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Abstract: Effective feedback control requires all state variable information of the system. However,
in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration
signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible
coupling between the global motion of the rigid base and the elastic vibration of the flexible-link
manipulator considered, a two-time scale virtual sensor, which includes the speed observer and
the vibration observer, is designed to achieve the estimation for the vibration signals and their
time derivative of the TFM, as well as the speed observer and the vibration observer are separately
designed for the slow and fast subsystems, which are decomposed from the dynamic model of the
TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games,
the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the
estimation error while keeping the observer stable. Finally, the numerical calculation and experiment
verify the efficiency of the designed two-time scale virtual sensor.

Keywords: translational flexible-link manipulator; vibration observation; rigid-flexible coupling;
linear-quadratic differential games; singular perturbation

1. Introduction

Nowadays, in automatic machines, handling operations, bio-engineering and space equipment,
robot technology has widespread application [1–4]. With the development of modern machinery and
equipment in the direction of low energy consumption and light-weight, the flexible manipulator
has gained growing attention [5–7]. However, owing to the feeble rigidity and heavy deflection, the
flexible manipulator easily produces elastic deformation and vibration during operation, which has a
terrible effect on the position precision, stability, and service life of the whole system. Thus, it is of
vital significance to investigate the vibration characteristics and active vibration control strategy of the
flexible manipulator [8].

Recently, owing to the excellent mechanical-electrical coupling characteristics, the piezoelectric
smart materials of lead zirconium titanate (PZT) have been widely applied in the field of vibration
damping for flexible manipulators [9–12]. Under appropriate voltage control, the PZT actuators,
which are bonded on the surface of the flexible manipulator, can generate shear forces to suppress the
elastic deformation. In [13], a PZT actuator was used for the vibration suppression of a single-link
flexible manipulator under the examination of the PZT actuator placement. For the same experiment
platform, a positive position feedback controller was applied to the PZT actuators for the vibration
damping in [14]. In another study [15], based on the simulated annealing, the optimal placements of
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multiple distributed PZT actuators are determined and the vibration control was arranged through a
linear-quadratic-regulator controller. The superiority of PZT actuators in structural vibration control
has been verified by many scholars. In order to optimize the bonding locations of the PZT actuators
and constitute effective feedback control, the vibration signals of any points of the flexible manipulator
should be obtained firstly. In the current research, the sensors, such as piezoelectric sensors and
acceleration sensors, are often applied to measure the vibration signals [16,17]. Unfortunately, for
the flexible manipulator, the introduction of additional position and speed sensors is bound to affect
the dynamic characteristics of the whole system [18]. Additionally, in the actual operation, for the
restriction of the bonding site, it is difficult to obtain the accurate vibration signals for the specified
locations of the PZT actuators on the flexible manipulator, which influences the control effectiveness
seriously. Moreover, the performance of the sensors is susceptible to environmental factors, which
reduce the reliability of the whole system.

Therefore, virtual sensor technology is becoming a hotspot in the field of high-speed driven
systems. The state observers are these devices or models which apply the system input and output
signals to estimate the states of the system. Through comparing the system output and the output of the
state observer and setting the error correction device, the observation error can converge and the closed
loop observer can be formed. According the observation theory, it is an effective method to estimate
the elastic vibration of the flexible manipulator by an observer. Through the use of self-recurrent
wavelet neural networks, an adaptive observer [19] was proposed to estimate the actuator and link
velocity information of a flexible-joint electrically-driven robot and the position tracking of the link was
achieved. In [20], for the purpose of avoiding the installation of many sensors on the small mechanical
structure in the traditional control methods, the feasibility of avoiding velocity measurements to
control dexterous robots was analyzed. Similarly, in the field of robot assembly, Park [21] designed
a quasi-static modal filter to estimate the fast time-varying vibration for the synchronous control of
the static shape deformation and vibration of flexible load. Without the vibration measurement of
the operated objects, the trajectory tracking control of two planar robots, which are used to move a
flexible beam, was realized in [22]. Mosayebi [23] designed a nonlinear high-gain observer to estimate
the elastic degrees of freedom of a flexible-link manipulator. However, the above methods have not
been considered for the rigid-flexible coupling effect for the flexible manipulator system. With one
observer applied for the simultaneous estimation of both the global motion of the rigid base and the
elastic vibration of the flexible manipulator, those methods have many shortages, such as complicated
design, heavy computational burden, and poor real-time transmitting capability. Actually, the motion
of the translational flexible-link manipulator (TFM) consists of the rigid base motion and the elastic
vibration of the flexible manipulator, and those two motions happen in two time scales [24].

Based on the above issues, in this paper the dynamic model of the TFM system is decomposed into
the slow subsystem and the fast subsystem by the singular perturbation method. The slow subsystem
expresses the global motion of the rigid base while the fast subsystem expresses the elastic vibration of
the flexible manipulator. Then, based on the observation theory of state observer, a speed observer and a
vibration observer are designed for the slow subsystem and the fast subsystem, respectively. Moreover,
through the linear-quadratic differential games, the observer gains are optimized to minimize the
observation error.

This paper is structured as follows: Section 2 shows the modeling and decomposition of the TFM
system; Section 3 indicates the design and analysis of the two-time scale virtual sensor which is the
main content; the effectiveness of the designed two-time scale virtual sensor is verified in Section 4;
and finally, Section 5 summarizes this work.

2. Dynamic Modelling and Decomposition of the TFM

The configuration of the TFM system is shown in Figure 1. During the modelling, the following
assumptions are made: (1) the TFM system moves in the horizontal plane and the gravity and air
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resistance can be ignored; (2) since the ratio of the length and the cross-sectional area is large, the TFM
is simplified as an Euler-Bernoulli beam and only the transverse vibration is taken into consideration.
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Figure 1. The translational flexible-link manipulator system.

The system parameters of the TFM are set as follows: A, L, EI, and ρ are the sectional area, the
length, the bending stiffness, and the density of the flexible-link manipulator, respectively. mb and S(t)
represent the mass and displacement of the base, respectively. mt denotes the mass of the payload.
ω(x, t) indicates the transverse vibration of the flexible-link manipulator. The derivative notations are
defined as:

.
∆ = ∂(∆)/∂t and

..
∆ = ∂2(∆)/∂t2.

Based on the assumption mode method [25,26], the transverse vibration of the TFM system can
be expressed as:

ω(x, t) =
m→∞

∑
i=1

φi(x)qi(t)

= Φ(x)q(t)
(1)

where qi(t) denotes the modal coordinates, φi(x) denotes the i-th modal shape, and m is the modal
number. Owing to the TFM can be considered as a cantilever beam, φi(x) can be further represented as:

φi(x) = sin βix− sinh βix−
sin βiL + sinh βiL
cosh βiL + cos βiL

(cos βix− cosh βix) (2)

where βi
4 = λi

2(ρA/EI), and λi is the i-th inherent frequency of the TFM.
The kinetic energy of the TFM system can be shown as:

T =
1
2

mb
.
S

2
(t) +

1
2

L∫
0

ρA
[ .
S(t) +

.
ω(x, t)

]2
dx +

1
2

mt

[ .
S(t) +

.
ω(L, t)

]2
(3)

The potential energy of the TFM system is caused by the elastic deformation of the flexible
manipulator, which can be written as:

U =
1
2

L∫
0

EI
[

∂2ω(x, t)
∂x2

]2

dx (4)

The driving force of the base and the friction between the base and the guide constitute the
external force of the TFM system. Then, the non-conservative work can be represented as:

δW = F(t)δS(t)− υs
.
S(t)δS(t)− σq

L∫
0

.
ω(x, t)σω(x, t)dx (5)

where F(t) is the driving force of the base, υs is the friction coefficient between the base and the guide,
and σq is the structural damping of the TFM.
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Based on the principle of the Euler-Bernoulli beam and Hamilton’s principle, the relationships
among the kinetic energy, the potential energy, and the non-conservative work of the TFM system can
be shown as: ∫

(δT − δU + δW)dt = 0 (6)

By substituting Equations (3)–(5) into Equation (6), the dynamics model of the TFM system can
be expressed as:

[
Mss Msq

Mqs Mqq

] [ ..
S (t)
..
q (t)

]
+

 pss

(
S, q,

.
S,

.
q
)

0

0 pqq

(
S, q,

.
S,

.
q
)  [ .

S (t)
.
q (t)

]
+

[
0 0
0 Kq

] [
S (t)
q (t)

]
=

[
F (t)

0

]
(7)

where Mss ∈ <1×1, Msq ∈ <1×m, Mqs ∈ <m×1, Mqq ∈ <m×m, and Kq ∈ <m×m. The variables and
vector can be further represented as follows:

Mss = mb + ρAL + mt

pss

(
S, q,

.
S,

.
q
)
= υs

pqq

(
S, q,

.
S,

.
q
)
= diag

[
σq1 σq2 · · · σqm

]
Msq = ρA

L∫
0

Φ(x)dx + mtΦ(L)

Mqs = ρA
L∫

0

ΦT(x)dx

Mqq = diag
[

ρA ρA · · · ρA
]

Kq == diag
[

ρAλ1
2 ρAλ2

2 · · · ρAλm
2
]

According to the system characteristics, the quality matrix of the TFM is full-rank and the inverse
matrix can be shown as:

H (S, q) =

[
Hss (S, q) Hsq (S, q)
Hqs (S, q) Hqq (S, q)

]
=

[
Mss Msq

Mqs Mqq

]−1

(8)

Multiplying by H(S,q) on both sides, Equation (7) can be simplified as:

..
S (t) = Hss (S, q)

[
F (t)− pss

(
S, q,

.
S,

.
q
) .

S
]
−Hsq (S, q)

[
pqq

(
S, q,

.
S,

.
q
) .

q + Kqq
]

(9)

..
q(t) = Hqs (S, q)

[
F (t)− pss

(
S, q,

.
S,

.
q
) .

S
]
−Hqq (S, q)

[
pqq

(
S, q,

.
S,

.
q
) .

q + Kqq
]

(10)

The next step is to define the singular perturbation parameter as ε =
√

1/Kmin (Kmin = min
(
Kq
)
).

Then, Equations (9) and (10) can be further converted as:

..
S (t) = Hss

(
S, ε2ξ

) [
F (t)− pss

(
S, ε2ξ,

.
S, ε2

.
ξ
) .

S
]
− ε2pqq

(
S, ε2ξ,

.
S, ε2

.
ξ
) .
ξ−Hsq

(
S, ε2ξ

)
K̃qξ (11)

ε2
..
ξ = Hqs

(
S, ε2ξ

) [
F (t)− pss

(
S, ε2ξ,

.
S, ε2

.
ξ
) .

S
]
− ε2pqq

(
S, ε2ξ,

.
S, ε2

.
ξ
) .
ξ−Hqq

(
S, ε2ξ

)
K̃qξ (12)

where ξ = q/ε2 and K̃q = ε2Kq.
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When ε = 0, the static solution of the vibration can be solved from Equation (12) and the variable
expression is:

ξ =
(

K̃q

)−1 [
Hqq (S, 0)

]−1
{

Hqs (S, 0)
[

F (t)− pss

(
S, 0,

.
S, 0
) .

S
]}

(13)

By substituting Equation (13) into Equation (11), the dynamic model of the slow subsystem can
be obtained as:

..
S (t) = −

(
Hss (S, 0)−Hsq (S, 0)

[
Hqq (S, 0)

]−1 Hqs (S, 0)
)

pss

(
S, 0,

.
S, 0
) .

S

+
(

Hss (S, 0)−Hsq (S, 0)
[
Hqq (S, 0)

]−1 Hqs (S, 0)
)

F (t)
(14)

According to the formulas for the block matrix inversion, one can obtain:

Hss (S, 0)−Hsq (S, 0)
[
Hqq (S, 0)

]−1 Hqs (S, 0) = [Mss]
−1 (15)

Based on the substitution of Equation (15) into Equation (14), the state space equation of the slow
subsystem for the TFM system can be expressed as:[ .

α1
.
α2

]
=

[
0 1

0 −M−1
ss pss

(
S, 0,

.
S, 0
) ]

︸ ︷︷ ︸
As

[
α1

α2

]
+

[
0

M−1
ss

]
︸ ︷︷ ︸

Bs

F(t) (16)

where the state variables are defined as α =
[

α1 α2

]
=
[

S
.
S
]
.

For the fast subsystem of the TFM system, through defining the state variables as z1 = ξ (t) and
z2 = ε

.
ξ (t), Equation (12) can be transformed into:

.
z1 = z2

ε
.
z2 =Hqs

(
α1, ε2z1

) [
F (t)− pss

(
α1, ε2z1, α2, εz2

)
α2
]
−

ε2pqq
(
α1, ε2z1, α2, εz2

)
z2 −Hqq

(
α1, ε2z1

)
K̃qz1

(17)

In order to fix the model error between the slow subsystem and the actual system, the correction
parameters of the boundary layer are introduced, which are defined as β1 = ξ− ξ = z1 − z1 and
β2 = ε

.
ξ = z2. Defining the fast time scale as κ = t/ε, the slow variables can be regarded as constants

on the edge of the boundary layer region, which means κ → 0 . Then, the state space equation of the
fast subsystem for the TFM system is transformed from Equation (17) and can be expressed as:[

dβ1
dκ

dβ2
dκ

]
=

[
0 I

−Hqq (α1, 0) K̃q 0

]
︸ ︷︷ ︸

A f

[
β1
β2

]
+

[
0

Hqs (α1, 0)

]
︸ ︷︷ ︸

B f

F(t) (18)

3. Two-Time Scale Virtual Sensor Design

With the analysis of the controllability and observability for the slow and fast subsystems of the
TFM, the existence conditions of the observers are satisfied and the structure diagram of the two-time
scale virtual sensor is illustrated in Figure 2, where Ŝ(t) and ω̂(L, t) denote the estimates of the base
displacement and the tip vibration of the flexible manipulator, respectively. ω̂(x, t) and

.
ω̂(x, t) express

the estimates of ω(x, t) and
.

ω(x, t), where x ∈ [0, L].
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Then, the speed observer equation of the slow subsystem and the vibration observer equation of
the fast subsystem can be represented as:

.
α̂ = Asα̂+ BsF + Ks

(
S− Ŝ

)
(19)

.
β̂ = A f β̂+ B f F + K f [ω(L, t)− ω̂(L, t)] (20)

where Ks and Kf indicate the observer gains of the speed observer and the vibration observer,
respectively.

Subtracting Equations (19) and (20) from Equations (16) and (18), respectively, the error models of
the two-time scale virtual sensor can be obtained as:{ .

α̃(t) = Asα̃(t)−KsS̃
.
β̃(t) = A f β̃(t)−K f ω̃(L, t)

(21)

where ∆̃ represents the observation error of the corresponding variables.
Based on the quadratic performance index, the linear-quadratic differential games can optimize

the control parameters of the both sides of the differential games. Taking the state variables as

x̃ =
[
α̃ β̃

]T
, Equation (21) is transformed as the general form of the linear-quadratic differential

games which is shown as Equation (22). u(t) and v(t) represent the control vectors of the speed
observer equation and the vibration observer equation, respectively. Then, treating u(t) and v(t) as two
sides of the countermeasures, the observer gains of the speed observer and the vibration observer are
optimized by the linear-quadratic differential games.{ .

x̃(t) = Awx̃(t) + Csu(t) + C f v(t)
x̃(0) = 0

(22)

where Aw =

[
As 0
0 A f

]
, Cs =

[
I2∗2

02m∗2

]
, C f =

[
02∗2m
I2m∗2m

]
, u(t) = −KsS̃, v(t) = −K f ω̃(L, t).

The pay function is defined as:

J(x̃(t), α̃(t), β̃(t), u(t), v(t)) = (x̃(T0)− ζ)T W (x̃(T0)− ζ) +
T0∫
0

[
α̃T(t)Q1α̃(t) + β̃

T
(t)Q2β̃(t) + uT(t)R1u(t) + vT(t)R2v(t)

]
dt

(23)
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where ζ ∈ <(2m+2)∗1 expresses arbitrary given column vectors, W ∈ <(2m+2)(2m+2) is a constant
symmetric matrix, Q1 and R1 are symmetric positive definite matrices whose order is 2, and Q2 and
R2 are symmetric positive definite matrices whose order is 2 m.

The Hamiltonian function of the error model of the two-time scale virtual sensor is defined as:

H
(
α̃, β̃, u, v, α̃0, β̃0

)
= α̃T(t)Q1α̃(t) + β̃

T
(t)Q2β̃(t) + uT(t)R1u(t) + vT(t)R2v(t)+

α̃T(t)
(
AT

s P1 + P1As
)
α̃(t) + β̃

T
(t)
(

AT
f P2 + P2A f

)
β̃(t)+

α̃T(t)P1u(t) + uT(t)P1α̃(t) + β̃
T
(t)P2v(t) + v(t)P2β̃(t)

(24)

Then, for the Hamiltonian function, the sufficient conditions for the existence of the extreme value
are represented as: {

∂H
∂u = 2P1α̃(t) + 2R1u(t) = 0
∂H
∂v = 2P2β̃(t) + 2R2v(t) = 0

(25)

From Equation (25), the optimal observer gains of the two-time scale virtual sensor can be deduced
as Equation (26) and the pay functional is minimized at this point:{

uγ(t) = −R1
−1P1α̃(t)

vγ(t) = −R2
−1P2β̃(t)

(26)

Owing to ∂2 H
∂u2 = 2R1 > 0 and ∂2 H

∂v2 = 2R2 > 0, the minimum of the Hamiltonian function exists.
Additionally, when u(t) and v(t) satisfy Equation (26), the minimum of the Hamiltonian function is 0.

Substituting Equation (26) into Equation (24) leads to:

H
(
α̃, β̃, uγ, vγ, α̃0, β̃0

)
= α̃T(t)

[
AT

s P1 + P1As − P1R1
−1P1 + Q1

]
α̃(t)+

β̃
T
(t)
[
AT

f P2 + P2A f − P2R2
−1P2 + Q2

]
β̃(t)

= 0

(27)

Then, the satisfied Riccati functions of P1 and P2 can be obtained as:

AT
s P1 + P1As − P1R1

−1P1 + Q1 = 0 (28)

AT
f P2 + P2A f − P2R2

−1P2 + Q2 = 0 (29)

In order to guarantee the stability of the two-time scale virtual sensor system under the action of
the above optimal observer gains, the Lyapunov function of the error models is defined as:

V
(
α̃(t), β̃(t)

)
= α̃T(t)P1α̃(t) + β̃

T
(t)P2β̃(t) (30)

With Equations (28) and (29) combined, differentiating V
(
α̃T(t), β̃(t)

)
with respect to time yields:

.
V
(
α̃T(t), β̃(t)

)
=

.
α̃

T
(t)P1α̃(t) + α̃T(t)P1

.
α̃(t) +

.
β̃

T
(t)P2β̃(t) + β̃

T
(t)P2

.
β̃(t)

= [Asα̃(t) + u(t)]T P1α̃(t) + α̃T(t)P1 [Asα̃(t) + u(t)] +[
A f β̃(t) + v(t)

]T
P2β̃(t) + β̃

T
(t)P2

[
A f β̃(t) + v(t)

]
= α̃T(t)

[
AT

s P1 + P1As − P1R1
−1P1 + Q1

]
α̃(t)+

β̃
T
(t)
[
AT

f P2 + P2A f − P2R2
−1P2 + Q2

]
β̃(t)− α̃T(t)Q1α̃(t)−

β̃
T
(t)Q2β̃(t)− uT(t)R1u(t)− vT(t)R2v(t)

(31)
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Since Q1, Q2, R1, and R2 are symmetric positive definite matrices, one can obtain:

.
V
(
α̃T(t), β̃(t)

)
= −α̃T(t)Q1α̃(t)− β̃

T
(t)Q2β̃(t)− uT(t)R1u(t)− vT(t)R2v(t) < 0 (32)

Thus, the designed two-time scale virtual sensor system is asymptotically stable.

4. Simulation and Experiment Validation

In this section, a simulation is employed to analyze the observation effect of the vibration
observer for the elastic modes of the TFM. The material properties are defined as follows: L = 400 mm,
ρ = 2.03 × 10−3 g/mm3, A = 135 mm2, and E = 25 GPa. As indicated in [27], only the first several
low-order modes play a major role in the vibrations of the flexible manipulator. Thus, in order to
simplify the analysis process, the first-order and second-order modes are given consideration. The
total simulation time is 0.6 s and the simulation step is 0.001 s. The motion of the base is defined as a
constant acceleration when t = 0–0.4 s and a constant speed when t = 0.4–0.6 s. The observer gains are

set to Ks =
[

20.1 100.2
]T

and K f =
[

1.24E + 3.0 9.30E + 4.0 3.20E + 5.0 3.3E + 7.0
]T

.
Figures 3 and 4 are the tracking effect of the designed vibration observer for the first-order and

second-order mode coordinates of the flexible-link manipulator. It is found that the initial error can
be quickly reduced and the vibration modes and their derivative of the flexible-link manipulator are
tracked with zero steady-state error. As can be seen from Figures 5 and 6, the tracking error of the
vibration displacement and velocity for any points of the flexible-link manipulator gradually tend to
zero, under the base movement of constant acceleration and constant speed. The effectiveness of the
proposed vibration observer is verified.
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Then, Figure 7 illustrates a photograph of the experimental device for the translational flexible-link
manipulator. An epoxy resin plate of 400 mm length, 40 mm width, and 3 mm thickness is seen as a
flexible-link manipulator whose vibration displacement is measured by a laser displacement sensor
(KEYENCE: LK-G30, Osaka, Honshu, Japan) and the repetitive precision is 0.05 × 10−3 mm. The base
of the flexible-link manipulator system is driven by a permanent magnet synchronous AC servomotor
(Panasonic: NO. MSMJ022G1U, Osaka, Honshu, Japan) through a ball screw. The displacement of the
base is transformed from the motor angle, which is measured by its rotary incremental encoder and the
resolution of the encoder is 220. The motion of the servomotor is controlled by a motion control card
(GOOGOLTECH: NO: GT-400-SV-PCI, Hong Kong, China). The base motion is set as a point-to-point
movement and the speed curve is set as a trapezoidal curve. The specific motion parameters of the base
are as follows: the displacement is 200 mm, the maximum velocity is 100 mm/s, and the acceleration
is 500 mm/s2.Sensors 2016, 16, 1804 11 of 15 

 

 

Figure 7. Photograph of the experimental setup. 

 
Figure 8. Base displacement and velocity observation: (a) base displacement tracking and (b) base 
velocity tracking. 

Figure 8 shows the tracking effect of the base displacement and velocity by the designed speed 
observer. It can be seen that the speed observer can accurately track the base displacement and 
velocity under the movement of constant acceleration, constant speed, and constant deceleration. 
The tracking speed of the base displacement is high and the observation deviation of the base 
velocity can be eliminated rapidly.  

The vibration signals of x = 150 mm are selected to be observed to verify the proposed vibration 
observer. In order to further show the performance of the proposed vibration observer, a 
comparison experiment is added in which the observer gains are designed by the pole assignment 

Figure 7. Photograph of the experimental setup.

Figure 8 shows the tracking effect of the base displacement and velocity by the designed speed
observer. It can be seen that the speed observer can accurately track the base displacement and velocity
under the movement of constant acceleration, constant speed, and constant deceleration. The tracking
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speed of the base displacement is high and the observation deviation of the base velocity can be
eliminated rapidly.
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Figure 8. Base displacement and velocity observation: (a) base displacement tracking and (b) base
velocity tracking.

The vibration signals of x = 150 mm are selected to be observed to verify the proposed vibration
observer. In order to further show the performance of the proposed vibration observer, a comparison
experiment is added in which the observer gains are designed by the pole assignment method.
The results are illustrated in Figure 9, where SOP means the estimation of the comparison experiment
and PVO indicates the estimation of the proposed vibration observer. Although there are certain
errors in the amplitude tracking during the change of the base motion state, the tracking trend of the
proposed vibration observer is identical to the experimental results, which is much better than the
SOP. More important, when the base stops, the proposed vibration observer can accurately observe the
residual vibration of the flexible-link manipulator which is significant for vibration control. Figure 9b–d
show the amplitude spectra of the experiment and two observation results for the vibration signals
(x = 150 mm). It is observed that the dominant vibration frequency of the measured results is close
to 9 Hz, which is the first-order natural frequency of the flexible-link manipulator. Although the
dominant vibration frequency of the SOP is close to 9 Hz, the errors in the amplitude tracking are much
larger than the PVO, especially during the change of the base motion state. Above all, the flexible
vibration of the TFM can be well observed by the proposed vibration observer.
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Figure 10 shows the statistical investigation and analysis of the vibration displacement errors
for the vibration signals (x = 150 mm). The PVO method has 70.51% sampling points with less
than 0.0001 mm vibration displacement errors and 99.40% sampling points with less than 0.001 mm
vibration displacement errors, while the proportions of the SOP method are, respectively, 8.87% and
59.76% at the corresponding vibration displacement errors. Table 1 lists the performance comparison
among PVO and SOP techniques. The proposed vibration observer can effectively reduce the mean
and variance values of the observation error. It is observed that the effect of the proposed vibration
observer is much better.
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Table 1. Performance comparison among SOP and PVO techniques.

Performance SOP PVO

vibration displacement error range/mm [−0.048, 0.016] [−0.048, 0.008]
Mean of vibration displacement error/mm 2.89 × 10−4 1.14 × 10−5

Variance of vibration displacement error 4.05 × 10−5 7.62 × 10−7

5. Conclusions

In this paper, a two-time scale virtual sensor, based on the decomposition model of the TFM
system, is proposed to estimate both position and speed signals of the rigid base and the elastic
vibration of the flexible-link manipulator. Through the linear-quadratic differential games and
Lyapunov theory, the stability of the two-time scale virtual sensor is verified under the optimization of
the observer gains. Results show that the speed observer can exactly estimate the velocity of the base
and the vibration observer can accurately observe the elastic vibration signals, as well as their time
derivative of the flexible-link manipulator under the motions of constant acceleration, constant speed,
and constant deceleration. Through this procedure, the number of the additional position sensors
can be effectively reduced and the speed sensors are unnecessary, which has positive significance for
enhancing the system reliability and reducing the cost. Moreover, the global motion of the rigid base
and the elastic vibration of the flexible manipulator can be estimated by an independent observer,
which can effectively solve the rigid-flexible coupling of the TFM and improve the timeliness of the
observer. The proposed observer is of great importance for the elastic vibration suppression of the
flexible beam structure by PZT actuators.
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