
the object-based method is superior to the traditional per-pixel way in feature extraction [52], so it is
reasonable to combine these two methods to extract building footprints in urban areas. In this step,
two indexes (MBI and PanTex) are extracted through morphological operations and they are regarded
as indispensable parameters for building extraction by the object-based method.

http://www.chystats.gov.cn
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Building Index; MSI—Morphological Shadow Index; CIIT—Color Invariant Indices; POI—Point of
Interests; SHP—shapefile format processed by the ArcMap 10.2 software.

3.2.1. PanTex Calculation

According to [54], PanTex was based on fuzzy rule-based composition of anisotropic textural
co-occurrence measures through the gray-level co-occurrence matrix (GLCM). The foundation of the
index depends on the fact that buildings cast shadows and thus produce high contrast in a local
range. As a result, a rotation-invariant property of GLCM (i.e., contrast) is utilized to display such
structural features of built-up areas. Then, PanTex is obtained by integrating different displacement
vectors of the contrast by using a min operator in fuzzy set logic. Though the literature stated that
five meters was sufficient for differentiating built-up and non-built-up areas, in this study, the PanTex
is computed from the panchromatic image of ZY-3 after preprocessing with 2.5 m spatial resolution.
In addition, given the distinction of image features in disparate regions, the results of PanTex derived
from different moving window sizes are discussed latter in order to select the best result. The following
steps were adopted:

Step (1) GLCM derivation

GLCM is a textural feature based on statistics summarizing the relative frequency distribution
(i.e., how often one gray tone level will appear in a specified spatial relationship to another gray tone
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on the image [56]). In this study, ten different displacement vectors with distinct directions are selected
to compute the GLCMs.

Step (2) Contrast measures extraction:

The textural measure of contrast is demonstrated as an effective characteristic to discriminate
built-up and non-built-up areas. Consequently, contrast measure is adopted in this study and it is
calculated using the following formulation:

Contrast =
n

∑
i=1

n

∑
j=1

(i − j)2 × Pi,j (1)

where n is the gray levels of the input image (in this case 256), and Pi,j indicates the (i,j)th element of the
GLCM. As there are ten different GLCMs, the contrast measure would produce ten results, respectively.

Step (3) PanTex construction:

Built-up areas are regions of the image where the textural contrast is high in all directions [54].
Thus, all textural features are integrated (i.e., ten contrast measures) by the min or fuzzy operator to
obtain the PanTex:

PanTex (i, j) = min (Contrast (i, j)m) (2)

where m ranges from 1 to 10 indicating the ten contrast measures, and (i,j) means the position of the
image pixel.

3.2.2. MBI Calculation

The purpose of MBI is to relate the implicit properties of buildings (e.g., brightness, size,
and contrast) to morphological features (e.g., reconstruction, granulometry and directionality) [49].
In order to find the best results of MBI, results based on several sizes of structural element are discussed
latter. MBI is calculated and detailed procedures are described as follows:

Step (1) Top-hat reconstruction:

The difference between the original image and its morphological opening is defined as top-hat
and white top-hat (W_TH) transformation, which is introduced as below:

W_TH (d, s) = b − γre
b (d, s) (3)

where b is the maximum value among all multispectral bands and γre
b is the result of

opening-by-reconstruction from the brightness image. Besides, s and d represent the length and
direction of a linear structural element (SE), respectively.

Step (2) Calculation of directional W_TH:

The multidirectional information of W-TH is acquired by averaging four directions of the se:

W_TH (s) = mean
d

W_TH (s) (4)

Step (3) Granulometry extraction:

Granulometry indicates the size and scale of an object in imagery. Accordingly, the differential
morphological profile (DMP) is described as:

DMPW_TH (d, s) = W_TH (d, s + ∆s)− W_TH (d, s) (5)

where smin ≤ s ≤ smax and ∆s are the intervals of granulometry.
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Step (4) Construction of MBI:

The MBI is defined as the average of DMPW_TH :{
MBI = ∑d,s DMPW_TH(d,s)

D×S
S = (smax − smin) /∆s + 1

(6)

where D and S represent the amount of directionality and the scale of profiles, respectively.
The specific method was illustrated in [50] where different parameters were selected according to

the characteristics of the research area. In this experiment, four directions (0◦, 45◦, 90◦ and 135◦) are
chosen in Step 3 and this could get enough satisfactory results compared with more directions in the
extraction of Directional W_TH [49]. The size of SE is chosen according to the contextual and spatial
characteristics of the image. Besides, MBI is constructed based on the phenomenon that buildings have
larger values in DMPW_TH as they show higher local contrast in all four directions [50].

3.2.3. Object-Based Method to Extract Buildings

According to the principle of the object-based method, detailed feature rules in this study
are set after many trial-and-error tests with examinations of different combinations of parameters.
The research chooses appropriate parameters (listed in Table 2) for building extraction through the
PanTex and MBI methods after testing in a sample region shown latter, where scale, shape, and
compactness are fixed parameters for segmentation. The previously extracted MBI is able to represent
the main features of urban residential buildings; brightness is used to exclude low-reflective objects,
such as water areas; NDVI could filter vegetation and length/width ratio is used to eliminate roads
since roads have larger values of length/width ratio; rectangular fit is defined as the ratio between
the number of pixels inside the rectangle which has the same area as the considered object, and the
total number of pixels for the corresponding object [49]. Buildings have a large rectangular fit value.
Shape index is obtained from the ratio between the perimeter and the square root of the area since
buildings have smaller value of shape index than other objects [49]. After classification of buildings,
a pixel-based object resizing algorithm is applied to fill small holes inside the building polygons. Each
building’s area is computed through each of the segmentation object. These procedures are combined
together to extract buildings from original images through the commercial software eCognition 9.0.

Table 2. Parameters set for building extraction by the object-based method.

Procedure PanTex MBI

Multiresolution segmentation
scale: 25

shape: 0.6
compactness: 0.4

Classification

PanTex ≥ 1.45 MBI ≥ 6
brightness ≥ 136

NDVI < 0.1
1.5 ≤ length/width ratio ≤ 4.5

rectangular fit ≥ 0.6
shape index ≤ 2.6

Post-processing

reference: object
mode: growing

value: 0.5
box size in X and Y: 5

3.2.4. Residential Building Refinement

In order to refine urban residential buildings within the study area, the last procedure is to exclude
other objects (e.g., commercial buildings, overpasses, parking lots, and cemeteries). Therefore, POI is
necessary to discriminate residential buildings from other irrelevant objects.
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3.3. Height Retrieval

The height of buildings is computed by three main approaches: (i) multi-sensory images,
such as aerial imagery and LIDAR data [57]; (ii) photogrammetry through stereo images [58–60];
(iii) calculation of shadow length or making a volumetric shadow analysis with the help of the
geometrical relationships between the Sun and the satellite [61–64]. However, the cost and time
requirements for the first way are much higher than the other two. Although it is possible to obtain
the Digital Surface Model (DSM) of the research area by the second approach, the primary purpose
of DSM is to describe overall topography on a large scale [65]. However, the main purpose of this
research is to estimate individual building height, not the overall terrain, therefore, we chose the way
based on the length of shadow to calculate building height.

Furthermore, the shadow extraction methods and their results on final building height estimation
were not compared in previous literature. We further divide this method into two aspects:
Morphological Shadow Index (MSI) and a transformation based on CIIT [66], and both of them
are compared in this study. Though other approaches, such as HIS space transformation [67] and
threshold segmentation based on the fact that hue values of shadowed regions is much bigger than their
adjacent areas [68], were proposed, the final result shows large omission errors in shadow extraction
and a considerable amount of disperse shadow speckles rather than connected shadow areas.

3.3.1. Shadow Extraction

(1) MSI method

The approach for calculating MSI is similar to MBI, and the only difference is that we substitute
white top-hat (W_TH) transformation into black top-hat (B_TH) transformation [50]:

B_TH (d, s) = b − ϕre
b (d, s) (7)

where ϕre
b is the result of closing-by-reconstruction from the brightness image. It is necessary to be

aware that the high brightness of MSI indicates a higher probability of being shadows, which is exactly
contrary to MBI.

(2) CIIT method

Techniques of CIIT were computed according to [66] and only the third channel was used to
identify the boundaries of shadows. The third index is:

C3 = arctan(
B

max (R, G)
) (8)

where R, G and B refers to the red, green and blue band of the original images. Then,
a 3 × 3 texture-filter is applied to calculate the local variance of shadows around the neighborhood
pixels. Though the primary goal in reference [66] was to detect the shadow boundaries and restore
them, in this study, we applied the algorithm and acquired a continuous regions in which shadows
are distributed with high brightness values. The shadows extracted by MSI or CIIT could not be used
directly, and its post-processing steps are displayed in Figure 3.

It should be highlighted here that neither the MSI-based method nor CIIT consider the effect of
vegetation and waters on shadow regions. In consequence, NDVI and NDWI should be added to filter
the final results. Besides, image noises and many roads are particularly easy to classify as shadows.
Accordingly, component analysis which describes the area and the length/width ratio within each
component region is conducted to exclude small speckles and roads from real shadows. Both of these
methods choose a threshold for final shadow extraction through the maximum between-class variance
(MBCV) criterion, which believes that the threshold is chosen in order to maximize the separability
between two modes that the histogram of an image should have [69]. This process is conducted in
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MATLAB 2014a. In addition, the shadows of non-residential buildings need to be removed with the
assistance of POI.Sensors 2016, 16, 1755 9 of 26 
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3.3.2. Shadow Length Calculation

According to the geometrical relationships between the sun and the satellite, the length of
shadow could be decided through: (i) the solar altitude and azimuth angle, which are obtained from
metadata of the satellite and they determine the angular relationship between buildings and their
shadows; (ii) a series of parallel lines that can be plotted in accordance with the angle; (iii) the length
of intersected part between original parallel lines and the shadow regions would be accepted as the
final shadow length.

3.3.3. Building Height Estimation

Considering that ZY-3 datasets are ortho-images, thus the building height can be computed
as follows:

H = L × tanβ (9)

where β is the solar altitude (in this study is 68.68◦), L is the length of a shadow and H is the
corresponding building height.

3.4. Population Estimation

Since dasymetric mapping is an effective and flexible method for estimating population,
which minimizes the error within each dasymetric regions [18], this study divides the research area
into three categories: high-density (15,448.06 people/km2), medium-density (7942.72 people/km2) and
low-density (3060.53 people/km2), according to the population density calculated from original census
data when the different living space per person and height per floor are considered. Figures 4 and 5
show the distribution of population density and three dasymetric zones, respectively.
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A mathematical relationship is built to estimate the fine-scale distribution of urban population.
As a consequence, the population is estimated by:

Popi =
FSt

LAt
× BHt

AHt
+ C + εt (10)

where Popi indicates the population in building object i, FSt and BHt are the floor space and building
height in zone t, respectively, and they could be calculated from each building object. LAt means
living area per person and AHt is the height per floor in zone t. In order to meet the demands of
the volume-preserving and pycnophylactic property coined by Tobler [7], C is the constant in the
population model which is used to guarantee that the sum of population is equal to the statistical data
in research area. εt is the error correction term which is computed from least-square method based on
field surveys.

In order to get LAt and AHt, we not only look for statistical books as a reference, but did field
surveys by selecting samples from correspondent zones to get more accurate results. LSt could be
computed by following formula:

LAt =
n

∑
i=1

Ai/
n

∑
i=1

Pi (11)

where A is the living area, P is the correspondent population and n is the number of samples. Likewise,
AHt can also be gotten by following equation:

AHt =
n

∑
i=1

(Hi − RHi) /
n

∑
i=1

Fi (12)

where H, RH and F indicate the total building height, correspondent roof height, and the number of
building floors, respectively.

It is necessary to mention that, in this experiment, population value is displayed on each building
objects not on the raster cells. Since population is estimated by the 3D information from each
residential building, other irrelevant cells would be redistributed zero. However, the analysis of
spatial distribution of population in research area would not be affected.

3.5. Accuracy Analysis

Since the 3D feature of buildings is reconstructed, three parts of accuracy analysis have to be
included: building detection, height retrieval and population estimation. The accuracy results of the
first two segments are used to find the optimal method in extraction of 3D information of buildings,
and the population estimation result is used to validate the feasibility and reliability of our fine-scale
population estimations using the proposed approach.

4. Comparison and Experimental Results

4.1. Building Extraction Results

Two approaches for building extraction based on morphological operations are compared in this
study. In order to clearly display the effectiveness from different parameters in the building detection
algorithm, one sample region is selected inside the research area (375 × 408 pixels) to show the results.
Figure 6 shows the sample region in which quite a few research institutes, apartments and areas of
vegetation are included.
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Figure 6. Location of the sample area.

Figure 7 gives the PanTex result using different moving window sizes. As can be seen from
Figure 7, the large window size (14) displays ambiguous information that causes problems in
discriminating buildings from other objects, whereas the small window size (4) shows too many
unnecessary speckles with an extremely slow speed. The medium window sizes (7 and 9) have
comparative performance, whereas window size 7 is the more appropriate choice when the average
physical size of building object (18 m) in sample area, integrality and separability of dwelling structure
are taken into account. Figure 8 presents the PanTex results extracted from a moving window size of 7
and the final map of building extraction by object-based method.

Sensors 2016, 16, 1755 12 of 26 

 

 
Figure 6. Location of the sample area. 

Figure 7 gives the PanTex result using different moving window sizes. As can be seen from 
Figure 7, the large window size (14) displays ambiguous information that causes problems in 
discriminating buildings from other objects, whereas the small window size (4) shows too many 
unnecessary speckles with an extremely slow speed. The medium window sizes (7 and 9) have 
comparative performance, whereas window size 7 is the more appropriate choice when the average 
physical size of building object (18 m) in sample area, integrality and separability of dwelling 
structure are taken into account. Figure 8 presents the PanTex results extracted from a moving 
window size of 7 and the final map of building extraction by object-based method. 

 
(a) (b)

 
(c) (d)

Figure 7. PanTex results derived from different moving window sizes. (a–d) indicate the results from 
window sizes of 4, 7, 9 and 14, respectively (a higher value means higher probability of buildings). Figure 7. PanTex results derived from different moving window sizes. (a–d) indicate the results from

window sizes of 4, 7, 9 and 14, respectively (a higher value means higher probability of buildings).



Sensors 2016, 16, 1755 13 of 27Sensors 2016, 16, 1755 13 of 26 

 

(a) (b)

Figure 8. Building extraction results through PanTex. (a) PanTex in research area (window size = 7); 
(b) building extraction using object-based method (red regions symbolize buildings). 

Figure 9 shows the MBI results derived from distinct sizes of structural elements (SEs) in the same 
sample region. In this study, five intervals of the granulometry (△ △ are compared and (ݏ  = i.e., s) 7 =	ݏ
[2,9,16,23,30,37,44,51,58,65]) is selected as the best choice. To illustrate, △  produces many stripes 30 =	ݏ
across the entire region, especially on the corners of the image, which is the trace of the SEs and this 
causes high-intensity area across a large area leading to poor detection of buildings. △  contains 2 =	ݏ
large omission errors since a multitude of buildings displayed low intensity and they are more likely 
to be neglected in the following procedure. The remaining three (△  and 15) perform relatively 7 ,5 =	ݏ
well, showing fewer stripes on the corners and a marked contrast between buildings and other 
matters. Likewise, both physical size of building object, integrality and separability are the last 
standard to select, so △  is the most appropriate choice. Figure 10 displays the MBI results of the 7 =	ݏ
research area and building extraction results through the object-based method. 

Tables 3 and 4 summarize the accuracy of building detection based on MBI and PanTex 
extraction through the object-based method, respectively. The validation points (574), which account 
for 70% of the total building objects, are randomly produced in the research area. According to these 
tables, the MBI method performs better in building extraction in urban landscapes with a higher 
overall accuracy and kappa coefficient (0.85 and 0.66) than the PanTex method (0.73 and 0.34). It was 
therefore adopted to refine the residential buildings in subsequent steps. Such a conclusion is in 
accordance with the literature [49]. Most of commission errors come from the roads, overpasses, 
shadows, parking lots, gazebos and open squares, which consist of similar materials to buildings 
and thus are difficult to clearly differentiate. The main omission error results from low buildings 
with small areas, and buildings surrounded by dense vegetation, which are more likely to be 
neglected by the algorithm. 

Figure 8. Building extraction results through PanTex. (a) PanTex in research area (window size = 7);
(b) building extraction using object-based method (red regions symbolize buildings).

Figure 9 shows the MBI results derived from distinct sizes of structural elements (SEs) in the
same sample region. In this study, five intervals of the granulometry (∆s) are compared and ∆s = 7
(i.e., s = [2, 9, 16, 23, 30, 37, 44, 51, 58, 65]) is selected as the best choice. To illustrate, ∆s = 30 produces
many stripes across the entire region, especially on the corners of the image, which is the trace of the
SEs and this causes high-intensity area across a large area leading to poor detection of buildings. ∆s = 2
contains large omission errors since a multitude of buildings displayed low intensity and they are
more likely to be neglected in the following procedure. The remaining three (∆s = 5, 7 and 15) perform
relatively well, showing fewer stripes on the corners and a marked contrast between buildings and
other matters. Likewise, both physical size of building object, integrality and separability are the last
standard to select, so ∆s = 7 is the most appropriate choice. Figure 10 displays the MBI results of the
research area and building extraction results through the object-based method.

Tables 3 and 4 summarize the accuracy of building detection based on MBI and PanTex extraction
through the object-based method, respectively. The validation points (574), which account for 70%
of the total building objects, are randomly produced in the research area. According to these tables,
the MBI method performs better in building extraction in urban landscapes with a higher overall
accuracy and kappa coefficient (0.85 and 0.66) than the PanTex method (0.73 and 0.34). It was therefore
adopted to refine the residential buildings in subsequent steps. Such a conclusion is in accordance
with the literature [49]. Most of commission errors come from the roads, overpasses, shadows,
parking lots, gazebos and open squares, which consist of similar materials to buildings and thus are
difficult to clearly differentiate. The main omission error results from low buildings with small areas,
and buildings surrounded by dense vegetation, which are more likely to be neglected by the algorithm.
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Figure 10. Building extraction results through MBI. (a) MBI of research area (∆s = 7); (b) building
extraction by object-based method where red regions symbolize buildings.

Table 3. Accuracy of MBI methodology.

User Class/Sample Buildings Non-Buildings Sum

Confusion Matrix

Buildings 158 57 215
Non-buildings 29 330 359

Sum 187 387

Accuracy

Producer 0.85 0.85
User 0.73 0.92

Kappa per class 0.75 0.86

Totals

Overall Accuracy 0.85
Kappa 0.66

Table 4. Accuracy of PanTex methodology.

User Class/Sample Buildings Non-Buildings Sum

Confusion Matrix

Buildings 86 55 141
Non-buildings 100 333 433

Sum 186 388

Accuracy

Producer 0.46 0.86
User 0.61 0.77

Kappa per class 0.29 0.43

Totals

Overall accuracy 0.73
Kappa 0.34
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Although buildings are almost all correctly detected, other irrelevant objects must be removed
to improve the final accuracy of population spatialization. POI is adopted to precisely refine the
residential buildings.

4.2. Height Retrieval Results

As stated before, two approaches are used to extract shadows in this study (i.e., MSI and CIIT).
In order to display the change in an image during shadow extraction process, Figures 11 and 12
demonstrate the procedures of shadow extraction and refinement based on MSI and CIIT in the
sample area.

It can be observed from the above results that the MSI method performs better than CIIT in that
the roads cannot be removed from the final results through the CIIT method and the shape of shadows
extracted by the MSI method are more similar to true shadows (see Figure 6).

Then the length of shadows is computed and building height is estimated. Specific procedures are
described in Section 3. Figure 13 shows the shadows derived from the MSI method and CIIT method
in the research area. It is reaffirmed that the MSI method generates a better result in shadow extraction
than the CIIT method, especially in the western and southern parts of the research area, when the
shape and purity of real shadows are taken into account.
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Figure 11. Shadow extraction using MSI based method in sample area. (a) MSI; (b) MSI filtered by
NDVI and NDWI; (c) MSI after component analysis; (d) final shadow extraction results. (Higher value
of MSI means higher probability of shadow in (a–c), the white color in (d) is the final shadow.)
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higher probability of shadow in (a–c), the white color in (d) is the final shadow.)
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Figure 14 displays the building height obtained with the MSI and CIIT approaches in the research
area by calculating the length of shadow based on the geometrical relationship between the Sun and
the satellite.
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However, the location of shadow and residential buildings may not correspond well to each
other given the complicated structure and distribution of buildings in urban landscapes. As a result,
the height extracted from shadow length is utilized to interpolate the surface so as to compute the
precise building height as much as possible. The results in this step are produced by the topo to raster
tools in ArcMap 10.2. Likewise, the research randomly chooses 574 points produced from buildings to
validate the height results using DSM as reference data. Table 5 gives the absolute error of using the
MSI and CIIT methods. As can be seen from the Table 5, MSI performs overall better with less error
than the CIIT method. Specifically, there are 25 points whose relative errors are bigger than 12.5 m
in the CIIT method, whereas there are only seven such points in MSI. As for errors less than 2.5 m,
40.24% of the points meet the requirement in MSI compared with 36.24% in CIIT. Besides, the RMSE is
1.43 and 6.38 when using the MSI method and CIIT method, respectively.

Table 5. Error distribution of height retrieval from MSI and CIIT.

Absolute Error (m) CIIT Percentage (%) MSI Percentage (%)

≥12.5 25 4.36 7 1.22
[10.0, 12.5) 58 10.10 38 6.62
[7.5, 10.0) 66 11.50 52 9.06
[5.0, 7.5) 93 16.20 101 17.60
[2.5, 5.0) 124 21.60 145 25.26
[0, 2.5) 208 36.24 231 40.24
Total 574 100 574 100
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4.3. Fine-Scale Population Spatialization Results

Since the MBI method performs better than PanTex in detecting building footprints and MSI
outperforms the CIIT method in shadow detection and height retrieval, MBI and MSI are adopted to
reconstruct a 3D model of residential buildings in this experiment. According to the model proposed in
Section 3.4, the LA and AH are acquired from the different zones. The total population of Chaoyang in
2014 was 2,045,535, so we can calculate the constant C to fit the pycnophylactic properties. According
to the model, we can obtain the population distribution in the research area. Final results are shown
in Figure 15.
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Figure 15. Population spatialization results (superimposed by the true color synthesis of ZY-3 imagery).

The image shows that people are gathered into blocks close to the transportation networks,
which accords with the characteristics of urban citizen distribution. Besides, the southern part of
research area displays an overall higher population density value than the northern part, which is
attributed to the fact that many public parks (e.g., Olympic Forest Park) and non-residential buildings
(e.g., National Swimming Center and Beijing National Indoor Stadium) are located in the north.
Evidently, people are more willing to stay in southern part as it is closer to the central downtown
area because of the biased social and economic development, which leads to superior economic
development, greater job opportunities, and high-quality public services. For instance, there were
647 hospitals with 215,000 medical workers in total in 2013, and 438 hospitals with 171,000 relevant
workers were located in the central downtown area, according to the survey of National Health and
Family Planning Commission of the People’s Republic of China.

4.4. Accuracy Analysis

Table 6 summarizes the population results for all 42 administrative units in the research area
(including the relative error, RE).
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Table 6. Accuracy analysis of fine-scale population estimation.

No. Region Name Population
(Statistics)

Dwelling
Objects

Population
(Model) RE (%)

1 Anzhen Sub-district 48,467 711 46,031.227 −5.03
2 Olympic Village Sub-district 57,509 1771 55,101.244 −4.19
3 Changying Sub-district 24,770 1240 32,120.220 +29.67
4 Chaowai Sub-district 43,162 496 39,569.780 −8.32
5 Chaoyangbalizhuang Sub-district 85,897 1049 61,229.257 −28.72
6 Cuigezhuang Sub-district 24,448 4691 30,771.512 +25.87
7 Datun Sub-district 71,615 2345 77,291.336 +7.93
8 Dongba Village 37,907 4732 38,612.750 +1.86
9 Dongfeng Sub-district 30,926 1187 37,596.391 +21.57
10 Dougezhuang Village 12,719 2178 18,841.690 +48.14
11 Fatou Sub-district 31,964 735 29,591.992 −7.42
12 Gaobeidian District 48,234 2969 71,468.861 +48.17
13 Guanzhuang Sub-district 57,269 2853 73,120.667 +27.68
14 Hepingjie Sub-district 98,710 881 59,449.281 −39.77
15 Heizhuanghu Village 49,681 3806 51,199.561 +3.06
16 Hujialou Sub-district 64,264 416 49,410.197 −23.11
17 Jianwai Sub-district 42,302 1265 54,101.568 +27.89
18 Jiangtai Sub-district 26,119 2200 28,267.330 +8.23
19 Jianzhan Sub-district 59,144 6891 60,010.514 +1.47
20 Jingsong Sub-district 73,200 1003 59,991.594 −18.04
21 Jiuxianqiao Sub-district 69,146 1297 70,233.239 +1.57
22 Laiguangying Sub-district 47,269 3889 51,471.291 +8.89
23 Liulitun Sub-district 62,168 891 48,996.313 −21.19
24 Maizidian Sub-district 21,674 954 24,664.127 +13.80
25 Nanmofang Sub-district 59,499 2014 70,155.476 +17.91
26 Panjiayuan Sub-district 81,055 762 59,981.261 −26.00
27 Pingfang Sub-district 33,492 2673 46,781.497 +39.08
28 Sanjianfang Sub-district 71,011 1443 78,501.201 +10.55
29 Sanlitun Sub-district 38,285 728 36,799.497 −3.88
30 Shibalidian Sub-district 38,950 6658 41,719.462 +7.11
31 Beijing Airport Sub-district 24,735 832 25,184.881 +1.82
32 Shuangjing Sub-district 72,360 1063 66,849.199 −7.62
33 Sunhe Sub-district 21,979 3760 26,109.591 +18.79
34 Taiyanggong Sub-district 45,381 1147 48,487.497 +6.85
35 Tuanjiehu Sub-district 36,869 264 33,996.495 −7.79
36 Wangsiying Village 19,517 2394 27,106.487 +38.89
37 Wangjing Sub-district 82,815 2321 82,599.481 −0.26
38 Xiangheyuan Sub-district 34,636 350 32,841.498 −5.18
39 Xiaoguan Sub-district 51,401 663 45,998.869 −10.51
40 Xiaohongmen Sub-district 29,112 2100 40,009.487 +37.43
41 Yayuncun Sub-district 48,858 858 53,299.819 +9.09
42 Zuojiazhuang Sub-district 67,016 799 59,996.794 −10.47

Total 2,045,535 81,279 2,045,560.434 -

Where ‘+’ and ‘−’ represent over-estimation and under-estimation, respectively.

It can be seen from Table 6 that regions with a larger number of dwelling objects (No. 6, 8, 15, 19,
22 and 30) tend to have more population and usually lead to over-estimation errors. However, No. 33,
which is located in the high-density zone with a relatively smaller value of LA and AH, is an exception
and the model performed well in this region, which demonstrates that dasymetric modeling could
improve the accuracy in this type of experiment.
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Figure 16 gives the relative error distribution in the research area. It can be seen that 20 regions
(47.62%) yield very satisfactory results with an absolute value of RE of less than 10%. Besides,
27 regions (64.29%) produce reasonably good outcomes, with an absolute RE ranging from 10% to
20%. Furthermore, 17 regions (40.48%) show underestimation errors, with REs of less than 30%. This is
attributed to the fact some shadows are shorter than the pixel size and a few of them may cast on
buildings, which may not be detected by the algorithm. Besides, it cannot be ignored that there are two
regions (No. 10 and 12) whose REs exceed 40%, and they are both over-estimation errors. The possible
reason for these poorly performing regions is that they are both located in the boundary between
high-density and medium-density zones, which has a higher degree of heterogeneity than others and
leads to an inaccurate estimation of LA and AH. Although there exists inferior estimation in a few
regions, the overall result, in general, is acceptable: 36 regions (85.72%) whose REs are less than 30%
with a mean relative error of 16.46%.
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From a technical point of view, the shape of building objects may not be identical to real buildings,
which produces errors in calculating FS. As for estimating BH, it is closely related with the conditions
of shadows as we will explain in the next section. Besides, high-density areas tend to have lower values
of LA and AH and thus are more likely to result in over-estimation errors when high building densities
are considered. Moreover, LA and AH in each zone are estimated by samples, so the possibility of
sampling errors cannot be ignored either. In addition, FS and BH are extracted from MBI and MSI.
Such errors could be propagated to the final population estimation, since not each building could be
accurately detected by the threshold segmentation of MBI and height could not be estimated without
any errors through MSI and shadow length calculation either.

Figure 17 gives the spatial distribution of RE throughout the research area. According to Table 6,
25 over-estimated regions are distributed in the eastern part, which can be explained by the fact that
the building density in the east is relatively higher than in the west in the research area, which leads
to a high density of shadows and an over-estimated number of buildings and more positive errors
in height retrieval and building detection. As for the western parts, there are more public parks
that contain larger areas of vegetation and more bare land than in the eastern areas, which gives
rise to a larger omission error in the extraction of building footprints. Obviously, there is one badly
under-estimated region in the northwest part. It can be explained by the reason that this region located
in the intersection of different population density maps as stated before and these regions may have
errors in estimation of LA and AH because of their internal heterogeneity. Likewise, three of four bad
over-estimation errors are also in this situation. Another one (No. 40 in Table 6) is close to the central
downtown of Beijing (i.e., Dongcheng District), whose building density is extremely high, which leads
to positive errors like we stated before.
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Total Absolute Error (TAE) is more robust for skewed distribution of population than Root Mean
Square Error (RMSE) [70], and besides, RTAE (RTAE = TAE/Ptotal,) are adopted to further analyze the
model accuracy when a better reading is taken into consideration. RTAE is calculated as follows:

RTAE =
∑
∣∣Pi − Pj

∣∣
∑ Pj

(13)

where Pi and Pj indicate the model value and statistical value of population in each subunit, respectively.
The RTAE could be computed based on Table 6, and the result is 0.158. According to the definition
of RTAE, a value of 0 means a perfect estimation, whereas a RTAE of 2 means a completely wrong
estimation, so this value shows really reliable performance.

5. Discussion

In this paper, we proposed the idea that fine-scale population distribution could be estimated by
3D reconstruction of urban residential buildings through building detection and height retrieval with
HR images. Specifically, we compared the methods of building detection through two morphological
operations (i.e., MBI and PanTex) in large heterogeneous urban regions, and the final results
demonstrate that MBI outperforms the PanTex method. Such comparisons are essential in choosing
the most appropriate morphological index when researchers decide to extract building footprints.
Besides, shadow is a unique characteristic that was easily ignored before, but it has been of concern
to most researchers in the current state with the development of HR images. In this experiment, MSI
and CIIT were compared in shadow extraction and building height retrieval, which has not been done
before, and this provides an innovative way to extract 3D information without heavy field surveys.
Moreover, this research combined building detection and height retrieval to reconstruct 3D information
of residential buildings to estimate fine-scale population, which has not been researched so far, and it
produces reasonable results. In the population estimation process, dasymetric mapping models are
successfully incorporated by dividing the research area into different density regions, and such step
greatly improves the accuracy of parameters (LA and AH) estimation and population distribution.
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However, the research cannot ignore the errors that are produced during the entire process.
There mainly refer to three aspects, summarized as follows:

(1) Building extraction errors

It is difficult to acquire the dimensions of densely spaced buildings in a heterogeneous area when
the fixed parameters of algorithms are taken into account. In addition, roads, bare soil, and open areas
are hard to distinguish from buildings as they have similar textural and spectral features. It may be
more accurate to segment different regions with different combinations of parameters.

(2) Shadow detection errors

Several errors in shadow extraction may occur: (i) there is no shadow around some buildings
due to the fact that the Sun’s angle was near the nadir when the image was acquired; (ii) dense
buildings lead to dense shadows, which are gathered as large dark patches and bring about errors
in calculation of shadow length; (iii) shadows could not be accurately identified everywhere, so the
number of buildings and shadows may not be consistent in the same district; (iv) it is hard to accurately
distinguish between the shadows of vegetation, buildings and other tall objects; (v) shadows of
buildings with regular shapes (e.g., cuboid and parallelepiped) are easily identifiable, but irregular
shadows cast from various building shapes are hard to capture accurately; (vi) the accuracy of shadow
detection is influenced by the local surface slope in the research area [63].

It is noted that the largest positive height error occurs when the buildings are densely distributed
and thus shadows are merged together, as previously discussed, which results in longer shadow
lengths. Likewise, low buildings with small area are easily neglected and generate negative errors.
As a result, it is easier to identify shadows separated from each other with complete and regular shape.
However, the shadow of ZY-3 is relatively shorter when the images were acquired and many possible
errors could be avoided, such as gather problems and shadows casting on buildings.

(3) Population estimation errors

The first type of estimation error may relate to housing occupancy rate. Specifically, newly
developed regions, such as the northeastern part of the research area, with a fast growth rate may
contain many multi-floored apartments, and their occupancy rate is relatively low. On the other
hand, old citizens might have small houses with large yards resulting in high occupancy rates [45].
Furthermore, census data are de jure population reports which survey all usual residents in the given
region, regardless of whether they are physically present there at the certain date [6]. In addition, some
citizens living underground cannot be detected in such a way.

6. Conclusions

We believe that the principal outcome of our work lies with the following three aspects: (i) high
resolution images was utilized to reconstruct 3D model of residential buildings through morphological
operations; (ii) different methods of shadow extraction based on ZY-3 images and their final impacts
on building height retrieval were compared; (iii) fine-scale population estimation was achieved by 3D
reconstruction of urban residential buildings, and a deterministic model in a relatively large scope
through a more feasible approach was proposed. This method does not need the classification of
land use types for the model input and final result shows great potential in determining urban citizen
distributions at finer resolutions in the future.

Though the errors are propagated from one step to the next, the overall accuracy within a relatively
large and complicated urban area is promising, with a mean relative error of 16.46% and RTAE of
0.158. Frankly speaking, not much more can be expected at this early stage since morphological
indexes derived from the remote sensing techniques are probability distributions of buildings and
shadows, but it is a significant start to exploring the potential of using the spectral, spatial and textural
information of HR images. Besides, inherent uncertainties of ancillary variables also exist, as stated in
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previous research [46]. However, it still demonstrates that fine-scale population estimation could be
connected well with reconstructing 3D features of residential buildings.

Considering that POI was utilized as ancillary data for the model input, further research would
focus on finding a more accurate and fast method for residential building refinement by combining the
detailed spectral or textural characteristics of the images. Furthermore, we hope to classify residential
buildings into several categories (e.g., single-family dwelling, multi-family dwelling and other types)
based on the properties of citizens (e.g., income, age and education) and environmental factors
(e.g., green area per capital and transportation accessibility). In addition, the correlation of population
density with other factors, such as building density, accessibility of transportation networks, GDP and
supporting capability of environmental resources, would be further analyzed in urban landscapes
based on empirical sampling, regression analysis and other relevant approaches. Finally, we also
intend to study and analyze the dynamics of population migration in an urban environment with a
cellular automata model which is useful to simulate the mobility of urban citizens [71].
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