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Abstract: Electroencephalographic (EEG) irreducible artifacts are common and the removal of
corrupted segments from the analysis may be required. The present study aims at exploring the
effects of different EEG Missing Data Segment (MDS) distributions on cross-correlation analysis,
involving EEG and physiological signals. The reliability of cross-correlation analysis both at single
subject and at group level as a function of missing data statistics was evaluated using dedicated
simulations. Moreover, a Bayesian-based approach for combining the single subject results at group
level by considering each subject’s reliability was introduced. Starting from the above considerations,
the cross-correlation function between EEG Global Field Power (GFP) in delta band and end-tidal CO2

(PETCO2) during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis
of simulated data results at single subject level revealed a worsening of precision and accuracy in
the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in
the results’ reliability with respect to single subject analysis was observed. The proposed Bayesian
approach showed a slight improvement with respect to simple average results. Real data results were
discussed in light of the simulated data tests and of the current physiological findings.

Keywords: EEG; missing data segments; cross correlation function; control of breathing

1. Introduction

An electroencephalogram (EEG) can record electrical brain oscillations from electrodes on the
scalp surface and can be analyzed through different signal processing approaches, such as time domain,
frequency domain, and time-frequency analysis methods [1,2]. Although the analysis of EEG signals
has a long history within the neuroscience field, the reciprocal influence among EEG signals and
other physiological processes, such as heart regulatory processes or breathing control, is still to be
fully characterized [3,4]. One approach that allows for merging EEG-related information and specific
physiological signals is represented by the use of the cross-correlation function in the time domain [5].
This method identifies the degree of similarity between two signals and is largely used to evaluate brain
connectivity [6,7]. In [8], it was used to estimate the time delay between drug delivery and bispectral
index used to control anesthesia level in a closed loop model for an Intensive Care Unit. The analysis of
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cross-correlation function was adopted to evaluate the link between EEG and cerebral blood flow in [9]
to improve the knowledge of cerebral blood flow control in newborns. In [10], a correlational analysis
among respiratory volume per time, EEG, and Blood Oxygen Level Dependent (BOLD) signals was
performed using concurrent EEG-fMRI acquisition at rest. The correlational analysis results allowed us
to hypothesize a reciprocal link of neuronal origin among EEG power, respiration, and BOLD signal.

One relevant methodological issue in the analysis of the EEG signal is the presence of several kinds
of artifacts [11] that might cause a loss of information [12], a decrease of Signal-to-Noise Ratio (SNR),
and an alteration in the results of the cross-correlation analysis [9]. While in Event-Related Potential
(ERP) studies SNR is improved by averaging several trials that are time-locked to a stimulus [13],
this approach cannot be followed in cross-correlation analysis. Artifacts showing high reproducibility
can be effectively removed by using multivariate approaches such as Principal and Independent
Component Analysis (PCA and ICA) [14,15]. For instance, in [16], an automatic method was developed
to identify eye blink-related component. Specifically, this approach is based on a measure of correlation
between the independent components and frontal EEG signals, together with the analysis of the spatial
distribution of the power of the component. In another work [17], a semi-automatic cleaning method
based on ICA and the definition of statistical markers to classify the components, was proposed to
improve the quality of the EEG signal acquired from Alzheimer’s patients. However, in the case
of non-stationary phenomena, electrodes, or body movements, artifact removal cannot be easily
accomplished, and corrupted data segments must be discarded. As a matter of fact, the presence of
Missing Data Segments (MDS) is a common problem in the analysis of EEG signals that can influence
the validity and the interpretability of research results [18]. A method that allows us to estimate the
cross-correlation function in the presence of MDS was developed in [9]. In the above-cited work, an
approach based on the estimation of the cross-correlation function between incomplete EEG data and
cerebral blood flow was presented. Moreover, Monte Carlo simulations were carried out to estimate
the distribution of the cross-correlation function under the null hypothesis of no correlation (H0),
thus assessing the statistical significance of the observed results. The statistical power of the analysis
was also evaluated using exactly the same missing samples observed in each subject. Some tests
were also performed by randomizing the same number of missing samples found in real acquisitions.
The above-cited work has one limitation. In fact, it does not take into account the effect of different
distributions of MDS on the correlation function between the unknown, noise-free signals. In fact,
different experiments are likely to differ as to number and length of MDS. In [19], Morelli et al.
partially addressed this problem by evaluating the effects of a limited number of MDS distributions on
a correlational analysis between simulated EEG Global Field Power (GFP) and End tidal CO2 (PETCO2).

Here, we aim at expanding the above-cited work to quantify the validity and reliability of the
results in the presence of MDS. This goal will be pursued by carrying out extensive simulations to
mimic the impact of different MDS distributions on the correlation analysis between GFP and PETCO2

signals. The simulations will be performed both at single subject and at group levels.
Moreover, a novel approach to performing a group analysis in the presence of MDS will be

presented. The proposed approach aims at estimating a measure of reliability of the cross-correlation
function between EEG power and PETCO2 at the single subject level, and adopting this measure to
correct the analysis at the group level within a Bayesian framework.

The choice of performing the correlation analysis between EEG and blood-related CO2 changes is
motivated by the need to improve current knowledge in the central processes involved in the control
of breathing. Specifically, such an investigation could reveal how cortical activations are involved in
the regulation of breathing both in physiological and pathological conditions, such as central apneas,
Cheyne-Stokes Respiration (CSR) [20], and Obstructive Sleep Apnea (OSA) [21]. In this work we
will focus on the brain activity in the delta band, which was found to be correlated with CO2 level
changes in healthy subjects [22]. Moreover, significant changes of EEG activity in the delta band EEG
were observed in OSA [23] and in CSR subjects [24]. In view of the methodological findings and
available literature on this topic, a correlational analysis between EEG signals and PETCO2 signals
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recorded during Free Breathing (FB) and Breath Hold (BH) tasks in healthy subjects will be performed
and discussed.

2. Materials and Methods

2.1. Experimental Protocol

Six healthy subjects (all males, age 31 ± 7) were recruited for this study. An EEG device and a
system for physiological parameters acquisition were used for simultaneous acquisition of brain activity
and physiological parameters related to breathing and heart functions. The 64-electrode EEG device
(Compumedics USA, Charlotte, NC, USA) included two channels for the Electrocardiographic (ECG)
signal and two channels for Electro-oculogram (EOG) signal. The EEG signal was low-pass filtered at
400 Hz and sampled at 1 kHz. The electrodes’ impedance was kept below 30 kΩ during all recordings.
Exhaled CO2 and blood oxygen saturation (SpO2) were recorded with a CO2 analyzer (Novametrix
Medical Systems Inc., Wallingford, CT, USA) and with a pulse oximeter (Minolta, Tokyo, Japan),
respectively. The physiological signals were digitized online via a National Instrument acquisition
card and a specific homemade software (Fondazione Toscana Gabriele Monasterio, National Research
Council, Pisa, Italy) written in Java. The subjects performed two different tasks. In the FB task the
subject had to breathe normally while lying down with eyes closed for 360 s. The second one was a
voluntary end-inspiratory BH task: the subject, after 1 min of FB task, was asked to alternate 5 cycles
of 30 s of BH and 30 s of FB, for a total length of 360 s. Subjects were advised to start and stop the BH
task by touching their left leg. The same touching procedure was adopted in the FB task, for control
purposes. The experimental protocol was approved by the Institutional Ethical Committee.

2.2. EEG Processing

The recorded EEG data were filtered with a Hann pass filter between 1 and 30 Hz. Bad electrodes
were detected for each acquisition and removed from the analysis. Blink and pulse artifacts were
detected using EOG and ECG signals and removed using PCA algorithm. All data segments in
which artifact removal methods were not effective were marked and excluded from subsequent
analysis. These segments were defined as Missing Data Segments (MDS). A time-frequency analysis
was performed to estimate the EEG power in the delta (1–4 Hz) band in the remaining Valid Signal
segments (VS). For each channel, the spectrogram was calculated using a Hanning window of 2 s
length and overlapping time of 1 s. The GFP in delta band was calculated as the mean power value
across all channels. Finally, the calculated GFP was resampled at 50 Hz and linearly detrended.

2.3. Physiological Signal Processing

The observation of SpO2 levels was used to detect the tasks’ possible effects on oxygen level.
The normal range of SpO2 was considered to lie between 95% and 100%. The exhaled CO2 waveforms
were used to estimate the PETCO2 time series, which is an estimate of arterial CO2 (PaCO2) [25].
In both tasks, during the breathing period, the CO2 values at the end of each expiration phase were
interpolated to calculate PETCO2. In the BH task, during BH intervals the PETCO2 signal was estimated
using a cubic spline model interpolation. As for GFP, the PETCO2 signal was linearly detrended and
resampled at 50 Hz to facilitate the alignment of both time series.

2.4. Single Subject Correlational Analysis

In this section, the methodology used to estimate the Cross-Correlation Function (CCF) between
GFP and PETCO2 at single subject level will be described. First, it will be shown how the CCF can be
evaluated in the presence of MDS (Section 2.4.1). Then, the approach used to quantify the impact of
MDS on the CCF estimate, using simulated data, will be detailed (Section 2.4.2). The results of the
latter study will be used both to evaluate the reliability of the single subject analysis results and to
inform the group level analysis, as will be described in Section 2.5. Finally, a description of the analysis
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of real data at single subject level will be given (Section 2.4.3). In this case, an approach using surrogate
data will be followed to evaluate the statistical significance of the results.

2.4.1. CCF Estimation

The CCF between GFP and PETCO2 will be estimated in MATLAB (MATLAB, The Mathworks
Inc., Natick, MA, USA) for time lags between −30 s and 30 s. When MDS are present, the CCF is
estimated taking into account only EEG VS segments after the exclusion of MDS. Specifically, the
correlation coefficient at each time lag was obtained using only the intersection between the VS of the
GFP and PETCO2 time series.

2.4.2. Evaluation of the Effects of MDS on Correlational Analysis

We propose to evaluate the effects of MDS on the correlation analysis using dedicated simulations.
We hypothesize that the estimate of the CCF between EEG-GFP and PETCO2 depends upon the length
and the time distribution of MDS as well as upon different possible time courses of EEG-GFP and
PETCO2. We hypothesize that the distribution of MDS is the realization of a random process that is
independent from the process generating the EEG-GFP signal. Several MDS distributions, differing for
total length and number of segments, were simulated. Each MDS was applied to simulated MDS-free
GFPs in the delta band and the corresponding CCF were estimated. The approach we followed is
characterized by the following steps:

(i) MDS simulations. Five classes of MDS, characterized by increasing percentage of VS, were
simulated (class A: 50%–60% of VS, class B: 60%–70% of VS, class C: 70%–80% of VS, class D:
80%–90% of VS, class E: 90%–100% of VS). For each class, 30 different MDS distributions were
extracted. The constraints on MSD length were obtained from real data.

(ii) GFP simulations. The MDS-free GFP time courses were simulated to have the same second order
statistics (i.e., power spectrum) of the measured GFPs in the delta band. Since observed GFPs
usually contain MDSs, to obtain MDS-free GFPs we choose to adopt the approach developed
in [9]. Specifically, the GFP surrogate time series was obtained from the AutoCorrelation Function
(ACF) estimated exploiting available data, under the hypothesis that the ACF obtained with
and without MDS are not significantly different. The GFP amplitude spectrum was given by the
square root of the Fourier Transform (FT) of the ACF. Then a random phase was added to the GFP
amplitude spectrum. Finally, a MDS-free surrogate GFP time series was obtained by applying the
Inverse FT to the GFP spectrum (see Appendix A). Among surrogate data, we chose the GFP time
series that resulted in the cross-correlation with PETCO2 having the maximum value at time delay
equal to 0 s. We chose to simulate three GFP families. Specifically, we simulated 10 GFPs with
a maximum, and statistically significant, correlation with PETCO2 equal to 0.3 ± 0.05, 10 with a
maximum correlation coefficient equal to 0.4 ± 0.05 and 10 GFPs with a maximum correlation of
0.5 ± 0.05.

(iii) Final evaluation of the effects of MDS on CCF estimation. The CCF time courses, the maximum
correlation coefficients (close to 0.3, 0.4, and 0.5, as described in the previous paragraph), and
the corresponding time lags (corresponding to t = 0 s), which were obtained from MDS-free GFP
time series, represent the “true” values, referred to in the following as target values. The CCF and
corresponding statistics obtained by applying the MDS to the simulated GFPs will be referred to
as actual values. A total of 300 different CCFs for each combination of MDS class and GFP family
were obtained. Different quality parameters were evaluated. First, the differences between the
amplitudes of the target and actual maximum correlation coefficients as well as the differences in
the corresponding time lags were estimated. Then, the differences between actual and target CCF
time series were quantified by estimating the Normalized Root-Mean-Square Error (NRMSE) that
can be seen as a measure of accuracy (see Appendix B). Finally, the standard deviations of the
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CCFs at each time lag were calculated, thus obtaining a measure of the precision as a function of
the VS percentage and GFP family.

All the simulations were performed in Matlab using a desktop computer (Intel (R) Core (TM)
i7-3700 CPU @ 3.50 GHz, RAM 8 GB, operating system Windows 7–64 bit). A time interval of 30 min
was necessary to estimate the 10 simulated GFPs in each group of target values. For each combination of
simulated GFP and MDS distribution, the calculation of CCF required approximately 100 s. A parallel
computing approach was adopted using the parpool Matlab function. Specifically, the parfor function
was used to execute a for loop in parallel using four workers.

2.4.3. Analysis of Real Data at Single Subject Level

Since the phenomena of interest are characterized by slowly varying components, the GFP and
PETCO2 time courses were smoothed with a zero-phase moving average filter of 10 s before correlation
analysis [10]. At each time lag the value of the CCF, i.e., the cross-correlation coefficient, can be seen as
an observed value of a random variable that depends on the actual GFP and PETCO2 time courses.
The statistical significance of the results was assessed by estimating the distribution of the CCF under
the null hypothesis of no correlation between signals (H0) using surrogate data. To achieve this goal,
non-parametric method described in [26] was used. Specifically, the Fourier Transform (FT) of the
original signals was performed and 1000 phase randomized surrogates were generated for each signal
and for each time lag. When MDS were observed in the GFP signal, the GFP surrogate time series
was obtained from the ACF estimated exploiting available data as described in Section 2.4.2. (ii).
As a result, 1000 estimates of the CCF under H0 were obtained. The critical values of the correlation
coefficients, corresponding to α = 0.05, were estimated from percentile values as a function of time lag.
The computing time to estimate each CCF was approximately 100 s, as described in Section 2.4.2.

2.5. Group Analysis

At the group level we propose to adopt a Bayesian approach whereby the information about the
proportion between VS and MDS is exploited. A classical approach to estimate the CCF at group level
is to average the functions obtained at the single subject level. Our aim is to improve the simple average
approach by weighting the contribution of each subject to the group level CCF. The weights are related
to a reliability measure estimated from the simulated data at the single subject level. We propose using
the inverse of the CCF standard deviation estimated, as described in Section 2.4.2. (iii). Specifically,
a standard deviation value at each time lag was estimated for each one of the five MDS classes, by
averaging all the values obtained across the GFP families. Our approach is derived from the group
level analysis described in [27]. This method consists of combining results from single subject analysis
in an iterative way, starting from the probability distribution of the parameter of interest. According
to the Bayes rule (see Appendix C), it is possible to write the posterior distribution of the parameter,
given the results from the first subject y1, as

p (θ|y1) ∝ l (θ|y1)p (θ), (1)

where l (θ|y1) is the likelihood of θ given the data and p (θ) is the prior about the parameter [28]. In this
study a flat prior was adopted. The iterative scheme consists in treating the posterior distribution after
the first subject acquisition in Equation (1) as a prior for the second observation y2, whose posterior
distribution can be written as

p (θ|y1, y2) ∝ l (θ|y2)l (θ|y1)p (θ) = l (θ|y2)p (θ|y1). (2)
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This scheme will be repeated for n subjects and under the hypothesis of Gaussian likelihood
functions, the mean parameter at group level will have posterior Gaussian distribution N

(
θ, σ2

)
,

characterized by [27,28].

θ =

n
∑

i=1
σ−2

i θi

n
∑

i=1
σ−2

i

σ2 = 1
n
∑

i=1
σ−2

i

(3)

Equation (3) is a weighted average where each parameter’s variability, σi, can be seen as a measure
of the reliability for each subject. Using such an approach, each subject is considered to contribute with
a weight that is inversely proportional to her/his corresponding reliability measure. In this study, the
parameter of interest θ is the correlation coefficient at each time lag at the group level. We can explicitly
indicate its time dependency as θ (τ). To estimate this parameter we consider θi (τ) as the value of the
CCF of the i-th subject at time lag τ. The variability of the parameter θi (τ) can be written as σi (τ) and
is related to the standard deviation of the CCF obtained using simulated data, as in Section 2.4, and
chosen according to the amount of VS observed in the i-th subject recordings. In other words:

(i) Each subject i is assigned to a class according to the percentage of VS with respect to the overall
signal length. Five classes are considered, as described in Section 2.4 (class A: 50%–60% of VS,
class B: 60%–70% of VS, class C: 70%–80% of VS, class D: 80%–90% of VS, class E: 90%–100%
of VS);

(ii) The variability of the CCF for the i-th subject, at each time lag, is derived from the distribution of
the correlation coefficients found from the simulations described in Section 2.4;

(iii) At each time point, to calculate the correlation coefficient at group level, each subject is weighted
considering its class.

2.5.1. Test on Simulated Datasets

The effectiveness of the proposed approach was first tested on simulated datasets with known
cross-correlation functions. Specifically, each subject in the group had the same GFP time course but a
different MDS distribution. The target cross-correlation function at the group level was the average
cross-correlation function obtained without MDS. A comparison of the CCFs obtained using the simple
average and the weighted average methods was performed. The effectiveness of both approaches was
evaluated by calculating the NRMSE between the target and the actual cross-correlation functions.
Moreover, the amplitude and the corresponding time shift of the maximum correlation coefficients were
taken into consideration. Four different tests, differing by target CCFs as well as MDS distributions,
were performed:

(i) Fifteen subjects were taken into account. The GFP and PETCO2 were simulated to obtain a CCF
with a maximum correlation coefficient equal to 0.5 at a zero time lag. The five MDS classes
were equally distributed among the subjects (20% of subjects belonged to class A, 20% of subjects
belonged to class B, 20% to class C, 20% to class D, and 20% to class E).

(ii) Fifteen subjects were taken into account. The GFP and PETCO2 were simulated to obtain a CCF
with a maximum correlation coefficient equal to 0.5 at a zero time lag. A different distribution of
MDS with respect the preceding point was applied (40% of subject to class A, 40% to class B, and
20% to class E).

(iii) The same distribution of MDS as in point (ii) was also tested on a GFP whose target maximum
correlation with the PETCO2 was equal to 0.7 at a zero time lag.

(iv) The CCF is tested using the same number of subjects (i.e., six subjects) we enrolled in the real
data study and the same MDS distributions we experimentally observed. Both GFP and PETCO2

time series were simulated to have a maximum correlation coefficient equal to 0.5 ± 0.05 at a zero
time lag.
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2.5.2. Analysis of Real Datasets

The average and the weighted average CCFs were estimated on the group of subjects under
study. For the weighted average approach, each subject within the group was associated with an MDS
distribution according to the percentage of VS (class A, B, C, D, and E, as described above). The final
weighted average CCF was compared to the group averaged CCF. The statistical significance of each
curve was obtained using surrogate data. Specifically, 1000 surrogates were estimated for each time
lag and the threshold values corresponding to the 0.05 significance level were approximated from
percentile values.

3. Results

3.1. MDS Statistics

In Table 1, the statistics related to the simulated MDS are shown. Different percentages of VS,
number and length of missing data segments were obtained starting from the MDS statistics observed
in real datasets.

Table 1. Statistics of simulated Missing Data Segments (MDS) and Valid Signal (VS) percentages.

Class Label Percentage
of VS

VS Statistic (s) Number of
MDS

(mean)

MDS Statistics (s)

Mean
Length

Standard
Deviation Length

Mean
Length

Standard
Deviation Length

A 50%–60% 14.00 5.9 13 12.01 2.8
B 60%–70% 21.27 10.4 10 12.04 3.1
C 70%–80% 32.22 17.5 7 11.68 2.9
D 80%–90% 56.70 33.8 4 11.70 2.2
E 90%–100% 142.41 31.8 2 12.97 2.0

3.2. Single Subject Analysis

3.2.1. Simulated Data

In Table 2 the correlational analysis results (time delay and cross-correlation coefficient) using
different families of simulated GFPs and different MDS distributions are shown.

Table 2. Correlational analysis for simulated data with different MDS distribution. (A) Results
for time delay of maximum correlation coefficient; (B) Results for maximum correlation coefficient;
(C) Cross-correlation function (CCF) precision (mean value of standard deviation of CCF with respect
to target value, for each time shift). The results are shown for different target maximum correlation
coefficients (T. Max.ρ).

T. Max. ρ A
(50%–60% of VS)

B
(60%–70% of VS)

C
(70%–80% of VS)

D
(80%–90% of VS)

E
(90%–100% of VS)

(A) Delay (s) (mean ± sd)

0.3 −0.15 ± 13.7 −1.59 ± 11.9 −0.39 ± 11.2 0.207 ± 8.6 0.12 ± 6.1
0.4 0.95 ± 11.6 0.23 ± 9.3 0.949 ± 8.8 0.58 ± 6.2 0.17 ± 4.0
0.5 1.32 ± 8.4 0.53 ± 5.7 0.52 ± 5.0 0.44 ± 3.6 0.34 ± 3.1

(B) Maximum correlation coefficient (mean ± sd)

0.3 0.19 ± 0.3 0.22 ± 0.3 0.22 ± 0.3 0.26 ± 0.2 0.28 ± 0.2
0.4 0.27 ± 0.3 0.31 ± 0.3 0.32 ± 0.2 0.35 ± 0.2 0.37 ± 0.1
0.5 0.38 ± 0.3 0.44 ± 0.2 0.42 ± 0.2 0.45 ± 0.1 0.45 ± 0.1

(C) CCF Precision

0.3 0.13 0.12 0.10 0.09 0.08
0.4 0.12 0.11 0.10 0.09 0.08
0.5 0.12 0.10 0.09 0.07 0.06
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A reduction of the expected maximum correlation coefficient as well as an increase of its
standard deviation is obtained with decreasing percentages of VS. The decrease of expected maximum
correlation coefficient and the increase of standard deviation highlight a severe accuracy and precision
loss, respectively. Both accuracy and precision (Figure 1) improve with increasing values of simulated
maximum correlation coefficient.
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Figure 1. Standard deviation values of cross correlation function in simulated data for different GFPs
family ((a) Maximum CCF = 0.3± 0.05; (b) Maximum CCF = 0.4± 0.05; (c) Maximum CCF = 0.5 ± 0.05)
and MDS classes. In each family, with a decrease in VS percentage there is an increase in standard
deviation, that ism a loss of precision in simulations. Comparing the three panels, it is possible to
observe that precision improves in classes with an increased maximum correlation coefficient.

Accordingly, the time delays corresponding to the maximum correlation coefficient show large
departures from theoretical values. We noticed how large values can also be found with large
percentages of VS. Moreover, in Table 2 the mean value of standard deviation of the simulation
across all time lags is shown. Also in this case, a loss of precision is observed along with the decrease
of VS percentage. To evaluate the accuracy, NRMSE was studied (Figure 2). A reduction of NRMSE
error (see Appendix B) with increasing percentages of VS was found.
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Figure 3. PETCO2 and GFP signals of Subject 4 recorded during FB task (a) and BH task (b). 

During both tasks, besides EEG and CO2 signals, an SpO2 signal was recorded. No significant 
changes were observed in SpO2 during the FB and BH tasks. The observed maximum variations of 
CO2 during free breathing across all subjects was 4.9 ± 2.1 mmHg, while during the breath holding 
task it was 10.7 ± 1.3 mmHg. The average number of discarded electrodes across all subjects was 
three, with a maximum of 7 in one acquisition. The spatial distribution of the removed electrodes, in 
all the cases, was sparse. 
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3.2.2. Real Data Results

In Figure 3, the time courses of PETCO2 and GFP signals during both breathing tasks for one
subject are shown as an example.
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CO2 during free breathing across all subjects was 4.9 ± 2.1 mmHg, while during the breath holding 
task it was 10.7 ± 1.3 mmHg. The average number of discarded electrodes across all subjects was 
three, with a maximum of 7 in one acquisition. The spatial distribution of the removed electrodes, in 
all the cases, was sparse. 

Figure 3. PETCO2 and GFP signals of Subject 4 recorded during FB task (a) and BH task (b).

During both tasks, besides EEG and CO2 signals, an SpO2 signal was recorded. No significant
changes were observed in SpO2 during the FB and BH tasks. The observed maximum variations of
CO2 during free breathing across all subjects was 4.9 ± 2.1 mmHg, while during the breath holding
task it was 10.7 ± 1.3 mmHg. The average number of discarded electrodes across all subjects was
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three, with a maximum of 7 in one acquisition. The spatial distribution of the removed electrodes, in
all the cases, was sparse.

For each subject and each task, the statistics of missing samples were evaluated. The number and
length of missing segments, the percentage of removed signal, and the percentage of valid signal are
reported in Table 3.

Table 3. Statistics of MDS and VS percentages estimated on acquired EEG data.

Subject

Free Breathing Task Breath Hold Task

MDS Properties MDS Properties

N◦ Length (s) (mean ± sd) % of VS N◦ Length (s) (mean ± sd) % of VS

1 9 10.08 ± 6.6 82.25 14 11.07 ± 8.0 67.41
2 2 16.63 ± 8.6 90.72 8 14.73 ± 8.7 66.70
3 6 10.79 ± 4.3 81.13 5 11.75 ± 2.8 89.79
4 16 11.02 ± 4.2 54.06 3 6.78 ± 0.4 94.44
5 7 15.62 ± 9.7 69.55 12 10.32 ± 2.4 65.73
6 11 11.17 ± 5.5 66.79 12 11.62 ± 5.8 61.39

In Table 4 the results of correlational analysis applied to each subject are reported including the
time shift for the maximum correlation, the maximum correlation coefficient, and the critical values for
the significance of the correlation coefficient.

Table 4. Correlation analysis results at single subject level between GFP estimated in delta band and
PETCO2. The time shfit with maximum correlation coefficient (Ts), the corresponding correlation
coefficient (CC), and the critical values corresponding to α = 0.05 (Thr.).

Subject
Free Breathing Task Breath Hold Task

Ts (s) CC Thr. Ts (s) CC Thr.

1 −5 0.20 0.31 13 0.68 ** 0.48
2 2 −0.26 * −0.24 4 0.35 ** 0.27
3 −5 0.37 * 0.37 1 0.22 ** 0.15
4 −18 0.47 ** 0.29 3 0.52 ** 0.37
5 −9 0.34 0.38 −12 −0.73 ** −0.49
6 29 −0.26 * −0.25 8 0.32 0. 46

* p < 0.05; ** p < 0.01.

The maximum correlation values for positive time shifts were observed during the BH task,
in almost all cases. The maximum correlation coefficient was positive in all subjects except two.
Specifically, in one subject a positive correlation coefficient was found, but the observed value was
slightly below the critical value. In another subject, a negative correlation was found. In the FB task,
although significant results were found in most of the subjects, the observed results are less coherent
with respect to those obtained in the BH task. Specifically, the signs of the time shifts and the values of
the maximum correlation coefficients were less homogeneous across the subjects in the FB task with
respect to the BH task.

3.3. Group Analysis

3.3.1. Simulated Datasets Results

The analysis of simulated datasets showed that the weighted average approach allows us to
improve the estimation of the cross-correlation function with respect to the simple average. In Figure 4,
the histograms of the NRMSE calculated between the two estimates, weighted average and simple
average, and the theoretical cross-correlation function are shown for the four simulated scenarios.
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Figure 4. Distribution of Normalized Root Mean Squared Error between estimated and theoretical
cross-correlation functions. Two curves are shown for each case: the difference with the weighted
average approach (dotted line) and the difference with the simple average (solid line). (a) Equal
distribution of missing data segments groups across subjects; (b) 40% group A, 40% group B, and 20%
group E (see Table 1); (c) Results related to the GFP with maximum correlation coefficient equal to 0.7;
40% group A, 40% group B, and 20% group E; (d) Simulations with six subjects mimicking the missing
data segments distribution observed in our study.

In the first case (Figure 4a), 15 subjects were chosen to have a homogeneous distribution of MDS
distributions across all groups. In a second case (Figure 4b), 40% of the subjects were chosen to have a
VS percentage falling into the 50%–60% range, another 40% belonged to the 60%–70% range, while the
rest had a VS percentage equal to 90%–100%. While the NRMSE is low in both cases, the weighted
average showed better results with respect to the simple average approach. The results related to the
simulations using GFP time courses with a maximum correlation coefficient equal to 0.7 are shown in
Figure 4c. Even in this case an improvement of NRMSE was achieved using the weighted average
approach. A simulation was also performed mimicking the characteristics of our study in terms of
the MDS distributions and the number of subjects (Figure 4d). The maximum correlation coefficients
along with the corresponding time shifts for the group level analysis are shown in Table 5. Weighted
and simple average results in this case are very similar. Only a small improvement regarding time
delay estimation was achieved using weighted average.
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Table 5. Maximum correlation coefficients and corresponding time shifts estimated at group level for
simulated data. Both the simple and the weighted average results are shown.

Target Values Simple Average Weighted Average

Delay (s) Correlation
Coefficient Delay (s) Correlation

Coefficient Delay (s) Correlation
Coefficient

Mean ± sd Mean ± sd Mean ± sd Mean ± sd

(a) 0 0.5 0.07 ± 0.3 0.46 ± 0.02 0.05 ± 0.3 0.46 ± 0.02
(b) 0 0.5 0.13 ± 0.5 0.46 ± 0.03 0.11 ± 0.4 0.46 ± 0.02
(c) 0 0.7 0.00 ± 0.01 0.70 ± 0.01 0.00 ± 0.01 0.70 ± 0.01
(d) 0 0.5 0.25 ± 0.9 0.46 ± 0.04 0.18 ± 0.6 0.46 ± 0.03

3.3.2. Real Dataset Results

In Figure 5, the time courses of the cross-correlation functions estimated at group level using both
the weighted and simple average for delta band are shown.
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Figure 5. Time courses of the cross-correlation functions as a function of the time shift. Dashed blue
lines represent the simple average while the solid black line is the weighted average. The thin lines
represent the level of significance for simple average (thin dashed blue line) and weighted average
(thin solid line). (a) FB related results; (b) BH results.

The statistical thresholds that correspond to a significance level for the null hypothesis of no
correlation equal to α = 0.05 are also shown. The results for weighted average and simple average
are very similar, as can be seen by looking at Figure 5. Some differences in the time courses obtained
using the two approaches were observed. However, very small differences in the results were reported
regarding the maximum correlation coefficients and the corresponding time shifts. In Table 6 the
maximum correlation coefficients as well as the corresponding time shifts are shown. Specifically,
slightly different time shifts were obtained by the two approaches.

Positive correlation coefficients were found. This implies that the changes of GFP in the delta
band are coherent with the changes in PETCO2. A positive time shift for maximum correlation was
found for BH task, while the maximum correlation was found for a negative time shift in the FB task.
A positive time shift implies that the GFP changes follow the PETCO2 changes.
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Table 6. Correlation analysis results at group level between GFP estimated in delta band and PETCO2.
The time shift with maximum correlation coefficient (Ts), the corresponding correlation coefficient (CC),
and the critical values (Thr.) corresponding to α = 0.05 are shown.

Group Analysis-Simple Average

Task Ts (s) CC Thr.
FB −7 0.16 * 0.13
BH 6 0.34 * 0.16

Group analysis-Weighted Average

Task Ts (s) CC Thr.
FB −6 0.14 * 0.10
BH 5 0.35 * 0.15

* p < 0.05.

4. Discussion

In this study, we aim at evaluating the effects of MDS on cross-correlation analysis both at the
single subject and the group level. MDS represents a relevant issue in EEG data analysis since some
categories of EEG artifacts cannot be easily reduced and might imply a data rejection step. As a
result, a negative impact of MDS on correlational analysis might be significant. Simulations were thus
carried out to estimate the variability on the estimated CCF, related to different possible distributions
of MDS in the EEG recordings. We have to stress that we made some choices about the possible GFP
time courses where we applied the MDS distributions. Specifically, we hypothesized a maximum
correlation coefficient ranging from 0.3 to 0.5. These correlation coefficients, given the number of
time points in the series, are likely to correspond to significant values. In fact, we were interested
in evaluating the sensitivity of the approach by looking at false negative events, i.e., evaluating the
probability of accepting a false null hypothesis of uncorrelated signal (type II errors). In principle, it
would also be possible to analyze the effects of MDS on GFPs, showing a lower correlation coefficient
with a given PETCO2 time course. In simulation analysis, at the single subject level, our findings
suggest that even a small percentage of MDS can considerably modify the correlational analysis results.
Specifically, the time shift for the maximum correlation coefficient showed a large departure from the
expected level. In particular, both the precision and the accuracy of the maximum correlation coefficient
and CCF estimates were worse with increasing percentages of missing data segments. Regarding
group-level analysis, the averaging of the cross-correlation functions allowed us to improve the
reliability of the results. We have to stress that these results were obtained starting from a hypothesis
of significant coherent correlation across subjects. This means that we also focused on type II errors for
the group-level study.

To our knowledge, this study introduces one methodological novelty for group level analysis
results. Specifically, we propose estimating the variability at each time point of the cross-correlation
function due to missing data segments distribution and using it to weight the contribution of each
subject to the group level statistics. The proposed solution was developed within a Bayesian framework
since the reliability of the i-th subject measure is based on a model of the data generating process, and
not on the actual measured data. This method was found to outperform the simple average approach,
as can be seen by the analysis of the NRMSE between estimated and theoretical cross-correlation
functions. The advantages evaluated by the proposed simulations in terms of maximum correlation
coefficient and corresponding time shifts’ precision were not significant. The reliability measures,
estimated for a small range of possible GFPs time courses, would not allow us to generalize the results
of the proposed approach. To partially address this issue, a simulation was carried out using a GFP
that showed a maximum correlation with coefficient PETCO2 equal to 0.7, thus outside of the range
used for estimating the reliability measure. The weighted average method even in this case was shown
to improve the results at the group level with respect to those obtained with the simple average. This
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result suggests a robustness of the proposed approach with respect to the effect size misspecification,
i.e., the unknown degree of correlation between the two signals’ time courses. Obviously, the achievable
improvement with respect to simple average approach is related to the simultaneous presence of good
and bad acquisitions within the same group study. Future investigations could explore the impact
of MDS on the correlational analysis as well as quantify the benefits of the proposed Bayesian-based
correction at the group level in other EEG frequency bands.

In light of the above considerations, the cross-correlation function between GFP in delta band
and PETCO2 were calculated during both FB and BH tasks from data acquired from healthy subjects.
GFP is a measure of global electrical activity, and it is quite robust with respect to electrode choice
or distribution [29]. For this reason, the number of discarded channels we obtained is acceptable for
this study. The analysis of the correlation between EEG and variation in CO2 level could represent
a useful tool to understand how cortical activations are involved in the control of breathing both in
physiological and pathological conditions. In particular, the BH task represents a maneuver to observe
the cortical effect due to variations in PETCO2 with generation of CO2 wave changes, better resembling
pathological conditions such as central apneas and OSA. Actually, considering these particular patient
populations, the comprehension of control of breathing could have a great impact. Different methods
use EEG to observe the effects of apnea in patients [23,24,30–33], and although different kinds of
treatment were proposed both to OSA [34] and CSR, these pathologies have a great impact on patients’
quality of life. Indeed, untreated patients with OSA have increased risk of cardiovascular events, death
during sleep, and stroke. On the other hand, CSR is common in heart failure (HF) patients (30%–70%)
and has a predictive value for morbidity and mortality in HF [35]. Regarding the study on healthy
subjects here presented, we have to stress that the interpretation of these results is limited by the
small number of subjects recruited. However, the results show significant and coherent trends across
subjects. Moreover, considering the observed percentage of MDS in each subject and the simulated
tests results, we expect the analysis at group level to be more robust against the presence of MDS than
single-level analysis. Given the above considerations, although future studies are needed involving a
larger number of healthy subjects and patients, some hypotheses can be formulated. At the group level,
in delta band it is possible to highlight that a positive maximum correlation coefficient was found in
both tasks but the corresponding time shifts moved from a negative to a positive value passing from FB
to BH tasks. This means that during FB variations of the GFP signal precede the PETCO2 changes, while
the opposite occurs during the BH task. A possible mechanism explaining the difference between the
two tasks in our results is that during FB, the -Bötzinger complex in the brainstem controls respiratory
motor neurons, respiratory muscles, and pulmonary ventilation [36]. At rest and especially in the
awake subject, the relative weight of the chemical control of ventilation driven by small variations
in CO2 might have a lower impact on breathing activity, and therefore on ventilation-related cortical
activity. It is likely that variation in the respiratory pacemaker centers, influenced by different triggers,
may randomly change ventilation, with an effect on plant gain (the lung), and therefore on CO2 levels.
On the contrary, during the BH task the progressive increase in CO2 (on average around 10 mmHg
of CO2 increase) may actually change the pre-Bötzinger discharge and therefore the cortical activity
linked to ventilation. Also, in studies that use hypercapnic stimuli, an increase in the delta band was
found to follow an increase in CO2 levels, in all electrodes across the whole brain [22]. The increase
in the delta band was in accordance with the positive correlation between CO2 and GFP found in
our study. Our results have some similarities with those obtained in [23], where Thomas studied
OSA patients. Specifically, at the end of the apnea, characterized by higher CO2 values, an increase
in delta power was observed. On the contrary, in patients with heart failure suffering from central
apneas/Cheyne–Stokes respiration, an increase in the delta power band was observed with some delay,
in the first part of the hyperpnea phase [24]. This phenomenon may be due to a different contribution
of hypoxia or to the circulatory delay between the alveolar level and the chemoreceptors typical of
the disease.
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5. Conclusions

Missing segments in EEG signal may have a severe impact, especially in correlation analysis
between EEG and non-stationary signals such as CO2 and ventilation. This study proposes a way to
evaluate the influence of MDS on cross-correlational analysis, specifically in the relationship between
EEG and PETCO2 in simulated EEG data and in real signals recorded in healthy subjects. The present
findings based on simulated data show that MDS have a significant impact. Specifically, even a small
amount of MDS may considerably reduce the reliability of the results. Group-level analyses were
also evaluated. This study shows that, under the hypothesis of a significant correlation between
the two signals, the group-level analysis is more robust with respect to MDS statistics. Moreover, a
Bayesian-based approach was proposed to correct the analysis at group level, taking into account a
reliability measure estimated at the single subject level and related to the amount of missing data.
The proposed approach allowed us to achieve an improvement in the final results.

Considering the real data, in healthy subjects undergoing contemporary monitoring of EEG
and PETCO2 the different behavior of the two signals may be observed during the FB and BH tasks.
Interestingly, in the delta band, a specular time shift is commonly observed at group level during
the two tasks. Considering the complexity of the physiological and pathophysiological mechanisms
linking CO2 to cerebral activity, the precision and accuracy of signal analysis may help us avoid
misinterpretation of study results.
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Appendix A

Surrogate signals in case of MDS and Monte Carlo test of significance.
For two signals x and y, the cross-correlation function is calculated for each time lag (rxy (τ)).

Under the null hypothesis (H0) of no correlation between signals, a Monte Carlo test is used to
establish the significance of rxy (τ). Specifically, from x and y, N uncorrelated surrogate signals xi and
yi (with i = 1, . . . , N) are calculated. These surrogate signals have these particular characteristics:

• For the amplitude spectra: if no Missing Data Segments (MDS) are present, all surrogate data
have the same amplitude spectra of original data (|X ( f )| , |Y ( f )|). When in x and y signals MDS
are present, the AutoCorrelation Functions (ACFs) of x and y must be estimated using only the
sample available in each signal; the amplitude spectra are estimated from the square roots of the
Fourier Transform of ACFs;

• The phase spectra (ϕx,i ( f ), ϕy,i ( f )) are derived from random values between ±π with
independent values and uniform distribution.

From the surrogate signals the cross-correlation functions are calculated (rxy (τ)) and the
distribution of all coefficients approximates the sampling distribution for rxy (τ), under H0. If rxy (τ)

lies outside the range of surrogate values (which represents the p-values and the statistical significance
α), H0 is rejected.

Appendix B

Normalized Root Mean Square Error



Sensors 2016, 16, 1828 16 of 18

The Root Mean Square Error (RMSE) between a predicted time series x̂ (t) and the actual time
series x (t) is defined as

RMSE =

√√√√√ N
∑

i=1
(x̂(i)− x(i))2

N
, (B1)

where N is the time series length.
We define the Normalized RMSE (NRMSE) as the RMSE normalized by the range of the predicted

time series as
NRMSE =

RMSE
xmax − xmin

(B2)

where xmax and xmin are the maximum and minimum values of the predicted time series.

Appendix C

Bayes Rule
The Bayes rule states that the posterior probability of the parameter θ given the data y can be

written as

p (θ|y) = p (y|θ)p (θ)
p (y)

, (C1)

where p (y) is constant with respect to θ, p (y|θ) is the likelihood of the data, and p (θ) are the priors
about the parameter. In our case the priors are flat.
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