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Abstract: To obtain adequate traffic information, the density of traffic sensors should be sufficiently
high to cover the entire transportation network. However, deploying sensors densely over the
entire network may not be realistic for practical applications due to the budgetary constraints of
traffic management agencies. This paper describes several possible spatial distributions of traffic
information credibility and proposes corresponding different sensor information credibility functions
to describe these spatial distribution properties. A maximum benefit model and its simplified model
are proposed to solve the traffic sensor location problem. The relationships between the benefit and
the number of sensors are formulated with different sensor information credibility functions. Next,
expanding models and algorithms in analytic results are performed. For each case, the maximum
benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of
the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify
the validity and availability of the proposed models for solving a network sensor location problem.
The results show that the optimal number of sensors of segments with different model parameters in
an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor
spacing is independent of end restrictions but dependent on the values of model parameters that
represent the physical conditions of sensors and roads.

Keywords: traffic information engineering; traffic flow information; sensor location problem;
optimization model; information spatially measure

1. Introduction

An important mission of intelligent transportation systems is to build and extend traffic sensor
networks to improve the transportation system’s observability, productivity, and efficiency [1].
Some studies have noted [2–4] that, with the advent of intelligent transportation systems, sensors,
especially wireless sensors [5,6], are becoming increasingly critical elements of the modern cities
and transportation systems. This growing need for real-time traffic information has resulted in an
interesting class of problems collectively known as sensor location problems (SLP) [2]. According
to [7], another important function of intelligent transportation systems is the collection of real-time
traffic information, which is performed by traffic sensors, including vehicle counting sensors, traffic
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speed sensors, and other types of traffic sensors. In recent years, sensor technologies (e.g., loop
detectors, surveillance cameras, travel time sensors, microwave sensors, and magnetic sensors) have
been widely used on highway networks and urban arterial roads to estimate real-time traffic states and
acquire real-time traffic information, which is valuable for both private agencies and public sectors.
Real-time traffic information enables road users to choose the best routes and enables traffic managers
to promptly respond to congestion patterns and efficiently select control strategies [8]. The effectiveness
of intelligent transportation systems depends not only on the accuracy of the traffic information but
also on the coverage over the road network [9]. To obtain adequate traffic information, the density
of traffic sensors should be sufficiently high to adequately cover the entire transportation network.
Properly locating traffic sensors is critical to the accurate estimation of real-time traffic status over
transportation networks. If sensors are densely deployed over a transportation network and all of them
collect real-time traffic data around their locations, the preferable estimation for the entire network can
be obtained by each individual sensor using feasible algorithms. Moreover, abnormal traffic states
(e.g., traffic accident detection and traffic congestion detection) can be detected [8].

The assumption of a network-wide traffic sensor system may not be realistic for practical
applications due to the budgetary constraints of traffic management agencies [10]. Hu et al. [10]
suggested that deploying a large number of sensors in an urban network of moderate size can involve
substantial costs. Because the quantity and quality of the collected traffic flow information significantly
affects the estimation accuracy and reliability of traffic flow on the entire network, there is a trade-off
between the prediction accuracy of network traffic flow estimates and the cost associated with the
extent to which a sensor system is deployed. Considering the rapid development of intelligent
transportation systems in modern cities, it is common to see conflicts arising between the density
requirement of fixed traffic sensors and the budget limit [7]. These conditions motivate the need to
address the optimization problems involving locations and numbers of sensors given a limited budget.

Gentili and Mirchandani [11] addressed the models, challenges, and research opportunities of
locating sensors on traffic networks and proposed that existing models differ according to different
criteria: (1) sensor types to be located on the network; (2) availability of a priori information; and
(3) flows of interest (e.g., O-D flows, route flows, and link flows). They reviewed the existing
contributions and provided a unifying picture of these models by categorizing them into two main
problems: the sensor location flow-observability problem and the sensor location flow-estimation
problem. In past years, many researchers have addressed the SLP based on these two main
problems, and sensors were optimally located for a central purpose of origin-destination (O-D) matrix
estimation [1,2,8–10,12–22] or other flow issues [23–30]. A majority of researchers employ graph
theory to solve the problem of O-D estimation. They transform this problem into a problem in graph
theory and apply results from this field to obtain a solution [1,16,21,31,32]. The road network is
modeled as a directed graph, with vertices representing intersections and directed edges between
the vertices representing roads. The traffic flow over roads is described by a network flow function
on the edges of the graph. Therefore, the goal of the problem is to find the smallest subset of edges
such that knowledge of the flow along these edges uniquely determines the flow everywhere on the
graph [16]. Yang et al. [33] proposed two critical problems: (1) how to select the optimal locations
of a given number of counting stations to separate as many O-D pairs as possible; and (2) how to
determine the minimum number of counting stations and their locations required for separating all
O-D pairs. The problems of interest were formulated as integer linear-programming models, and a
branch-and-bound technique was developed to find an optimal counting location solution. Ng [2]
presented a reformulation of this link observability problem requiring only node enumeration and
proved a conjecture from [10] by deriving an explicit relationship between the number of nodes and
links in a transportation network and the minimum number of sensors to install to be able to infer all
link flows. Some traffic speed-based methods were proposed as well to address the SLP, and they were
mostly applied to estimate travel time [34–37]. Kima et al. [34] presented an approach that optimizes
the location of sensors along a freeway to support more accurate estimations of travel times than
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those obtained from conventionally deployed fixed point sensors. In [37], a bilevel programming
model was proposed for a network with travel time information. The lower-level problem was a
probit-based traffic assignment model, whereas the upper-level problem involved determining the
speed detector density that minimizes the measured travel time error variance and the social cost of
the speed detectors.

In summary, those existing methods and models can solve the problems for some special
applications (O-D estimate, travel time estimate), but they cannot address the SLP using all of the
traffic information. As noted in [10], existing methods have been typically addressed as a sub-problem
of broader problems related to O-D demand estimation, time-dependent link travel time estimation, or
operational consistency-seeking procedures. Moreover, the following conditions should be considered:
(1) Since there are many assumptions in graph theory, the results provide only the smallest subset of
edges. Such methods typically assume that the availability of the turning proportions at a node or link
use a proportion matrix that captures the proportion of O-D trips of a given path that traverse a specific
link [10,21,22]. Moreover, the results will always involve identifying which edges should deploy
sensors, but the detailed location of each sensor (the middle, the front end, or other parts of the edge) is
not clear. (2) In the network, the weightiness at different locations might be different; hence, the weights
of different locations should be considered in the SLP models. (3) As these sensor technologies continue
to become more reliable and more cost effective, the demand for travel information is also growing.
In some cases, more than one sensor (if there are several sensors in a section of an edge, they will be
considered as one sensor here) will be located in a segment. (4) The information derived from fixed
sensors in a traffic network will present different spatial distributions under different conditions (e.g.,
different types of road, different locations, and different types of sensors).

Without any mathematical model, Fujito et al. [38] conducted an empirical study to address the
impact of sensor spacing along freeway corridors on the computation of a performance measure called
the travel time index. Their results indicated that when sensors are deleted relative to the baseline
sensor spacing condition, the congestion measure statistic will be overestimated under some spacing
conditions and underestimated under others. Their empirical study illustrates the effect of sensor
spacing on the calculation of corridor congestion measures, such as the travel time index. The paper
also noted that if the objective is to estimate a metric that presents a comprehensive picture for the
entire corridor, a denser sensor spacing is preferable. Selection of specific placement of the sensors
is a key element in obtaining valid measures of corridor congestion. However, the optimal sensor
spacing still had not been obtained in [38], and as they recommended that more work on the theoretical
underpinnings of this study must be performed.

The aim of this paper is to address the sensor location problems with different spatial distributions
of traffic information and to propose a theoretical method for optimizing the numbers and locations
of traffic sensors for traffic networks. The remainder of the paper is organized as follows. Section 2
introduces the definition of traffic information credibility, presents three typical options of sensor
information credibility functions (SICFs) and introduces the maximum benefit model and its simplified
model. Section 3 focuses on the expanding models and algorithms based on maximum benefit model
with different SICFs. Next, a numerical example is proposed to verify the solving methods for a
network SLP in Section 4. Finally, Section 5 provides conclusions and application prospects.

2. Typical Sensor Information Credibility Functions and Optimization Models

2.1. Spatial Heterogeneity of Traffic Information Credibility

Existing methods of traffic information acquisition may depend on the distribution of sensor
networks along roads. Those sensors, such as loop, magnetic, video, and microwave sensors, are
always placed at fixed locations or in some micro-regions. The coverage area of such a single sensor is
always a single- or multi-lane section.
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For some traffic information acquisition systems, the unit of information acquisition area is almost
a section of one-way road, and the sensors used in those systems can obtain information for all of the
lanes. In this paper, the unit of information acquisition area is set as a section of one-way road, and the
sensors in one section will be called sectional sensors (denoted simply as “sensor” in the following
text). Given the topologies of road networks, the roads are regarded as directed line segments, and the
intersections that connect those roads are regarded as vertices (network nodes).

As shown in [39], the essence of fixed-sensor-based information acquisition is to obtain the traffic
information at some key points along the road, which are limited points for the entire road network.
The traffic information for other places where there are no sensors cannot be acquired directly but can
be estimated by the information from these limited points. For the phenomenon of fixed location or
micro-region distributions of traffic information derived from fixed sensors, the traffic information
credibility in the entire road network is heterogeneous. To describe the different spatial distributions of
traffic information credibility, some SICFs have been proposed based on reasonable assumptions. (1) In
a road with limited length, the traffic conditions at an upstream location and a downstream location
have some causality. In other words, the traffic conditions at different locations are not independent;
(2) In a road, the traffic condition of each location (a road section or a lane section) can be estimated
by other locations with a certain degree of accuracy; (3) Closer locations will have higher degrees of
credibility to the interest point.

Drezner and Wesolowsky [40] had shown that the probability that an event is detected by a
detector is a decreasing function of the distance. In the paper, they assumed a general probability
function of distance π(d), which is a monotonically decreasing function of the distance. They also
studied two probability functions in particular, namely, a signal decay function and an exponential
decay function. Based on those reasonable assumptions above, Li et al. [30,41] described the spatial
distributions of traffic information credibility. Here, similar to π(d) in [40], the SICF is proposed to
represent the spatial distribution of traffic information credibility from fixed sensors. By denoting
origin o as the coordinate of a sensor, the SICF can be formulated as:

SICF = f (x) x ∈ (−∞,+∞), (1)

where x is the distance away from a sensor by directivity. Because of the directivity of distance measure
along a road, the value of x is positive if the direction away from the sensor is the right side of the
one-way road; otherwise, the x is negative. ∀x, 0 ≤ f (x) ≤ 1 and f (0) = 1, f (∞) = 0. In practice, the
definitional domain of f (x) will be the length of a study one-way road or corridor.

2.2. Typical Options of SICF

SICF can represent different spatial distributions of traffic information credibility. Different
micro-regions, such as ramp entrances, ramp exits, merging areas, or diversion areas, will have
different spatial characteristics of traffic flow. One can conclude that the spatial distributions of traffic
information credibility will be multiform. In fact, for different conditions of roads and sensors, there
are various f (x) that can calibrate the SICF. As discussed in [41], three typical SICFs (exponential
attenuation SICF (EAF), linear attenuation SICF (LAF), and step attenuation SICF (SAF)) are shown
in Figure 1. Based on field data, Li et al. [30,41] have determined that the SICF can be calibrated
using field data. Studying these three typical SICFs will be helpful to reveal more complex spatial
distributions of traffic information credibility for actual road networks.

As shown in Figure 1a, the EAF represents a nonuniform gradient of traffic information credibility
that can be formulated by an exponential function, which stands for an exponentially decreasing
probability of detection (as described in [40]). As discussed in [30,41], k, k′, a, a′ and p1, p2, p′1, p′2, q1,
q′1 are the coefficients of these three typical SICFs and the values of all these coefficients are positive.
For more common situations, it should be noted that the left and right of vertical axis of a SICF may not
be the same attenuation pattern and they may be a combination of two different attenuation functions.
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2.3. Optimization Models of One-Way Road

For different detection regions (a single lane, multiple lanes, a road section, or multiple road
sections) of the sensors used to acquire traffic information, in this paper, the base unit of the detection
region is set as a one-way road section, i.e., a sensor at location i can detect the traffic information
of all lanes in the section including location i. Unless otherwise noted, “sensor” refers to a sectional
sensor of a one-way road. Here, the maximum benefit model [30,42] is introduced to optimize the
SLP of one-way road. First, the model determines the locations of the first and last sensors in the
one-way road (usually refers to the ends of the one-way road or the nodes in a traffic network). If
the first and last locations cannot be determined, the starting and ending points of the one-way road
will be selected as the preselected locations of the first and last sensors. Whether the two points are
located by sensors depends on the engineering requirement. Denote L as the length of the one-way
road; n locations (including the locations of the first and last sensors) are selected as the preselected
locations that would be deployed by sensors. Those sensor locations are numbered as i (I = 1, 2, . . . ,
n). Denote the origin o as the location of the first sensor; then, the maximum benefit model can be
formulated as:

max z =
n

∑
i=1

Bi ×Q(i)×V(i)×

ai+∫
ai−

fi(x− xi)dx

+∞∫
−∞

fi(x− xi)dx
−

n

∑
i=1

BiC(i), (2)

s.t.


Bi = 0 or 1
xi = (i− 1)d
d = L/(n− 1)

, (3)

where z is the maximum benefit of all sensors located on the one-way road; Bi is equal to 1 if a sensor
is located at location i and 0 otherwise; Q(i) is the sensor accuracy of location i; V(i) is the benefit of
traffic information of location i; C(i) is the sensor integration cost of location i; xi is the coordinate of
location i; d is the distance of two adjacent candidate locations and d = xi+1 − xi; fi(x) is the SICF of
sensor i; ai− and ai+ are the superposition point coordinates of fi(x) and fi+(x), fi−(x), respectively; and
a1− = 0, an+ = L (fi+(x) and fi−(x) are the SICFs of the left adjacent location i− with Bi− = 1 and the right
adjacent location i+ with Bi+ = 1, respectively).

To simplify the maximum benefit model and make it easy to reveal the relationship between the
optimal number of sensors and model parameters in theory, it is assumed that each model parameter
has the same value at different locations. f (x), V, C, and Q is used to denote fi(x), information value
V(i), integration cost C(i), and accuracy Q(i) at location i, respectively. Moreover, using the calibration
results of SICF in [30,41], f (x) is a symmetrical function on the vertical axis, namely, f (x) = f (−x). In the
superposition area of two SICFs, the larger SICF value at the superposition point is selected as the final
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SICF value (different spatial superposition patterns are referred in [41]. Then, from Equations (2) and
(3), the simplified maximum benefit model can be expressed as:

z(n) =


QV

2
∫ L

0 f (x)dx∫ +∞
0 f (x)dx

− C when n = 1

(n− 1)QV
∫ d/2

0 f (x)dx∫ +∞
0 f (x)dx

− nC when n > 1
, (4)

Equation (4) indicates the relationship between the number of sensors (n) and the maximum
benefit (z(n)). Additionally, the equation illustrates the changing trend of maximum benefit z(n) when
n changes. According to the changing trend of z(n), the optimal number and spacing of sensors can
be determined. When n = 1, the starting or ending point of the one-way road will be deployed by a
sensor; when n > 1, both the starting and ending points will be deployed by sensors, which is required
by the simplified maximum benefit model of one-way road.

3. Expanding Models and Algorithms with Different SICFs

The end restriction refers to whether the sensor is located at the starting or ending point of a
one-way road. Two kinds of end restriction, which are fixation at both ends and freeness at both ends,
will be discussed with different SICFs.

3.1. Exponential Attenuation SICF (EAF)

An EAF in the entire region will be:

f (x) =

{
e−kx x ∈ [0,+∞)

ek′x x ∈ (−∞, 0)
. (5)

If the EAF is a longitudinally symmetrical function, i.e., k = k′, then Equation (5) simplifies to:
f (x) = e−k|x|.

3.1.1. Case A: Fixation at Both Ends with EAF

The main features of Case A are that the starting and ending points are both fixed by a sensor and
other sensors are located equidistantly between the starting and ending points. The sensor locations of
Case A when n > 1 are shown in Figure 2a.
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Based on Equation (4), the formula of the maximum benefit model of Case A is:

zA(n) = (n− 1)QV(1− e−
kL

2(n−1) )− nC. (6)

where zA(n) is the benefit with n sensors evenly located for Case A.
zA(n) is a convex function and has a unique solution. It is difficult to obtain the analytic solution

of Equation (6). Algorithm 1 can be adopted to find the solution (denote zAm as the maximum benefit
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of the road for Case A). Given the optimal number of sensors NA, the optimal sensor spacing for a
one-way road will be dAopt = L/(NA − 1).

Algorithm 1. Solving Equation (6)

Input: Model parameters Q, V, C, L, and k
Output: NA, zAm

1: Initialization: Q, V, C, L, k; z_temp = 0; zAm = 0; n = 2;
2: Done = 1;
3: while done
4: z = (n − 1) × Q × V × (1 − exp(−0.5 × k × L/(n − 1)))
5: – n × C;
6: if z > z_temp
7: n++;
8: z_temp = z;
9: else

10: done = 0;
11: end if
12: end while
13: NA = n;

zAm = z_temp.

3.1.2. Case B: Freeness at Both Ends with EAF

Each model parameter is assumed to be the same at different locations, and due to the symmetry
principle, the optimal sensor locations must be centrosymmetric and equidistant, as shown in Figure 2b.
Denote r as the distance between the first (last) sensor and the start (end) point of a one-way road.
When n sensors are located in a one-way road, zB(n) is formulated as:

zB(n) = (n− 1)QV(1− e−
k(L−2r)
2(n−1) ) + QV(1− e−kr)− nC = QV((n− 1)(1− e−

k(L−2r)
2(n−1) ) + (1− e−kr))− nC, (7)

where zB(n) is the benefit with n sensors evenly located for Case B.
Construct an assistant function g(r):

g(r) = (n− 1)(1− e−
k(L−2r)
2(n−1) ) + (1− e−kr). (8)

Select r as the independent variable in Equation (8). When g(r) has a maximum value, zB(n) can

obtain the maximum value. Thus, letting g′(r) = 0, it can be obtained that e−kr − e−
k(L−2r)
2(n−1) = 0, i.e.,:

−kr = − k(L− 2r)
2(n− 1)

, r =
L

2n
. (9)

Substituting Equation (9) into Equation (8) yields:

zB(n) = nqV(1− e−
kL
2n )− nC. (10)

Similarly, the optimal number of sensors NB and the maximum benefit of Case B zBm can be
obtained based on Equation (10) and Algorithm 1, and then the optimal sensor spacing will be:

dBopt = (L − 2r)/(NB − 1) = L/NB. (11)
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Specifically, when n = 1, it can be got r = L/2, then:

zB(1) = QV(1− e−
kL
2 )− C. (12)

3.2. Linear Attenuation SICF (LAF)

LAF is a representation of the uniform gradient for traffic information credibility, which can be
formulated by a linear function (Figure 1b). A LAF is given as:

f (x) =


−ax + 1 x ∈ [0, 1

a ]

a′x + 1 x ∈ [− 1
a , 0)

0 otherwise
, (13)

If a = a′, Equation (13) simplifies to: f (x) = −a|x| + 1.

3.2.1. Case C: Fixation at Both Ends with LAF

Because of the nonconstant parameter a, the SICF with a linear attenuation will be more complex
than that with an exponential attenuation. Given the optimal number of sensors NC, the optimal
sensor spacing will be dCopt = L/(NC − 1), and 2

a > dCopt.

Proof. When n sensors are located in the road, then dn = L/(n − 1) and z(n) = (n− 1)QV − nC. It is
assumed that 2

a = dn. When another sensor is added to the road (Figure 4), zC(n + 1) is formulated as:

zC(n + 1) = nQV(1− (1− (a(
1
a
− ∆d)))

2
)− (n + 1)C = nQV(1− (a∆d)2)− (n + 1)C. (14)

From those equations, ∆d = dn−dn+1
2 , dn = L

n−1 , dn+1 = L
n and a∆d = 1

n , then:

zC(n + 1)− zC(n) = (1− 1
n
)QV − C. (15)

From the field data, QV >> 2C. For n ≥ 2, the inequality zC(n + 1) − zC(n) >> 0 can be
obtained from Equation (15). Therefore, it is better to locate n + 1 sensors than n sensors in the road.
Now, it is demonstrated that dn+1 < dn = 2

a , i.e.,:

dopt ≤ dn+1 < dn =
2
a

. (16)

�
For 2

a > dopt, the optimal sensor location strategy of Case C can be shown in Figure 3a, and zC(n)
is formulated as:

zC(n) = (n− 1)QV(1− (1− ad
2
)

2
)− nC = aLQV − (

a2L2QV
4(n− 1)

+ nC), (17)

where zC(n) is the benefit with n sensors evenly located for Case C.

Letting z′C(n) = 0, zC has the maximum value when n = 1 + aL
2

√
QV
C . Denote <n> as the

ceiling or floor operation of n that makes z(<n>) be a maximum one, then NC =< 1 + aL
2

√
QV
C >, and

substituting this result into Equation (17) yields:

zCm ≈ aLQV − aL
√

QVC− C, (18)

where zCm is the maximum benefit of the road for Case C.
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3.2.2. Case D: Freeness at Both Ends with LAF

Refer to the method of Case B, it is obtained that d = (L − 2r)/(n − 1). The sensor locations of
Case D are shown in Figure 3b. Similarly, the formula of zD(n) can be expressed as:

zD(n) = (n− 1)QV(1− (1− ad
2
)

2
) + QV(1− (1− ar)2)− nC, (19)

where zD(n) is the benefit with n sensors evenly located for Case D.
Simplifying Equation (19) yields:

zD(n) = aLQV − a2L2QV
4(n− 1)

− nC +
a2LQV
n− 1

r− na2QV
n− 1

r2. (20)

Construct an assistant function g(r) and let

g(r) =
a2LQV
n− 1

r− na2QV
n− 1

r2. (21)

When g(r) has a maximum value, Equation (20) can be maximized. Set g′(r) = 0; then,
a2LQV

n−1 −
2na2QV

n−1 r = 0, i.e., r = L
2n . Substituting this value into Equation (20) yields:

zD(n) = aLQV − (
a2L2QV

4n
+ nC). (22)

Letting z′D(n) = 0, zD achieves its maximum value when n = aL
2

√
QV
C .
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Substituting n = aL
2

√
QV
C into Equation (22) yields:

zDm ≈ aLQV − aL
√

QVC, (23)

where zDm is the maximum benefit of the road for Case D.

Rounding n to obtain the optimal number of sensors of Case D, and ND =< aL
2

√
QV
C >.

Specifically, when n = 1, the sensor location can be shown in Figure 5.
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If 2
a ≥ L, according to Equation (22), then:

zD(1) = aL(1− aL
4
)QV − C. (24)

If 2
a < L, for x ∈

[
1
a , L− 1

a

]
, the maximum benefit can always be obtained, which is:

zD(1) = QV − C. (25)

3.3. Two-Step Attenuation SICF (Two-SAF)

A two-SAF is shown in Figure 1c. The typical characteristic of a two-SAF is that the traffic
information credibility will be stable in the area near the sensor but will suddenly decrease to another
value and remain stable for a range of distances in a farther away area. The formula of a two-SAF is:

f (x) =


1 x ∈ [−p′1, p1]

q1 x ∈ (p1, p2]

q′1 x ∈ [−p′2,−p′1)
0 otherwise

. (26)

If the two-SAF is longitudinally symmetrical, namely, p1 = p′1, p2 = p′2, and q1 = q′1, then:

f (x) =


1 x ∈ [−p1, p1]

q1 x ∈ [−p2,−p1) ∪ (p1, p2]

0 otherwise
. (27)
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3.3.1. Case E: Fixation at Both Ends with SAF

According to the typical feature of the two-SAF and the restriction of QV >> C, the optimal sensor
spacing dEopt meets the restriction of p1 ≤ dEopt/2 ≤ p2. Therefore, if there are n sensors located in the
road when d = dEopt, then:

1 +
L

2p2
≤ n ≤ 1 +

L
2p1

. (28)

Figure 6a presents the sensor locations of Case E when n > 1, and zE(n) will be formulated as:

zE(n) = (n− 1)
p1 + ( d

2 − p1)q1

p1 + (p2 − p1)q1
QV − nC, (29)

where zE(n) is the benefit with n sensors evenly located for Case E.
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Substituting d = L/(n − 1) into Equation (29) yields:

zE(n) =
q1
2 L− p1 + p1q1

p1 + (p2 − p1)q1
QV +

(
QV

1 + p2q1
p1−p1q1

− C

)
n. (30)

If ϕ = qV
1+ p2q1

p1−p1q1

− C ≤ 0, based on Equation (28), when n = 1 + L
2p2

, the maximum zE will be

obtained, and NE =< 1 + L
2p2

>. Substituting this value into Equation (30) yields:

zEm ≈
L

2p2
QV − (1 +

L
2p2

)C, (31)

where zEm is the maximum benefit of the road for Case E.
If ϕ > 0, based on Equation (28), when n = 1 + L

2p1
, zE achieves its maximum value, and

NE =< 1 + L
2p1

>. Substituting this value into Equation (30) yields:

zEm ≈
L

2(p1 + (p2 − p1)q1)
QV − (1 +

L
2p1

)C. (32)

3.3.2. Case F: Freeness at Both Ends with SAF

Similarly, with Case E, the optimal sensor spacing dFopt and r of Case F meets the conditions:

p1 ≤ dFopt/2 ≤ p2. (33)

p1 ≤ r ≤ p2. (34)



Sensors 2016, 16, 1790 12 of 21

Assume that the number of sensors located in a one-way road is close to the optimal number;
then, the following relationship is obtained:

dFopt ≈ d = (L − 2r)/(n − 1). (35)

Compared with Equations (33) and (34), the restriction on n is:

1 +
L− 2r

2p2
≤ n ≤ 1 +

L− 2r
2p1

. (36)

Then, zF(n) is formulated as:

zF(n) = (n− 1)
p1 + ( d

2 − p1)q1

p1 + (p2 − p1)q1
QV +

p1 + (x− p1)q1

p1 + (p2 − p1)q1
QV − nC, (37)

where zF(n) is the benefit with n sensors evenly located for Case F.
Substituting Equation (35) into Equation (37) yields:

zF(n) =
q1L

p1 + (p2 − p1)q1
QV +

(
QV

1 + p2q1
p1−p1q1

− C

)
n. (38)

From Equation (38), for p1 ≤ r ≤ p2, the value of zF(n) is not influenced by r.
If ϕ ≤ 0, when n = 1 + L−2r

2p2
(∀r for p1 ≤ r ≤ p2), the maximum zF is obtained. Let r = p2 (without

loss of generality) as a special case; n = L
2p2

when dFopt = 2p2 = 2r. The optimal number of sensors is

NF =< 1 + L
2p2

>, and the maximum benefit of Case F is

zFm ≈
L

2p2
QV +

q1L
2(p1 − (p2 − p1)q1)

QV − L
2p2

C, (39)

where zFm is the maximum benefit of the road for Case F.
If ϕ ≤ 0, when n = 1 + L−2r

2p1
(∀r for p1 ≤ r ≤ p2), the maximum zF is obtained. Let r = p1 (without

loss of generality) as a special case; n = L
2p1

when dFopt = 2p1 = 2r. The optimal number of sensors is

NF =< L
2p1

>, and the maximum benefit of Case F is

zFm ≈
(1 + q1)L

2(p1 + (p2 − p1)q1)
QV − (1 +

L
2p1

)C. (40)

For ϕ ≤ 0 or ϕ > 0, when zF is the maximum value zFm, r is a nonconstant value whose region is
[p1, p2]. However, for the two special conditions, when d = 2r, zF will always achieve its maximum
value. Specifically, when n = 1, the maximum benefit will be obtained when the sensor is located in the
middle of the one-way road (Figure 7).

According to the relationships between L/2 and p1 and p2, the maximum benefit zF(1) can be
formulated as:

zF(1) =


L

2(p1+(p2−p1)q1)
QV − C p1 ≥ L

2
p1+( L

2−p1)q1
p1+(p2−p1)q1

QV − C p1 < L
2 < p2

QV − C p2 ≤ L
2

(41)
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3.4. Discussion

This work has mainly studied the situation involving a simplified scenario comparing with field
traffic road networks using the simplified MBM. The values of each parameter of the simplified MBM
at different locations are the same in this scenario. However, these models still yield some formulas
and results that are beneficial for optimizing the SLP in practice. These models and results will also be
helpful when studying more complex scenarios for the SLP in the future.

(1) Model parameters

These models have four basic parameters: the sensor accuracy Q, the sensor information benefit V,
the sensor integration cost C, and the road length L. All of these parameters can be calibrated using the
field data associated with the road and sensors selected for the SLP. Some calibration methods for those
parameters have been studied in [30,41–43], and the values of these parameters are determined by
field data in Beijing. In addition, some additional parameters should be calibrated for different SICFs,
such as k, a, p1, p2, and q1. The parameters could been obtained through various fitting methods using
field data [30,41]. Given these parameters, the maximum benefit, the optimal number (or spacing) of
sensors, and the optimal sensor locations can be calculated by the corresponding models and formulas
presented in Section 4.

(2) Optimal sensor locations

Given the optimal numbers of sensors for different Cases, Table 1 presents the formulas of optimal
sensor locations for different SICFs (Denote dopt as the optimal distance between two adjacent sensors
in the one-way road, Xi as the optimal coordinate of the sensor i in the road). The formulas of optimal
sensor locations are the same for same end restriction case, which indicates that the formula formats of
the optimal sensor locations do not depend on the spatial distributions of traffic information credibility
and only relate to the end restriction cases. Therefore, when the number of sensors (optimal number or
planned number) is determined in engineering applications without knowing the spatial distributions,
it is still possible to place the sensors at their optimal locations using these formulas. Table 1 also
indicates that when n = 1, placing the sensor in the middle of the one-way road will be the optimal
mode that can acquire the maximum benefit. When n = 1, the maximum benefit of different end
restriction cases with the same SCIF are different. From Equations (6) and (10), the maximum benefit
of Case B is always greater than that of Case A, i.e., zBm(1) = QV(1 − e−

kL
2 ) − C is greater than

zAm(1) =
QV

2 (1− e−kL)− C. Equations (17) and (24) demonstrate that zD(1) > zC(2) (when C > 0).
Although the integration cost would be reduced to zero, which is zD(1) = zC(2). Therefore, when
there is only one sensor to be located on a one-way road, placing it in the middle will be the best



Sensors 2016, 16, 1790 14 of 21

choice. When n > 1, deploying sensors equidistantly will be an optimal mode if the values of each
parameter at different locations are the same or close to a given value. Moreover, it can be determined
that zB(N) > zA(N), zD(N) > zC(N), or zF(N) > zE(N) from Equations (6), (10), (17), (22), (30) and
(38). If the number of sensors is fixed, Case B, D or F will be the first layout mode. Similarly, from the
LAF and SAF, it is concluded that NC + 1 ≈ ND, NE + 1 ≈ NF and zDm > zCm, zFm > zEm. It can be
drawn that Case B, D or F require less number of sensors and acquire higher benefit. Furthermore,
for different end restrictions, it can be determined that dAopt = dBopt, dCopt = dDopt, dEopt = dFopt.
Namely, the optimal sensor spacing is independent of end restrictions and is only dependent on the
values of the model parameters, which represent the physical conditions of the sensors and roads.

(3) Maximum benefit and optimal number of sensors

The formulas of the maximum benefit and corresponding optimal numbers of sensors with
different SICFs have been obtained. Except for EAF, the analytic formulas of the optimal number
of sensors N and the maximum benefit zm can also be got, which can be calculated directly using
these model parameters. For EAF, the analytic formulas of the benefit z and number of sensors n are
obtained. The maximum surplus benefit zm and optimal number of sensors N can be easily determined
based on Algorithm 1 for Case A and B.

Table 1. Formulas of optimal sensor locations for different Cases and SICFs.

Cases EAF LAF Two-SAF

A, C, E Xi = (i − 1)dopt = (i − 1)L/(N − 1) i = 1, 2, ..., N.
B, D, F Xi = r + (i− 1)dopt = L/(2n) + (i− 1)L/N = (2i− 1)L/(2N), i = 1, 2, ..., N. Specifically, when n = 1, X1 = L/2.

4. Numerical Example

A main part of freeway network in Beijing-Tianjin-Hebei region (Jing-Jin-Ji) is used to verify the
validity of the models and algorithms proposed in this paper. As a national development strategy,
the Chinese government has approved a plan to promote the transportation integration in the large
Jing-Jin-Ji region. Then the demands of traffic monitoring and detecting in this region will be satisfied.
The freeway network of this numerical example is shown in Figure 8a, which shows the main freeway
corridors in the Jing-Jin-Ji region (B4↔ H6, B7↔ B8 and B7↔ H6 are planning segments). Based
on Figure 8a, the corresponding network topology is shown in Figure 8b which contains 54 network
nodes and 89 network links (two-way segments). For numerical computation, the basic information
(network link index, name, length, etc.) and model parameters are shown in Table 2. The parameters
of SICF with EAF, LAF and SAF are set as follows: k = 0.15, a = 0.10, q1 = 0.6, p1 = 0.4 and p2 = 1.2.
In addition, the sensor accuracy is set as Q = 0.95.

In Figure 8b, the network nodes are the key points in the freeway network, which reflect e
importation traffic flow information and will locate sensors with a high priority. As mentioned in
Section 4, Case A, C, and E will be the appropriate scenarios in this network. Then, the optimal sensor
location strategy of each segment will be calculated with corresponding SICF. Based on Table 1 and
the models of Case A, C, and E, the optimal number of sensors located in each segment (except the
network nodes) is shown in Table 3. The results show that the proposed models can deal with the SLP
with various conditions in road networks and give corresponding optimal sensor layout strategies for
each segment. Meanwhile, different SICFs, which reflect different spatial distribution characteristics
of traffic information credibility, will lead to different sensor layout strategies. Based on Figure 8b
and Table 3, the final optimal number of sensors on each two-way segment can be shown in Figure 9.
In Figure 9, each solid circle means one final sensor location in network nodes which may include
several monitoring sections; each number in a rectangle mean the optimal number of monitoring
sections on each two-way segment.
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Table 2. The basic information and model parameters (Unit: L, km; V, million RMB; C, thousand RMB).

Index Name Segment L SICF V C Index Name Segment L SICF V C

1 B-R6 B1↔ B2 8.1 SAF 18 18 46 G18 T16↔ H19 62.1 LAF 14 16
2 B-R6 B1↔ B6 73.5 SAF 18 18 47 G25 T17↔ T18 12.5 EAF 14 16
3 G5 B1↔ H1 56.9 LAF 18 18 48 G5 H1↔ H2 16.7 EAF 12 14
4 B-R6 B2↔ B3 19.5 SAF 18 18 49 G95 H1↔ H3 13.1 EAF 12 14
5 G5 B2↔ H4 36.8 LAF 18 18 50 G9511 H2↔ H3 20.1 EAF 12 14
6 B-R6 B3↔ B4 10.5 SAF 18 18 51 G5 H2↔ H11 35.2 EAF 12 14
7 G45 B3↔ H5 36.3 LAF 18 18 52 S24 H3↔ H4 13.7 EAF 12 14
8 B-R6 B4↔ B5 11.3 SAF 18 18 53 S24 H4↔ H5 25.1 EAF 12 14
9 G3 B4↔ H6 23.5 LAF 18 18 54 G4 H4↔ H10 48.7 EAF 12 14
10 B-R6 B5↔ B6 7.8 SAF 18 18 55 S24 H5↔ H6 26.7 EAF 12 14
11 G2 B5↔ B7 12.6 EAF 18 18 56 G45 H5↔ H9 32.8 EAF 12 14
12 S15 B6↔ B8 12 EAF 18 18 57 G3 H6↔ H7 26.3 EAF 12 14
13 G95 B7↔ B8 6.7 EAF 18 18 58 S3 H7↔ H8 25.1 EAF 12 14
14 AH3 B7↔ T2 29.2 LAF 18 18 59 G18 H8↔ H9 26.6 EAF 12 14
15 G95 B7↔ H6 13.7 LAF 18 18 60 S3 H8↔ H16 85.5 EAF 12 14
16 S15 B8↔ T1 24.4 LAF 18 18 61 G18 H9↔ H10 50.8 EAF 12 14
17 G3 T1↔ T2 7.3 EAF 14 16 62 G45 H9↔ H14 70.4 EAF 12 14
18 S30 T1↔ T6 39.2 EAF 14 16 63 S52 H10↔ H11 24.3 EAF 12 14
19 G2 T2↔ T4 23.8 EAF 14 16 64 G18 H10↔ H13 32 EAF 12 14
20 AH3 T2↔ T5 27.9 EAF 14 16 65 G5 H11↔ H12 45.8 EAF 12 14
21 G2 T3↔ T4 11.2 EAF 14 16 66 G107 H12↔ H13 42.6 EAF 12 14
22 G18 T3↔ T12 7.2 EAF 14 16 67 G5 H12↔ H20 96.5 EAF 12 14
23 G18 T3↔ H8 31.8 LAF 14 16 68 G107 H13↔ H14 37.5 EAF 12 14
24 G2501 T4↔ T5 19 EAF 14 16 69 G4 H13↔ H21 85.2 EAF 12 14
25 G3 T4↔ H7 29.5 LAF 14 16 70 G107 H14↔ H15 65.8 EAF 12 14
26 G2501 T5↔ T6 12.6 EAF 14 16 71 G45 H14↔ H28 71.9 EAF 12 14
27 AH3 T5↔ T8 36.7 EAF 14 16 72 G307 H15↔ H17 21.1 EAF 12 14
28 S30 T6↔ T7 19.4 EAF 14 16 73 G1811 H15↔ H28 82 EAF 12 14
29 S51 T7↔ T8 17.6 EAF 14 16 74 G3 H16↔ H17 17.9 EAF 12 14
30 S30 T7↔ T18 22.6 EAF 14 16 75 S3 H16↔ H18 29.8 EAF 12 14
31 S51 T8↔ T9 18.8 EAF 14 16 76 G1811 H17↔ H18 23.6 EAF 12 14
32 AH3 T8↔ T18 12.9 EAF 14 16 77 G1811 H18↔ H19 35.5 EAF 12 14
33 S50 T9↔ T10 10.6 EAF 14 16 78 S-Ring H20↔ H22 15.8 EAF 12 14
34 S50 T9↔ T17 22.5 EAF 14 16 79 G5 H20↔ H23 14 EAF 12 14
35 S50 T10↔ T11 13.9 EAF 14 16 80 S9902 H21↔ H22 20.9 EAF 12 14
36 G18 T10↔ T16 18.9 EAF 14 16 81 G4 H21↔ H25 36.1 EAF 12 14
37 S50 T11↔ T12 14.8 EAF 14 16 82 S9902 H22↔ H24 14 EAF 12 14
38 S6 T11↔ T15 34.6 EAF 14 16 83 G1811 H23↔ H24 19.4 EAF 12 14
39 G3 T12↔ T13 38.6 EAF 14 16 84 G20 H23↔ H26 40.8 EAF 12 14
40 G104 T13↔ T14 9.8 EAF 14 16 85 G1811 H24↔ H25 18.7 EAF 12 14
41 S60 T13↔ T15 6 EAF 14 16 86 S9902 H24↔ H26 25.2 EAF 12 14
42 S6 T14↔ T15 12.6 EAF 14 16 87 G4 H25↔ H27 25.7 EAF 12 14
43 G3 T14↔ H16 33.1 LAF 14 16 88 G1811 H25↔ H28 81.4 EAF 12 14
44 S60 T15↔ T16 21.3 EAF 14 16 89 G20 H26↔ H27 13.4 EAF 12 14
45 G25 T16↔ T17 37.6 EAF 14 16
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Figure 8. Freeway network of this numerical example: (a) the field freeway network; and (b) the
topology of the freeway network.
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Figure 9. Final optimal number of sensors on each two-way segment of the numerical example.

In order to analyze the sensitivity of the key model parameters, Figure 10 shows the variations
of total optimal number of sensors for all segments in the freeway network with model parameters
changing based on EAF models. In Figure 10a (The units of C and V are the same with Table 2),
it can be drawn that parameters C and V have opposite influence patterns on the optimal number
of sensors. Moreover, as the value of C increasing (such as points 1→ 2→ 3), the optimal number
of sensors will decrease which therefore leads to low layout density of sensors. However, with the
value of V increasing (such as points 1 → 4 → 7), a high layout density of sensor in the freeway
network will be necessary. In Figure 10b, the parameters of k and Q have the same influence patterns
on the optimal number or density of sensors. A bigger Q means more benefits from each sensor can
be got, and a bigger k means a faster attenuation speed of traffic information credibility along the
one-way road, which both mean more sensors should be deployed to obtain sufficient information and
benefits. Parameters k and a reflect different spatial attenuation modes of traffic information credibility.
Figure 11 shows the optimal number of sensors in the freeway network with different values of k and a
based on EAF and LAF models. No matter which attenuation pattern the SICF is, as the attenuation
speed of traffic information credibility increases, more sensors should be deployed to make up the
lost information.
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Table 3. Optimal number of sensors in each segment.

Index Segment L Nopt
1 Index Segment L Nopt

1 Index Segment L Nopt
1

1 B1↔ B2 8.1 10 31 T8↔ T9 18.8 27 61 H9↔ H10 50.8 75
2 B1↔ B6 73.5 91 32 T8↔ T18 12.9 18 62 H9↔ H14 70.4 104
3 B1↔ H1 56.9 87 33 T9↔ T10 10.6 15 63 H10↔ H11 24.3 35
4 B2↔ B3 19.5 24 34 T9↔ T17 22.5 33 64 H10↔ H13 32 47
5 B2↔ H4 36.8 56 35 T10↔ T11 13.9 20 65 H11↔ H12 45.8 67
6 B3↔ B4 10.5 13 36 T10↔ T16 18.9 27 66 H12↔ H13 42.6 62
7 B3↔ H5 36.3 55 37 T11↔ T12 14.8 21 67 H12↔ H20 96.5 143
8 B4↔ B5 11.3 14 38 T11↔ T15 34.6 51 68 H13↔ H14 37.5 55
9 B4↔ H6 23.5 36 39 T12↔ T13 38.6 57 69 H13↔ H21 85.2 126

10 B5↔ B6 7.8 9 40 T13↔ T14 9.8 14 70 H14↔ H15 65.8 97
11 B5↔ B7 12.6 19 41 T13↔ T15 6 8 71 H14↔ H28 71.9 106
12 B6↔ B8 12 18 42 T14↔ T15 12.6 18 72 H15↔ H17 21.1 30
13 B7↔ B8 6.7 10 43 T14↔ H16 33.1 47 73 H15↔ H28 82 121
14 B7↔ T2 29.2 45 44 T15↔ T16 21.3 31 74 H16↔ H17 17.9 26
15 B7↔ H6 13.7 21 45 T16↔ T17 37.6 56 75 H16↔ H18 29.8 43
16 B8↔ T1 24.4 37 46 T16↔ H19 62.1 89 76 H17↔ H18 23.6 34
17 T1↔ T2 7.3 10 47 T17↔ T18 12.5 18 77 H18↔ H19 35.5 52
18 T1↔ T6 39.2 58 48 H1↔ H2 16.7 24 78 H20↔ H22 15.8 23
19 T2↔ T4 23.8 35 49 H1↔ H3 13.1 19 79 H20↔ H23 14 20
20 T2↔ T5 27.9 41 50 H2↔ H3 20.1 29 80 H21↔ H22 20.9 30
21 T3↔ T4 11.2 16 51 H2↔ H11 35.2 51 81 H21↔ H25 36.1 53
22 T3↔ T12 7.2 10 52 H3↔ H4 13.7 19 82 H22↔ H24 14 20
23 T3↔ H8 31.8 45 53 H4↔ H5 25.1 36 83 H23↔ H24 19.4 28
24 T4↔ T5 19 28 54 H4↔ H10 48.7 71 84 H23↔ H26 40.8 60
25 T4↔ H7 29.5 42 55 H5↔ H6 26.7 39 85 H24↔ H25 18.7 27
26 T5↔ T6 12.6 18 56 H5↔ H9 32.8 48 86 H24↔ H26 25.2 37
27 T5↔ T8 36.7 54 57 H6↔ H7 26.3 38 87 H25↔ H27 25.7 37
28 T6↔ T7 19.4 28 58 H7↔ H8 25.1 36 88 H25↔ H28 81.4 120
29 T7↔ T8 17.6 25 59 H8↔ H9 26.6 39 89 H26↔ H27 13.4 19
30 T7↔ T18 22.6 33 60 H8↔ H16 85.5 126

1 The number is just the optimal number of sensors for each one-way segment; for a two-way segment, the number will be doubled, which is shown in Figure 9.
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Expansibility of the models proposed in this paper is feasible for road networks. As shown in the
numerical example, the maximum benefit model will be workable and effective to address the network
SLP. The optimization object of the maximum benefit model is for a road segment (such as a segment
between two intersections, a segment of a freeway corridor). A road network can be split into a set of
segments. Given corresponding model parameters (such as f (x), Q, C, V, k, a, p1, p2, and q1), the optimal
sensor locations of each segment in the road network can be determined. As the independence of
optimal sensor locations of a one-way road, the optimal results are unrelated to other roads without
consideration of the road correlation. If the optimal sensor locations of each segment are obtained in
the road network, then the optimal network SLP will be determined as well. In practice, there might
be correlative between two segments in a freeway corridor or a small road network. However the
strength of correlation varies with time. If the strength of correlation between two segments always
exceeds a reference value, just one of the two segments will be deployed by sensors; otherwise, for
more common scenarios (large-scale freeway networks or urban road networks), the sensors should be
deployed at their optimal locations for each segment.

5. Conclusions and Application Prospects

Three spatial distributions of traffic information credibility and their sensor information credibility
functions proposed in this paper are helpful for understanding the data property derived from the
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fixed sensors, the coverage modality of traffic information along a one-way road, and the essence of the
SLP. The definitions of traffic information credibility and sensor information credibility function help
us consider the SLP in a novel way. Moreover, according to the theoretical formulas and numerical
example for solving SLP, this paper has proven the effectiveness and availability of the maximum
benefit model and its modified models. Using these models, the optimal numbers of sensors and
locations with different sensor information credibility functions can be determined which are important
in actual SLP projects.

The formulas for the optimal sensor locations of different cases can be using to design the sensor
network structure for traffic information acquisition systems, and these formulas could also provide
schemes for selecting sensor locations. Because the sensors in traffic information acquisition systems
have an optimal layout mode, the structure of sensor network cannot be optional and disorganized,
which illustrates that the organized structure of sensor network will be more suitable for traffic
information acquisition systems. The kind of sensor networks can use fewer sensors to acquire more
information and cover more areas of interest than the ones with disorganized structure.

With regard to potential application scenarios, the results of this paper could be used in the
following ways: (1) for optimization of the topology structure of sensor networks for traffic information
acquisition; (2) for determination of data fusion schemes with existing topology structures of sensor
networks; and (3) for designing spatial characteristic-related criteria to assign the degree of contribution
of a physical sensor to a point of interest, which is taken as a virtual sensor with the output determined
by other physically deployed sensors. Further studies will focus on the empirical study of different
spatial distributions and implement field experiments to extend the given models. Through analyzing
the field or simulation data of traffic information, the spatial heterogeneity of traffic information based
on the fixed sensors could be revealed. Moreover, some numerical and filed examples with more
complex models and scenarios (such as urban road networks, large-scope freeway networks) would
be helpful to study the SLP, which is also an important direction for future studies.

The paper is mainly concerned with the SLP of fixed sensors, which are good at whole-day,
long-term traffic information acquisition. Actually, more and more non-point sensors and mobile
sensors exist in modern traffic systems. These sensors are good at dynamic, flexible, real-time traffic
information acquisition. Then, the non-point sensors and mobile sensors are effective supplements for
traffic SLP, which, to some extent, can reduce the deployment density of fixed sensors. Studying the
relationship of data from fixed sensors and non-point/mobile sensors is another significant issue.
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