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Abstract: A lensless blood cell counting system integrating microfluidic channel and a complementary
metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the
conventional optical lens based imaging system for point-of-care testing (POCT). However, such
a system has limited resolution, making it imperative to improve resolution from the system-level
using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection
and recognition with low cost of processing resources and without degrading system throughput
is still a challenge. In this article, two machine learning based single-frame SR processing types are
proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine
based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless
blood cell counting prototypes using commercial CMOS image sensors and custom designed
backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When
one captured low-resolution lensless cell image is input, an improved high-resolution cell image will
be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR
has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting
results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have
the potential for efficient resolution improvement in lensless blood cell counting systems towards
POCT applications.

Keywords: microfluidic cytometer; super-resolution; convolutional neural network; extreme learning
machine; CMOS image sensor; point-of-care testing

1. Introduction

Blood cell counts in point-of-care testing (POCT) provide critical information for rapid on-site
disease diagnosis and monitoring [1,2]. For example, the counts of red blood cells (RBC, erythrocytes),
white blood cell (WBC, leukocytes), and platelets help the diagnosis of anemia; the CD4+ lymphocyte
count is used to monitor the progression of HIV/AIDS [3]. Existing techniques for blood cell counting
mainly include manual counting using high magnification optical microscopy with high–numerical
aperture objective lenses, or automated counting using commercial flow cytometers. However, manual
counting is time-consuming, has low throughput, and the accuracy is easily affected by operators’
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experiences, whereas commercial flow cytometers with bulky and sophisticated optics are prohibitively
expensive. Hence, both are not suitable for POCT applications.

With the recent development of microfluidic lab-on-a-chip (LoC) technology and mass production
of inexpensive CMOS image sensors (CIS), a miniaturized lensless imaging system becomes a
competitive solution [4]. A lensless imaging system has a basic hardware setup, which directly
integrates a microfluidic channel on a small CIS, and a white light source illuminates from above at a
distance of Dls to sensor array [5]. When blood cell samples flow through the microfluidic channel at
an objective distance Dobj to the sensor array, their diffracted shadow images are recorded by the CIS
underneath without any magnification by lens elements, as shown in Figure 1a. The spatial resolution
of the diffracted image is mainly determined by the pixel pitch DPIX and affected by Dls and Dobj.
Shorter Dobj leads to higher image contrast Cim, hence less diffraction and better spatial resolution.
This relation can be represented by the following expression:

Cim = α/
(

1 +
(

Dobj/D
)ϕ)

, (1)

where α, D, and ϕ represent three constants of contrast amplitude, characteristic distance, and shape
parameter. Since both the cell size and DPIX are similar in scale (~µm), the captured cell shadow images
are typically pixilated and suffer from low resolution, limiting the detection and recognition accuracy.
Thus far, various lensless shadow imaging systems have been proposed for cell imaging, monitoring,
and counting applications, etc., as summarized in Table 1. However, most of them suffer from low
resolution for single cell imaging.
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Figure 1. General lensless cell counting system setup based on CMOS image sensor (CIS). (a) lensless
cell imaging principle; (b) cross-sectional view of the lensless system; and (c) concept of the
machine-learning based single-frame super-resolution (SR) processing.

As analyzed in [6–11], the spatial resolution can be improved by increasing Dls, or decreasing Dobj
and DPIX. Dls can be as long as several centimeters, which is mainly determined by the size of the
POCT system. Dobj can be reduced by cutting off the protecting glass of the CIS and further removing
the microlens and color filter layers on the sensor surface. DPIX is determined by the pixel fabrication
process, and the state-of-the-art technology now reaches about 1.1–1.2 µm, equivalent to the size of
platelets (~2 µm). However, pixel size cannot be further reduced as the amount of light incident on
each pixel has decreased to a point that the signal-to-noise ratio and dynamic range loss would not
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compensate the resolution gain. Therefore, people are turning to other system-level solutions such as
super-resolution (SR) processing.

Table 1. Comparison of lensless shadow imaging systems.

Ref. Description Advantage Disadvantage

[6]

LUCAS, static cell counting based
on one single captured

low-resolution (LR) image of a
droplet of cell solution in between
two cover glasses on CIS surface

Simple architecture and
large field for cell

counting

Low resolution single
cell image

[7]

SROFM, drop and capillary flow
cells through microchannel, capture
multiple LR image to generate one

high-resolution (HR) image

High resolution single
cell image

Low throughput for
cell counting

[8]
Static cell counting by dropping cell

sample in a chamber over CMOS
image sensor (CIS)

Multi-color imaging Low resolution single
cell image

[9] Continuously monitor cells in
incubator above CIS

Non-label continuous
imaging

Low resolution single
cell image

SR processing is a technique that generates high-resolution (HR) images from low-resolution (LR)
images [12]. Existing SR processing techniques applied in lensless imaging systems are mainly based
on multi-frame reconstruction, in which multiple LR cell images with sub-pixel motions of the same
object are synthesized into one single HR cell image. The sub-pixel motions can be generated by either
flowing the cell samples through the microfluidic channel, shifting the light source, or sequentially
activating multiple light sources at different locations [7,13,14]. However, the main problem for
multi-frame SR is that the system needs to continuously capture, store, and process multiple LR images
in order to recover one HR image, which not only limits the practical detection throughput but also
requires large storage. Hence, it is not applicable for on-chip hardware implementation [7].

An alternative single-frame SR processing is thereby imperative [15]. Previous work introduces a
computationally efficient single-frame SR approach by simply bilinear interpolating LR images [16].
Bilinear interpolation takes a weighted average of only the nearest 2 × 2 neighborhood pixel values
based on the computed pixel’s distance from each of the known pixels. The required storage is only
several pixels, hence it can be on-chip implemented for high processing speed. However, the recovered
images are overly smooth, the sharpness of the edges cannot be maintained, and the high-frequency
(HF) details cannot be recovered.

Recently, another category of machine learning based SR approaches is developing quickly [17–25].
Machine learning has very good performance and applications on a variety of problems such as
visual/speech recognition, natural language processing, and biomedical imaging, etc. For example,
in a POCT cell imaging system for waterborne pathogen detection, a machine learning algorithm has
been adopted to automatically classify and distinguish Giardia lamblia cysts from other micro-objects
based on the trained statistical features [17]. Also in cell biology, image-based screening relies on
machine learning to efficiently recognize various phenotypes [18]. For SR processing, machine learning
based approaches learn the correspondences between LR and HR image patches generated from a
database of LR and HR image pairs, which are then applied to a new LR image to recover its most likely
original HR image. The exemplary patches can be extracted either from external datasets [19,20], or the
input image itself [21], or combined sources [22]. A pioneer work of [19] proposed an example-based
learning strategy where the LR to HR prediction is learned via a Markov Random Field (MRF). Ref. [23]
extends this work by using the Primal Sketch prior to enhance blurred edges, ridges, and corners.
However, the above methods directly based on image patches typically require large databases
of LR and HR patch pairs to incorporate any possible patterns encountered in testing, and are
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therefore computationally intensive. To reduce computational cost, [24] proposed a single image
SR via sparse signal representation based on compressed sensing theory. Although the learned
dictionary pair representation is more compact, its learning speed and optimization performances still
need improvement.

In this paper, we tackle the aforementioned SR problems by employing two efficient
machine-learning based approaches, namely Extreme Learning Machine (ELM) based SR and
Convolutional Neural Network (CNN) based SR [26,27]. Similar to the widely used CNN in deep
learning, ELM is also a general suite of machine-learning techniques. Both of them are lightweight,
feed-forward, and possess the potential of on-chip hardware implementation. Based on ELMSR
and CNNSR, prototypes of lensless blood cell imaging and counting are demonstrated using both
commercial CIS and a custom designed back-side illuminated (BSI) CIS with smaller DPIX and Dobj.
Generic ELM and CNN based SR processing flows are as follows. Static HR cell images of different
types are first off-line classified and stored as an HR image library to train an SR reference model. Next,
with on-line input LR flowing cell images, single-frame SR processing is done using the reference
model to reconstruct their corresponding HR images. Then, those cells can be accurately recognized
and counted by only checking for the strongest structure similarity (SSIM) [28] referring to the off-line
HR image library. Therefore, the developed microfluidic lensless cell counting system can achieve high
single-cell image quality without throughput limitation, offering a cost-effective and portable solution
for POC diagnostics.

2. Materials and Methods

2.1. Lensless Cell Counting System Design

2.1.1. System Overview

The proposed lensless blood cell counting system is shown in Figure 1b, which is composed
of one poly-dimethylsiloxane (PDMS) microfluidic channel bonded on the top surface of a CIS.
The CIS chip can be either commercial or custom designed. During testing, an external syringe
pump drives the cell sample solution through the channel continuously. Meanwhile, a white LED lamp
illuminates the flowing cells from above. The cell shadow images are then continuously captured by
the CIS underneath and output for processing by machine-learning based single-frame SR algorithms.
The resolution of shadow images is improved such that recognition and counting of the flowing cells
can be accurately performed afterward.

2.1.2. CMOS Image Sensor

To build the lensless blood cell counting system prototype, a commercial grayscale CMOS image
sensor (MT9M032, Onsemi, San Jose, CA, USA) was first employed. Its pixel size is 2.2 µm × 2.2 µm,
equivalent to normal platelet cells, and its array size is 1472 (H) × 1096 (V) with an active pixel area of
3.24 mm (H) × 2.41 mm (V). Before bonding with the microfluidic channel, the CIS protection glass
and microlens layer were removed by a razor blade and plasma treatment (PDC-32G, Harrick Plasma,
Ithaca, NY, USA), respectively. However, as the pixels of MT9M032 adopt a front-side illuminated
(FSI) structure, shown in Figure 2a, it was necessary to coat a thin PDMS film on the sensor die before
bonding with the microfluidic channel. There are two reasons for this. First, it would encapsulate and
protect the sensor top circuit. Second, the sensor surface would be flatter so that the bonding can be
tighter. The film was spin coated at a speed of 9000 rpm, and the minimum layer thickness realized
was 6 µm.

Nevertheless, an extra PDMS layer would increase the object distance Dobj and degrade the
contrast of lensless shadow image. FSI CIS also inherently suffers from low light sensitivity due to
light degradation from stacking metal layers above photodiodes (PDs). Therefore, we specifically
designed one back-side illuminated (BSI) CIS with an even smaller pixel pitch, 1.1 µm, and a 3.2-Mega
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pixel array. It has a die area of 5 mm × 5 mm and a photosensitive area of 1.7 mm × 2.2 mm. Different
from FSI CIS, PD in BSI CIS is fabricated on the top layer without metal blocking the incident light,
as shown in Figure 2b. Thus, the blood cell sample can directly contact the pixel surface with minimum
distance. Higher sensitivity and quantum efficiency could also be achieved. Meanwhile, different from
commercial FSI CIS, the top layer of the BSI sensor was a flat and smooth silicon and silicon dioxide
layer without a microlens, which was suitable for direct microfluidic channel integration.
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Figure 2. Comparison of front-side illuminated (FSI) and back-side illuminated (BSI) complementary
metal oxide semiconductor (CMOS) image sensor pixel. (a) FSI pixel whose photodiode (PD) is far
from the cell sample; and (b) BSI pixel whose PD is in close proximity with the cell sample.

2.1.3. Microfluidic Channel

In microfluidic channel design, to fully use the active pixel region that can capture flowing cells
in the channel and prevent missing cells at high flow rates, the channel needs to fit in the sensor die
on a diagonal so that its length is maximized. In the commercial CIS based prototype, the channel
length was designed as 4.6 mm. In the BSI CIS based prototype, the channel length was 2.6 mm.
A channel width of 500 µm was designed for both prototypes, as the relative wide channel is beneficial
to reducing the clogging effect when cell samples of high concentration flow through. The microfluidic
channel height was 30 µm such that the channel roof is just higher than the diameters of common
blood cells and tumor cells. This ensured that the cells flow in close proximity to the sensor surface to
generate higher contrast lensless images.

The microfluidic device was fabricated using the soft-lithography technique as presented
previously [4]. Briefly, the microchannel mold was fabricated by patterning photoresist SU-8 (SU-8 25,
Microchem, Westborough, MA, USA) on a silicon wafer. After that, PDMS (Sylgard 184, Dow Corning,
Auburn, MI, USA) and curing agent were mixed at 10:1 volumetric ratio and cast onto the SU-8
mold. Then, the PDMS replica was peeled off from the mold after degassing and curing. The inlet
and outlet were later punched to connect the microfluidic channel input with a syringe pump (KDS
Legato180, KD Scientific Inc., Holliston, MA, USA), and channel output with a waste bin. To bond the
PDMS microfluidic channel with the CIS chip, both surfaces were washed by ethanol first, and then
cleaned with oxygen plasma for 25 s, and finally bonded together. After bonding, the gap between
sensor die and package frame was filled with PDMS and then baked to encapsulate the bonding wires.
The bonding strength is estimated to be about 30 kPa [29]. Note that, before each testing, we further
coated the channel with 1% bovine serum albumin (BSA) in phosphate-buffered saline (PBS, Fisher
Scientific, Pittsburgh, PA, USA) solution to improve wettability. After each test, the microfluidic
channel should be washed using high flow rate distilled water so that it can be reused, just like the
washing step in a commercial flow cytometer.
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2.1.4. Testing Board

The commercial CIS chip was soldered on one custom-designed 5.6 cm × 5.6 cm printed circuit
board (PCB) that provided the sensor with power supplies and transferred data with external through
a USB interface (CY7C68013-56 EZ-USB FX2, Cypress, San Jose, CA, USA), as shown in Figure 3a.
An enlarged figure of PDMS microfluidic device on the chip is shown as an inset of Figure 3a. The BSI
CIS chip was fabricated in a 65 nm BSI CMOS image sensor process and bonded to a 144-pin ceramic
pin grid array (CPGA) package as shown in Figure 3b,c. The packaged BSI CIS chip was also mounted
on one small field-programmable gate array (FPGA) testing board (XEM3010, Opal Kelly, Portland,
OR, USA) to build a prototype system. The design details of the BSI CIS chip are out of the scope of
this article so they are not introduced here.
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Figure 3. Testing board for lensless blood cell imaging. (a) Lensless system using commercial FSI CIS;
(b) packaged BSI CIS integrated with the microfluidic channel and elastic thin tubing; and (c) custom
designed BSI CIS chip.

In testing, cell samples were continuously driven into the microfluidic channel at a typical flow
rate of ~5 µL/min. The light source distance Dls was set as 12 cm. The light intensity at the sensor
surface was set as 1.5k Lux. The sensor working status such as region-of-interest, exposure time, and
the frame number to capture were set externally. The readout LR frames were buffered and processed
to improve the resolution by ELMSR or CNNSR. Thus, the developed system could automatically
recognize and count the flowing blood cells.

2.1.5. Sample Preparation

Blood cell and HepG2 tumor cell sample solutions were prepared for testing. HepG2 cells
(American Type Culture Collection, Baltimore, MD, USA) were cultured in Minimum Essential
Media (MEM) supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate, 0.1 mM MEM
non-essential amino acids and grown in a T75 flask at 37 ◦C and a 5% CO2 atmosphere. The harvested
cells were washed and re-suspended in PBS. The blood cell samples were collected from donators in
Nanyang Technological University. Note that all volunteers signed written informed consent forms
before enrollment, and all procedures comply with relevant laws and institutional guidelines, with the
approval from the Ethics Committee of NTU on our research. To prevent cell aggregation, an ultrasonic
cleaner (2510E-DTH, Branson Ultrasonics, Danbury, CT, USA) is applied to sonicate all of the samples
for 10 min before input to the microchannel.

2.2. Machine-Learning Based Single-Frame SR Processing

After capturing the lensless images, digital image processing was performed for cell detection,
resolution enhancement, cell type recognition, and cell counting of each type flowing through the
microfluidic channel. The cell detection in each LR frame was realized by analyzing the temporal
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difference obtained by subtracting its previous background frame. After that, machine-learning based
single-frame SR processing was performed. Next, mean structural similarity (MSSIM) index [28] was
employed to characterize the similarity between the recovered HR image and the original HR images
in the training library. The cell was categorized to the type that had the strongest MSSIM with HR
training images. The final cell counting of each type was conducted by calculating the sum of increased
cell numbers in all of the frames of flowing cells [4]. Here, the proposed two SR processing approaches,
namely ELMSR and CNNSR, are elaborated and compared.

2.2.1. ELMSR

The ELM structure is a single-hidden-layer feed forward neural network [26], which has only
one input layer, one single hidden layer, and one output layer as shown in Figure 4a. The ELMSR
consists of two processing steps, namely off-line training and on-line testing steps. In the training
step, a reference model is trained that can map the features in interpolated LR images with its HF
components. These features include pixel intensity distribution, 1st order derivatives, and 2nd order
derivatives, which represent the patterns of pixel intensity change. The HR training image library is
constructed by capturing and storing the HR images of different cell types with various appearances
using HR optical microscope camera.
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The pseudo code for ELMSR is shown in Table 2. Firstly, p HR cell images are stored as the
training library. For one HR image HRM×N, where M and N are the row and column pixel numbers,
it is first bicubic down-sampled to one LR image LRm×n. Note that the down-sampled LR image is
similar to the captured lensless LR image. The down sampling factor t determines the SR improvement
factor, i.e., M = m × t, N = n × t. To obtain HF components, the LR image LRm×n is bicubically
interpolated to LR_IntM×N, which is of the same size as HRM×N but blurred with HF details lost. Then,
HF component HFM×N can be generated by subtracting the HR image HRM×N with the interpolated
LR image LR_IntM×N,

HFM×N = HRM×N − LR_IntM×N . (2)

Table 2. Pseudo code for extreme learning machine based super-resolution (ELMSR).

ELMSR Training:

1 Downscale the input p HRM×N to obtain p LRm×n images
2 Upscale p LRm×n images to p LRIntM×N

3 Generate feature matrix X from p LRIntM×N

4 Generate p HFM×N and row vector T
5 Generate the weight vector β with [X, T]

T = βH (X) = βG (AX + B), β = T·H (X)T
[
I/C + H (X)H (X)T

]−1

ELMSR Testing:
6 Input LR image LR′m×n for testing
7 Upscale LR′m×n to LR_Int′M×N
8 Generate feature matrix X' from LR_Int′M×N

9 Calculate HF′M×N image, T′ = βH (X′) = T·H (X)T
[
I/C + H (X)H (X)T

]−1
H (X′)

10 Generate final SR output with HF components HR′M×N = LR_Int′M×N + HF′M×N

HRM×N : original high-resolution cell image of size M × N. LRm×n: low-resolution cell image of size m × n.
LRIntM×N : interpolated low-resolution cell image of size M × N. HFM×N : high-frequency component of cell
image of size M × N.

After obtaining all p HF images HFM×N, their pixel intensity values will form a p·MN × 1 row
vector as the training targeting value T. Then, a 3 × 3 pixel patch P(i, j) is used to search through and
extract the feature vector from LR_IntM×N, where 1 ≤ i ≤M – 1 and 1 ≤ j ≤ N – 1. Each patch creates a
column vector consisting of nine pixel intensity values and ( ∂P

∂x , ∂P
∂y , ∂2P

∂x , ∂2P
∂y , ∂2P

∂x∂y ), which indicates four
1st and 2nd order derivatives in the horizontal and vertical directions, as well as one 2nd order mixed
derivatives. The column vectors extracted from all patches in p interpolated images LR_IntM×N form
the feature matrix X. Now, X and T form the ELM training dataset (X, T).

Next, after input the training dataset (X, T) to ELM model, a row vector β containing the weights
between all the hidden nodes and the output node are to be calculated. The ELM model has d input
nodes, L hidden nodes, and one output node. The output of the i-th hidden node is

hi (x) = g (ai·x + bi) =
1

1 + exp (−ai·x− bi)
, (3)

where ai is a row vector of weights between all input nodes and the i-th hidden node; bi is a randomly
generated bias term for the i-th hidden layer; g is a Sigmoid activation function of hidden layer.
The output of ELM is

f (x) = β·h (x), (4)

where h (x) = [h1 (x) , h2 (x) , · · · , hL (x)]T is the output of the hidden layer. The output matrix of
hidden layer is

H (X) = G (AX + B), (5)
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where A is the weight matrix between input layer and hidden layer, B is the bias matrix, G is the same
sigmoid function. Thus,

T = βH (X). (6)

In ELMSR, both training error and the norm of output weights should be minimized, i.e.,

min

{
||βH (X)− T||

||β||
. (7)

Thus, the orthogonal projection method can be applied to obtain β,

β = T·H (X)T
[

I
C
+ H (X)H (X)T

]−1
, (8)

where C is a tuning parameter for the weight between ||βH (X)− T|| and ||β||, and I is the identity
matrix with the same size to H (X)H (X)T. The training data A, B and β will be used as the ELMSR
reference model.

In on-line testing, when a LR cell image LR'm×n is captured for processing, the corresponding HR
image can be recovered using the same matrix A, B and the trained weights β as follows. The LR'm×n

is first bicubically interpolated by t times to LR_Int'M×N. The same patch searching used in ELMSR
training is employed to extract the feature matrix X′ from LR_Int'M×N. Hence, the output vector can
be obtained:

f
(
X′
)
= βH

(
X′
)
= T·H (X)T

[
I
C
+ H (X)H (X)T

]−1
H
(
X′
)
, (9)

Now f (X′) contains the recovered HF components HF′M×N . As such, the final HR image HR'M×N
is recovered with sufficient HF details by

HR′M×N = HF′M×N + LR_Int′M×N . (10)

As the resolution of lensless cell images is relatively low, we implemented a 4×magnification.
Thus, a single cell LR shadow image of spatial size 12 × 12 can be improved to a 48 × 48 HR cell image.
In the implemented ELM model, we set the node number in input, hidden, and output layer as d = 14,
L = 20, and 1, respectively. Each 48 × 48 interpolated single cell image contains 46 × 46 = 2116 patches.
The p training images will generate a feature matrix X of 2116p columns, and an HF intensity vector T
with 2116p row. In testing, we set tuning parameter C = 512 to achieve a satisfied performance.

2.2.2. CNNSR

As an alternate solution for optimized learning, CNNSR was proposed. Convolutional neural
network (CNN) has been widely adopted in deep learning recently when dealing with large datasets of
images. In CNNSR, the deep CNN can find a mapping function between LR and HR images. Similar
to ELMSR, there is also one off-line training step for optimized model parameters that correlate the LR
cell images with HR cell images, and one on-line testing step to improve the resolution of captured
lensless image. The overall architecture of CNNSR is shown in Figure 5.

In CNNSR training, assume there are n training images, and the LR cell images in training library
are first scaled up through bicubic interpolation to the same size as HR images. The interpolated
images are denoted as Yi. The corresponding ground truth HR images are Xi. The up-scaling factor
is the SR magnification factor. An end-to-end mapping function F will be learned so that F(Yi) is as
similar as possible to the original HR image Xi. The mean squared error (MSE) between Yi and Xi is
applied as the loss function L (θ) to be minimized:

L (θ) =
1
n ∑ n

i=1 ||F (Yi; θ)− Xi||2, (11)
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where n represents the number of training samples, and θ is the grouped network parameters of CNN
that should be learned in the training step.

The pseudo code for CNNSR is shown in Table 3. The CNNSR mainly comprises three training
layers as shown in Figure 5. The first layer randomly and densely extracts the overlapping patches
from interpolated LR image Y and represents each patch as a high-dimensional vector:

F1 (Y) = max (0, W1 ∗Y + B1), (12)

where W1 represents n1 filters of spatial size f 1 × f 1 that convolute the input image Y; ‘∗’ is the
operation of convolution; B1 is an n1-dimensional vector indicating the biases, and each element of
which is associated with a filter. The output vector F1(Y) consists of n1 feature maps. The rectified
linear unit function ReLU(max(0, x)) is employed for the filter responses.
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Table 3. Pseudo code for convolutional neural network based super-resolution (CNNSR).

CNNSR Training

Input: LR cell images {Yi} and corresponding HR cell images {Xi}
Output: Model parameter θ = {W1, W2, W3, B1, B2, B3}

1 θ are initialized by drawing randomly from Gaussian Distribution (µ = 0, σ = 0.001)
2 For i = 0 to n // n is the number of training image
3 For l = 1 to 3 // 3 layers to tune
4 Calculate Fi (Y) based on Equations (13)–(15)
5 End For
6 Calculate L (θ) = 1

n ∑n
i=1 ||F (Yi; θ)− Xi||2

7 If L (θ) < ε // ε is closed to zero
8 Calculate ∆i+1 = 0.9× ∆i + η × ∂L/∂W l

i , W l
i+1 = W l

i + ∆i+1
9 End If
10 End For

CNNSR Testing
Input: LR cell image {Y’} and Model parameter θ = {W1, W2, W3, B1, B2, B3}
Output: Corresponding HR cell images F{Y’}

11. For l = 1 to 3 // 3-layer network
12 Calculate F (Y′) based on Equations (13)–(15)
13 End For



Sensors 2016, 16, 1836 11 of 16

The second layer performs non-linear mapping of the n1-dimensional vectors to n2-dimensional
ones, the operation is

F2 (Y) = max (0, W2 ∗ F1 (Y) + B2) , (13)

where W2 represents n2 filters of size n1 × f 2 × f 2, and B2 is an n2-dimensional bias vector. Hence,
each output n2-dimensional vector is a representation of one HR patch that will reconstruct the final
HR image.

The third layer performs final HR image reconstruction by aggregating the previous HR patches
and generate one HR image that is as similar as possible to the original HR image X. Its operation is

F3 (Y) = W3 ∗ F2 (Y) + B3, (14)

where W3 represents one set of filters of size n2 × f 3 × f 3, and B3 is a one-dimensional bias vector.
The overlapping HR patches are averaged.

All the above three operations compose a CNN. The grouped network parameters θ = {W1, W2,
W3, B1, B2, B3} shall be optimized together to get the mapping function F that minimizes the loss
function L(θ). This is achieved by stochastic gradient descent with the standard backpropagation.
The weight matrices are updated as follows:

∆i+1 = 0.9× ∆i + η × ∂L/∂W l
i , W l

i+1 = W l
i + ∆i+1 (15)

where l ∈ {1, 2, 3}, i are the indices of layers and iterations, and η is the learning rate.
In an on-line testing step, when a new LR cell image Y’ is captured by the lensless imaging system

and input to CNNSR, the corresponding HR cell image F{Y’} can be recovered through the trained
group network parameters θ. The input LR cell images are first extracted by n1 linear filters (f 1 × f 1).
The extracted LR patches are then subtracted by its mean and projected into a dictionary with size n1.
Later, a sparse coding solver is applied on the projected n1 coefficients to obtain n2 coefficients as the
representation of HR patch. The sparse coding solver acts as a non-linear mapping operator that is
fully feed-forward. After sparse coding, the n2 coefficients are projected into another HR dictionary for
producing HR patches. Then, these overlapping patches are averaged and reconstructed to get final
HR images.

In CNNSR, the magnification factor is also implemented as 4×. Due to the limited array size of
single cells, the filter size f 1 × f 1 was set as 5 × 5, and n1 = 64. The f 2 × f 2 filter size was set as 1 × 1
with n2 = 32. In addition, the filter of the third layer set f 3 = 3. Therefore, the calculation of a HR pixel
adopts (5 + 3 − 1)2 = 49 LR pixel information, which leads to high restoration quality of CNNSR.

2.2.3. Comparison of ELMSR and CNNSR

Both ELM and CNN are feed-forward neural networks. Thus, they are computing efficiently with
little pre- or post-processing optimization. There is no need to resolve optimization problem on usage.
A major merit of ELM is that the weights between the input layer and hidden layer are randomly
generated, hence it is tuning-free without iterative training. Since the image number can be large if
various cell types under different appearances are to be trained, ELMSR is suitable to speed up the
training process. The advantage of using CNNSR is that the patch extraction and aggregation are
directly formulated as convolutional layers. Hence, LR dictionary, HR dictionary, non-linear mapping
and averaging are all involved in the filter optimization towards higher restoration quality. Note
that the training of ELMSR and CNNSR model is done off-line. After the model is already trained,
the computation would not need that much computation cost during testing. Moreover, ELMSR
and CNNSR have the potential to be hardware implemented on-chip in the future. In that case,
the computation would be much faster.
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3. Results and Discussion

To evaluate the performance of ELMSR and CNNSR, both blood cell and tumor cell samples were
tested. The resolution enhancement factor of 4× was selected. The Structural Similarity is employed
as a metric to evaluate the quality of reconstructed images.

3.1. Off-Line SR Training

For both prototypes with ELMSR and CNNSR, the off-line training image libraries of blood
cells and HepG2 tumor cells were first built. The HR training image of HepG2 and blood cells were
captured using a microscope camera (Olympus IX71, Tokyo, Japan) and saved into the HR image
library as shown in Figure 6a1–a3, e1–e3. Since there are two prototypes with different CMOS image
sensors, the original HR images are saved as two different sizes, 48 × 48 and 80 × 80 corresponding
to the ELMSR and CNNSR training image libraries. As the enhancement factor is four, we bicubic
down-sampled the 48 × 48 HR cell images to 12 × 12 LR cell images, as shown in Figure 6b1–b3, and
down-sampled the 80 × 80 HR cell images to 20 × 20 LR cell images, as shown in Figure 6f1–f3. Then,
these LR cell images were interpolated back to 48 × 48 and 80 × 80, as shown in Figure 6c1–c3, g1–g3.
Now, the detailed structures were already lost in the interpolated images as simple interpolation could
not recover the HF components. Next, as shown in Figure 6d1–d3, g1–g3, the HF components for each
training cell image were obtained by subtracting the original HR images with the interpolated cell
images. Thus, the training library for ELMSR and CNNSR to train a reference model was generated.
Different features in various cell types such as HepG2 tumor cell, RBC, and WBC could be clearly seen
from the difference in their HF images. For the mixed HepG2 and blood samples, there are 30 HR
images selected for each cell type to build the training library. Note that both interpolated images
and HF images were used in ELMSR training to generate ELM reference models. But in CNNSR,
interpolated images and HR images were directly employed to train the mapping function. We still
keep Figure 6g1–g3 just to show the different HF features.
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Figure 6. Example images of HepG2, Red blood cell (RBC), and white blood cell (WBC) in ELMSR and
CNNSR training image libraries: (a) original high-resolution (HR) images with all high-frequency (HF)
details in ELMSR library; (b) down-sampled low-resolution (LR) images with HF information lost in
ELMSR library; (c) interpolated LR images whose HF cannot be recovered in ELMSR library; (d) HF
components that are lost during downsampling in ELMSR library; (e) original HR images with all HF
details in CNNSR library; (f) down-sampled LR images with HF information lost in CNNSR library;
(g) interpolated LR images whose HF cannot be recovered in ELMSR library; and (h) HF components
that are lost during down-sampling.
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3.2. On-Line SR Testing

After building the off-line training image library and obtaining the training model, the on-line SR
processing was performed when new lensless LR cell images were captured. As two CMOS image
sensors of different pixel sizes (2.2 µm vs. 1.1 µm) were used to build the lensless imaging systems,
the directly captured LR cell images were compared, as shown in Figure 7a,d. Due to the smaller pixel
pitch of BSI CIS over the commercial FIS CIS, the captured LR RBC in Figure 7d1 was much clearer
than Figure 7a2. The LR RBC images covered about 4 and 8 pixels at the diameter using FSI CIS and
BSI CIS, respectively. These results demonstrated the advantage of using CIS of the smaller pixel pitch
in generating LR lensless images of higher spatial resolution.
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Figure 7. Example of HepG2, RBC, and WBC images in ELMSR and CNNSR testing: (a) raw LR images
captured by FSI CIS with pixel pitch 2.2 µm; (b) interpolated LR images; (c) ELMSR recovered HR
images; (d) raw LR images captured by BSI CIS with pixel pitch 1.1 µm; (e) interpolated LR images;
(f) CNNSR recovered HR images, showing better performance in resolution improvement; and (g) the
mean structural similarity (MSSIM) results for on-line recover cell images.

After the raw LR cell images were captured, the interpolated HR images could be generated,
as shown in Figure 7b,e. The recovered HR images of one HepG2 cell and one RBC using the ELMSR
model were shown in Figure 7c1,c2. The recovered HR images of one RBC and one WBC using the
CNNSR model were shown in Figure 7f1,f2. Comparing the interpolated images in Figure 7b,e with
SR recovered images in Figure 7c,f, it can be clearly observed that no matter which SR was used,
the recovered images show more cell internal and edge information. Comparing the performance
of resolution improvement for CNNSR and ELMSR, it can be seen that the HR images recovered by
CNNSR have less noise compared with ELMSR. In Figure 7c2, the cell edge recovered by ELMSR still
had some blur effect. However, in the CNNSR recovered HR images in Figure 7f1,f2, there was no
such blur effect. Especially in the recovered WBC HR image in Figure 7f2, the cell membrane and
nucleolus could be clearly seen. As shown in Figure 7g, the MSSIMs for HepG2 in Figure 7c1, RBC
in Figure 7c2,f1, and WBC in Figure 7f2 with the corresponding HR image libraries are obtained as
0.5190, 0.7608, 0.8331, and 0.8102, respectively. Thus, CNNSR has 9.5% improvement over the ELMSR
on resolution improvement quality. This is possibly due to fact that the filter optimization in CNNSR
includes all the three CNN processing layers, while in ELMSR, there was no such joint optimization
in training the network model. Note that although the input LR images for ELMSR and CNNSR are
different due to the different CMOS image sensors used, the improved HR images are compared with
their respective original HR images in their off-line training image libraries. Thus, the performance of
SR improvement is directly evaluated by comparing the MSSIM metric.

3.3. On-Line Cell Recognition and Counting

The on-line cell recognition and counting performances of the developed prototype were further
evaluated using mixed tumor cells and RBC samples. The RBC/HepG2 cell sample was prepared and
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measured by the commercial flow cytometer (Accuri C6, BD Biosciences, San Jose, CA, USA). The
absolute counts of RBC and HepG2 are 1054 and 978, the ratio of which was about 1.08:1 (51.9%:48.1%).
The sample was tested at a flow rate of 5 µL/min using the developed lensless system for six groups,
with each group for one minute. The cell counts were obtained as shown in Table 4. The mean
RBC/HepG2 ratio is 52.60%:47.40% = 1.11:1, and the coefficient of variation (CV) is 0.10, which matched
well with the commercial flow cytometer result (1.08:1). Based on the current sample concentration,
the average throughput was 3080 min−1. Although the throughput was relatively low compared with
commercial flow cytometry, it can be further improved by increasing the sample concentration and
flow rate, as the cells captured in each image and the total cells captured in a certain number of images
are increased.

Table 4. Measured counting results of mixed Red blood cell (RBC) and HepG2 sample.

Group RBC (# µL−1) HepG2 (# µL−1) RBC/HepG2

1 239 (54.32%) 201 (45.68%) 1.19
2 338 (50.22%) 335 (49.78%) 1.01
3 260 (53.72%) 224 (46.28%) 1.06
4 435 (52.98%) 386 (47.02%) 1.12
5 340 (55.74%) 270 (44.26%) 1.26
6 334 (49.85%) 336 (50.15%) 0.99

Mean 324 (52.60%) 292 (47.40%) 1.11
Stdev 70 72 0.11

CV 0.22 0.25 0.10

CV: coefficient of variation.

4. Conclusions

To tackle the low-resolution limitation in lensless microfluidic imaging towards POCT blood
cell counting, ELMSR and CNNSR processing are proposed. Lensless blood cell counting prototypes
integrating microfluidic channels with custom-designed back-side illuminated CIS and commercial
front-side illuminated CIS were also developed. The experimental results demonstrated that the cell
resolution could be improved by 4×, and CNNSR showed 9.5% improved quality over the ELMSR
on resolution enhancing. The cell counting results also matched well with those of the commercial
flow cytometer.

Different from existing cell counting techniques without imaging information such as coulter
counter, our imaging based methods can provide clear cell images that are intrinsically interesting
to diagnostic users for single cell level analysis. As the imaging device in our system is a CMOS
image sensor chip that can be mass produced, the cost is much lower compared with techniques
based on lenses. Thus, it is also affordable for one-time usage to prevent cross contamination.
Meanwhile, the computation efficient machine-learning SR processing has the potential to be directly
hardware-implemented in the CMOS image sensor chip. Therefore, although the existing processing
part is realized using software on a laptop, it has the potential to be all integrated on-chip to realize a
much faster, really portable, automated, and cost-effective system. The developed lensless systems with
machine-learning based single-frame SR processing are thus promising for future POCT applications.
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