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Abstract: This paper considers the distributed access and control problem of massive wireless
sensor networks’ data access center for the Internet of Things, which is an extension of wireless
sensor networks and an element of its topology structure. In the context of the arrival of massive
service access requests at a virtual data center, this paper designs a massive sensing data access and
control mechanism to improve the access efficiency of service requests and makes full use of the
available resources at the data access center for the Internet of things. Firstly, this paper proposes
a synergistically distributed buffer access model, which separates the information of resource and
location. Secondly, the paper divides the service access requests into multiple virtual groups based
on their characteristics and locations using an optimized self-organizing feature map neural network.
Furthermore, this paper designs an optimal scheduling algorithm of group migration based on the
combination scheme between the artificial bee colony algorithm and chaos searching theory. Finally,
the experimental results demonstrate that this mechanism outperforms the existing schemes in terms
of enhancing the accessibility of service requests effectively, reducing network delay, and has higher
load balancing capacity and higher resource utility rate.

Keywords: artificial bee colony algorithm; chaos searching; separation of location and information;
virtual data center; wireless sensor network

1. Introduction

Wireless Sensor Networks (WSNs) are composed of numerous, low-cost micro sensing nodes
that are arbitrarily arranged in a monitoring area. It is a multi-hop, self-organizing network system
formed by a wireless communication method, with the role of collecting, processing and efficiently
transmitting a message from the perceived object within the target range [1,2]. Traditional WSNs have
an already rigidified topology structure that is no longer able to deal with the massive and constantly
updating application operations [3], henceforth it needs a new-type smart topology structure to solve
new challenges brought by data of a huge volume. In various applications of the smart city and modern
agriculture, tens of thousands of small WSNs form a large WSN, by which the Internet of Things (IoT)
links the relevant information collected on a dynamic basis to the Internet, according to agreement
via a large number of intelligent information sensing devices. The collected data are then stored into
the Data Access Center for the Internet of Things (DACIOT). After DACIOT’s transformation and
control, this information is exchanged and communicated for the intelligent identification, location,
tracking, supervision and management of the objects [4] and processes of the application system so
that an integrated network is created between man, machine and thing. In the process of integrating
such an application system of the IoT, sensors of various types transmit value and non-value types
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of data. In such a process, a large number of users will send different control requests to the mass
sensing devices. In terms of the framework of the IoT application system, DACIOT mainly works at
the application level of the upper level of the IoT, shown in Figure 1.
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Figure 1. Structure of integration of the IoT application system.

As shown in Figure 1, DACIOT’s key role is to provide network access services for end
users (including PCs, mobiles, etc.) and coordinate the massive amount of end users’ requests
via transmitting them onto a sensing device. In relation to control demand transmission, as the
Internet network has the features of complex structural alternation and fast resource consumption
when a massive number of users requests arrive for access, an Effective Path Statistic Network
(EPSN) [5] is built and arranged on the Internet, based on the idea of network coverage. EPSN, a logic
network comprised of a group of Communication Service Agents (CSA) which has a number of
simple functions (data packet sending, receiving, storing and exchange), is a virtual sub-network of
the Internet. EPSN explores the effective “empty” path on the Internet based on statistical theory,
and measures and calculates the statistics of the measurement parameters and information on the
logic chain among CSAs, and builds real-time Effective Paths (EP) based on the measured and
statistical data. In this sense, the network that receives the requests for access by the end users is
converted from a parameter-uncontrollable Internet network to a transparent and controllable EPSN
network. However, the new-type DACIOT is mainly supported by virtual technology [6,7], which is
critical to realize cloud computing networks by intensively concentrating and integrating the limited
physical resources and providing services of networking, computing and storage in a unified manner.
The virtual resources of computing and storing will finally need to provide access to users via the
network. In the realm of network, virtualization technology enables a higher utility of the network [8]
and makes the network flexibly extendable and manageable. A virtual network allows users of
different needs to visit the same physical network. Logically, however, these users are strictly isolated
to ensure visiting security [9]. Network virtualization will fulfill the target of improving DACIOT’s [10]
operational efficiency, flexibilizing operation arrangement, reducing energy-consumption and releasing
rack space.

On the aspect of new-type virtual data center, with virtual integration between physical servers,
an increasing number of users choose to rent computing resource in the form of a service from a data
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center to complete their tasks [11,12], while the users’ huge volume of load of different types can be
operated on the servers in different time periods [13]. Largely, these different types of loads can be
divided into two types: frequently interactive and non-interactive. Often, the former will initiate
emergent operation, e.g., network-based video service with numerous users at night but much less in
the daytime; and the latter makes it unnecessary for users to participate further after subscribing a task,
e.g., a high-performance computing service. In different periods, these loads will have remarkably
different needs in terms of resources [14]. Nevertheless, to ensure that the loads always respond to
request for processing, a peak value of needs is always applied to statically allocate enough resources
for the loads [15]. Therefore, the majority of server resources are not fully used at the data center,
leaving huge hardware, space, energy consumption and management cost wasted. Further, it is very
easy to cause imbalance between service access requests, causing part of the server nodes to be offline
due to being over loaded [16]. Hence, how to arrange service access requests rationally and efficiently
on each of the servers is one of the key challenges to be solved by the data center.

With the aforementioned background, the efforts which have been made for resource optimization
at the virtual data center presently are mainly focused on CPU, memory and the network interface.
The CPU and memory-based scheduling algorithms focus on reducing as much as possible the
fragments in CPU and memory on physical servers on the one hand to be able to contain more virtual
machines and enhance the integral utility rate of data center servers [17,18]; on the other hand, it focuses
on reserving resources to accommodate the load variation on the virtual machines [19]. These issues of
resource allocation can be transformed into typical resource optimization, which can be solved with the
swarm intelligent algorithm, heuristic algorithm and greedy algorithm [20]. Network communication
is also one of the major factors impacting virtual machine performance [21]. There are currently
a large amount of physical servers at a data center, with a comparatively complicated network
topology structure. For this reason, the distribution of different structures will severely impact the
network communication capacity between physical machines, and further lead to a great gap in the
network delay between the virtual machines operating on different physical machines. When this
happens, network perception strategy is generally used to solve virtual machine real-time migration
and rearrange.

The studies described above are mainly focused on how the virtual data center responds to users’
service access requests through rationally and efficiently arranging virtual machines when a massive
amount of user’ requests arrive. However, such studies depend on periodical resource rescheduling
by the data center in system operation, which largely impact the stability of the system operations,
leading to a sharp rise in the data communication volume, the consumption of a large bandwidth and
imposes a heavy burden of network communication upon the DACIOT. Also, when facing a massive
amount of user’ service access requests, partial virtual machines can provide very limited resources
with their CPU, memory, storage and bandwidth and can no longer consume additional resources to
provide services for other virtual machines. Therefore, an urgent task at present is how to allow a huge
volume of user’ service requests to be efficiently accessed in the virtualization context, and utilize
the resources available at the virtual data center with high efficiency. For this purpose, this paper
undertakes deep research on the Distributed Access Problem for Virtual Data Centers (DAPVDC) in
relation to massive service requests at the data center. First, the group characteristics and geographical
locations of the users are analyzed, based on which an Optimized Dynamic Self-organizing Feature
Map Neural Network (ODSOFM) is proposed. This algorithm divides service access requests from
different geographical locations into groups logically. Second, by integrally considering the hardware
resource like CPU and memory as well as network communication capacity, a Group Migration
Artificial Bee Colony Scheduling algorithm (GMBCOS) is proposed from the perspective of service
request migration. The approach provides access for various virtual machines after highly-efficient
scheduling at the data center using rules. Based on the load of the virtual machines and corresponding
service constraints, the information-related logical groups are smoothly migrated from heavy-loaded
virtual servers to less-loaded ones so that the data center resources are used efficiently.
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The rest of this paper is organized as follows: in Section 2, we overview the related work. Section 3
describes the system model and definitions; Section 4 first puts forward a kind of synergistically
distributed buffering access model separating the information on resources and locations, then provides
an Optimized Dynamic Self-organizing Feature Maps (ODSOFM) for virtual grouping, and further
introduces a Group Migration Bee Colony Optimization Scheduling algorithm (GMBCOS); Section 5
describes the experimental environment, processes and analyses; and Section 6 summarizes the work
and describes the anticipated directions for future work in this area.

2. Related Work

Regarding traditional massive data access, Apache Kafka (http://kafka.apache.org) represents
a quite high throughput with extendibility as a kind of distributed message publishing and subscribing
system [22]. It is able to process tens of millions of summary data, both reading and writing requests,
per second, and is widely applied to application scenarios demanding high performance, such as
massive message queue, log processing and stream processing [23]. The research in [24] demonstrates
the diversity in methods and techniques for processing streaming big data in datacentre clouds.
The work in [25] designs and implements a hierarchical distributed message queue to guarantee
the order of the messages and the exactly once delivery when delivering them to multiple users in
parallel. The work in [26] introduces a scalable and mobility-aware hybrid protocol named Boarder
Node Medium Access Control (BN-MAC) for Wireless Sensor Networks (WSNs), which leverages the
characteristics of scheduled and contention-based MAC protocols. In the research area of virtual data
center access, the work in [27] proposes a method that evaluates the impact of virtualization on the
network performance of the data center of Amazon EC2 (Elastic Cloud Computing). This method
measures the performance impact on processor sharing, data packet delay, TCP/UDP (Transfer Control
Protocol / User Datagram Protocol) throughput and packet lost when accessing the virtual machine
of the EC2 data center. The research in [28] builds a heterogeneous resource access structure by
strongly integrating the multi-layer resources of the heterogeneous data center from the perspective
of a software-defined network, and designs a synergistic communication mechanism for the users’
access process, which has some advantages in terms of blocking rate and resource occupation rate.
The work in [29] analyzes the characteristics of the virtual data center and proposes an abstracted
data center virtualization structure, based on which a flexible and bandwidth-guaranteed allocation
algorithm is designed, which further enhances the applicability of the network when being accessed.
The research in [30], from the perspective of the service reliability of the virtual data center, proposes
a self-adaptive backup strategy based on a genetic algorithm. This strategy can effectively reduce
backup time and enhance users’ access request stability via combining different strategies. The
work in [31] presents a model that can express the computing, memory, storage and communication
resources of the cloud computing data center, which can enhance data center access performance
and reliability, from the perspective of cloud infrastructure management and optimization. The work
in [32] proposes a powerful meta-heuristic, greedy randomized adaptive search procedure, augmented
by path re-linking. By re-optimizing the communication paths between virtual machines and big
data sources, this approach re-balances the overall communication and runtime resource utilization
on the cloud infrastructure. In order to minimize data access latencies and bandwidth costs, the
research in [33] presents optimal algorithms for determining the Virtual Machines (VM) locations
satisfying various constraints. The work in [34] proposes a mixed virtual machine sharing and storing
system with the consideration of privacy protection when accessing the massive cloud computing data
center, and for the purpose of improving I/O (Input/Output) delay and platform throughput. The
work in [35] analyzes password system visiting control based on attribute encryption in the context
of cloud computing. Moreover, it discusses multi-tenancy technology as well as the virtual visiting
control technological framework. The work in [36] designs an agile data center based on virtualization
technology of service and storage, and further proposes a load-balancing algorithm for cross resource
layers (server, exchanger and storage) with the inspiration of the multi-dimensional knapsack problem.

http://kafka.apache.org
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Combining the resources of the data center including CPU and memory, the work in [37] proposes
a task scheduling algorithm with bandwidth perception with a consideration of task scheduling of
cloud computing. The work in [38] presents two scheduling algorithms for precedence-constrained
parallel Virtual Machines (VM) in a virtualized data center where each VM represents a sub-service
of the Internet-scale service. The work in [39] designs a rolling horizon scheduling structure for
the virtual data center, based on which an energy-perceivable real-time task scheduling algorithm
is developed. The work in [40] formalizes the paradigm of big data stream mobile computing,
discusses its most significant application opportunities, and outlines the major challenges in performing
real-time energy-efficient management of the distributed resources available at both mobile devices and
Internet-connected data centers. The literature in [41] proposes a resource management method which
is based on feedback control theory and dynamically adjusting the virtual machine resource allocation
at the virtual data center, and finally realizes applicable service-oriented resource management via
arbitrating various allocation requests for application resources. The work in [42] presents a highly
efficient and controllable virtual machine online migration scheduling algorithm to tackle the visiting
block problem caused by unreasonable application for core network and unbalanced workload at
the virtual data center. The proposed WRR (Weighted Round-Robin) algorithm in [43] is a weighted
scheduling algorithm based on polling, and it distributes the service requests between servers in the
form of polling. In the aforementioned studies, Kafka is an access mechanism organizing messages
in the form of “topics“. However, upon a massive number of service requests at the data center, the
problem with the DAPVDC is that it has the feature of a higher complexity of user request types and a
strict request response sequence in this scenario. When dealing with the DAPVDC, Kafka consumes a
large cost to frequently create the topic and maintain the original order of the service request, limited
by its own access schema features though it is widely applied in streaming data processing. WRR
in [43] handles a large number of service requests by the means of polling. Although it satisfies the
processing fairness of the server requests, it does not make full use of the access ability of new servers,
which affects the capacity of the access cluster’s load balancing when processing requests for a longer
time. The research in [23,24] mainly considers the real-time processing; the work in [25,26] centres
on the reliability of message transmission; the work in [27,28] mainly considers the network resource
quality’s impact on access to the virtual data center; the proposed methods in [29–31] concentrate on
network availability and data center stability; the research in [32,33] mainly centres on the optimization
of the network resources cost between virtual machines; the methods in [34,35] focus on privacy
protection and visiting safety; the work in [36–39] mainly consider data center access from the aspect
of task optimization and load scheduling; and the work in [40–42] solves access problems from the
perspective of virtual data center resource reallocation and virtual machine migration.

3. System Model and Definitions

In this study, our objective is to solve the problem of DAPVDC in the scenario of the IoT’s
large-scale request access.

Figure 2 illustrates a synergistically distributed buffering access model with resource and location
being separated at the virtual data center. Users in different geographical locations (within the same
residential area, for instance) send service requests of different sizes, which can be divided into
a logical request group. These requests sent from the same area are deployed into one group, and if
the number of requests from this group exceeds a threshold, then the group will be subdivided into
two logical request groups based on a related property. Users’ requests from different locations are
gathered into the same one logical request group based on the deviation degree between them and
the designated threshold and their properties, and so forth, till there are quite a number of logical
request groups. The distributed buffering system stores the mapping relation between the logical
request group and the virtual machine as well as maintains the correlation before and after the logical
request group migration. These logical groups, firstly, search for the mapping relation between the
logical request group within the location and the virtual server based on the distributed buffering
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system, further, searches for the service resources for the logical request groups. If the virtual server
in the mapping is overloaded, the other requests in the logical request group will be automatically
migrated to other less loaded servers in the virtual server group, and meanwhile, the mapping relation
of the distributed buffering system is renewed so that the sequential logical request group can acquire
service resources with high efficiency. The detailed definitions of the system model are given in the
following paragraphs.

Area 
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Requests  

Group

Area 
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Group
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Figure 2. Synergistically distributed buffering access model.

Given the virtual data center network at the time of t as N(G, V, P, L), where G refers to the
collection of virtual logical groups of users’ request, and G = (g1, g2, . . . , gm); V refers to the collection
of virtual machine groups of the data center, and V = (v1, v2, · · · , vn); P refers to the collection of
physical servers of the data center, and P = (p1, p2, . . . , ps); and L refers to the collection of network
links of the data center, and L = (l1, l2, . . . , ld). Presuming the physical server pa (pa ∈ P) works
normally, then S(a) = 1, otherwise, S(a) = 0. Assuming that the logical group of users’ request gi

requests to access virtual machine group υu, which has κu virtual machines and each machine vj
u

(vj
u ∈ V) has specific requirements on the CPU, memory and storage space, which is referred to as Rj

u;
the gross resources of the physical server Pa is referred to as Qa; the gross communication volume
that the virtual machines vj

u and vκ
u pass the collection of link set L at the time of ∆t is referred to

as cjk
u , and cjj

u = 0; Cu refers to the communication matrix of the virtual machine group υu and it
is composed of cjk

u . The network communication resource that is consumed by accessing number i
request logical group gi to the number j virtual machine vj

u is ψ
uj
i , while CPU and memory consumed

is δ
uj
i . Assuming the logical group of users’ request gi is successfully accessed to the virtual machine

vj
u, then τ

j
u(i) = 1, otherwise, τ

j
u(i) = 0. In such a case, viable request access means the logical group

of users’ request gi can be expressed as:

Φi = [τ1
u(i), τ2

u(i), · · · , τ
j
u(i), · · · , τκu

u (i)] (1)

s.t.



τ
j
u(i) ∈ {0, 1}, j = {1, 2, · · · , κu}

κu
∑

j=1
τ

j
u(i) = 1, ∀i, u

κu
∑

j=1
τ

j
u(i) · R

j
u ≤

s
∑

a=1
S(a) ·Qa, ∀a, u

i = 1, 2, · · · , m

u = 1, 2, · · · , n
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where
κu
∑

j=1
τ

j
u(i) · R

j
u ≤

s
∑

a=1
S(a) ·Qa means the available resource quantity of virtual machines in the

DACIOT is less than that of physical machines. To make it easier to follow the viable request access
means proposed above, an example is taken. Φ1 = [1, 0, 0, · · · , 0] represents the first logical request
group g1 is successfully accessed to the first virtual machine. Then, the viable request access means of
all the logical request groups can be expressed as Φ = {Φ1, Φ2, · · · , Φm}.

It is assumed that Cost(i) means the resource cost consumed when the logical group of users’
request gi requests access to the virtual data center, and

Cost(i) =
n

∑
u=1

κu

∑
j=1

(
τ

j
u(i) · (ψ

uj
i + δ

uj
i )
)

(2)

As request groups will migrate between virtual machines, if the load on the virtual machines is
too large when a massive number of users request a specific virtual machine cluster, a communication
constraint on migration is needed and the network communication resources occupied by migration

must not exceed that when requests are accessed, i.e.,
κu
∑

k=1
cjk

u < ψ
uj
i . Moreover, ϕk

j (i) = 1 means that

the logical group of users’ request migrates from the virtual machine υ
j
u to υk

u, otherwise ϕk
j (i) = 0,

and j 6= k,
κu
∑

k=1
ϕk

j (i) = 1. As the main cost which is incurred when requests migrate depends on the

size and communication consumption of an individual request group, the function for average cost of
migration is:

Mig(i) =

κu
∑

k=1

(
ϕk

j (i) · (1 + λ) · S(i) · cjk
u

)
∆t

(3)

In the equation above, S(i) refers to the size measurement of the logical group of users’ request; λ is
an adjusting factor which balances the impact of other resources such as CPU and memory on request
migration, and λ ∈ (0, 1). Therefore, the problem of DAPVDC can be described in the form of looking
for a group of access array Φ1, Φ2, · · · , Φm within the time of ∆t, and a corresponding constraint will
be met to minimize the overall resource consumption(minimum is defined as optimal), i.e.,

minF =
m

∑
i=1

(Cost(i) + Mig(i)) (4)

s.t.



m
∑

i=1
δ

uj
i ≤ Rj

u

κu
∑

k=1
cjk

u ≤ φ
uj
i

Φ1, Φ2, · · · , Φm ∈ Φ

i = 1, 2, · · · , m

u = 1, 2, · · · , n

Specific to this optimized model, the article builds a synergistically distributed access model and
further designs a Group Migration Bee Colony Optimized Scheduling algorithm (GMBCOS) to seek
an optimal access strategy. Table 1 lists the symbols used in the model.
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Table 1. Parameters of the DAPVDC modelling.

Parameters Descriptions

G Collection of virtual logic groups of user’s requests
V Collection of virtual machine groups in data center
P Collection of physical servers in data center
L Collection of network links in data center
pa The number a of physical servers

S(a) If the physical server Pa works well
s Number of physical servers
gi The number i logic groups of users’ requests
υu The number u groups of virtual machines
κu Number of virtual machines in the group of virtual machines υu

υ
j
u The number j virtual machines in the group of virtual machines υu

Rj
u Amount of resources needed by virtual machine υ

j
u

Qa Gross resources of physical server Pa

cjk
u Communication resources between virtual machines υ

j
u and υk

u in the time of ∆t
ψ

uj
i Network communication resources consumed when request group gi is accessed

by virtual machine υ
j
u

τ
j
u(i) If request group gi is successfully accessed by virtual machine υ

j
u

ϕk
j (i) If request group gi migrates from virtual machine υ

j
u to υk

u
S(i) Measurement of size of request group gi

λ Adjusting factor that balances impact of other resources on request migration
Φi Viable access means of request group gi

4. The Proposed Massive Sensor Network Data Access and Control Mechanism (MSACM)

When facing a massive number of access service requests, a traditional access means cannot easily
meet the demand of low delay and high concurrence. As a result, a new strategy is needed to meet the
constraint of users’ service quality and enhance the throughput and resource utility of the data center.
Hence, based on the synergistically distributed buffering access model proposed, this section designs
a Massive Sensor Network Data Access and Control Mechanism (MSACM), which first introduces
an Optimized Dynamic Self-organizing Feature Map (ODSOFM) that divides the requests into groups
dynamically; further, it provides a Group Migration Bee Colony Optimization Scheduling algorithm
(GMBCOS) after analyzing the characteristics of the model of the existing virtual data center’s massive
number of user’ requests; and finally expounds the steps of GMBCOS in detail and analyzes the
performance of MSACM.

4.1. Optimized Dynamic Self-Organizing Feature Maps (ODSOFM)

4.1.1. ODSOFM Introduction

A Self-Organizing Feature Map (SOFM) neural network, first initiated by Finnish scholar
Kohonen, has been widely applied in a number of information processing fields [44] for its
features, including topology structure maintenance, mass parallel processing, distributed information
storage, good self-organizing and learning capacity, distributed adaptive output consistency [45],
non-supervision of clustering and visualization, etc. SOFM is comprised of an input layer and output
layer (the output layer is also called the competitive layer). The neurons of the input layer are fully
linked to the competitive layer and each neuron represents one category. In accordance with the
rules of learning, the repeated learning will be able to capture the feature of each of the input models,
which will undergo self-organizing clustering and form a clustering result at the competitive layer.
The topological graph is shown in Figure 3.
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Figure 3. Topology of SOFM neural network.

As shown in Figure 3, the input layer is made up of N input neurons while the competitive layer
is made up of M output neurons. X1, X2, · · · , Xn in the input layer refers to the N input neurons,
and they are mapped into the output layer by clustering analysis. Neurons in the input layer and
competitive layer are fully connected in the form of dotted lines. A precise grouping result can only be
obtained by repeated self-organizing clustering for nodes in the competitive layer. When using
a SOFM model, the number of neurons M at the competitive layer needs to be pre-designated.
In this way, such a network structure will limit the network convergence speed to a large extent.
This will be an obvious limitation. Therefore, in the scenario of the IoT’s mass access requests,
in order to enable the users’ access requests to carry out self-organizing clustering based on their
measurement nature, it is necessary to improve the SOFM, i.e., this requires an optimized ODSAOFM,
which introduces a growing threshold (GT) and disturbance factor (DF). GT makes the network
structure grow dynamically in the training process while DF controls the growth direction and
prevents partial optimization, so that a hierarchical clustering is realized.

The algorithm of ODSOFM is as follows:

GT =


d× f (DF)×n(lt)

1+n(lt) init = 0

d× f (DF) otherwise
(5)

where d is the dimension vector; init = 0 refers to the initial status; n(lt) is the numbers of current
network node at the lt-th time of iteration; f (DF) is the classification function of layers.

f (DF) =
√

1− DF (6)

DF = rand(lt)

where rand(lt) is the random number ranging from 0 to 1 at the lt-th time of iteration.

Definition 1. For vec, the network’s input dimension vector, the closest node on the competitive layer is
regarded as the best matching node, and is abbreviated as bmn (best matching node). Hence, the formula is
as follows:

‖ vec−ωbmn ‖≤‖ vec−ωni ‖, ∀ni ∈ N (7)

In the above equation, ω is the node weight dimension vector, ni is the ith network node, N is the total of
ni, ‖ · ‖ is Euclidean distance. ‖ vec−ωbmn ‖ refers to the Euclidean distance between vector vec and vector
ωbmn, which is the weight dimension vector of the best matching node bmn.
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Definition 2. The distance between the input dimension vector vec and its best matching node bmn is referred
to as the standard error value between them and is represented by E. Hence, the formula is as follows:

E =
d

∑
k=1

(veck −ωbmn k)
2 (8)

In the above equation, d is the dimension of vec, ωbmn k is the k-th dimension of the vector ωbmn.

Definition 3. The competitive layer node ni and its direct sub-node are defined as the neighborhood of ni,
which is referred to as σ(ni).

4.1.2. Description of Optimized Dynamic SOFM

Given that N = {n0, n1, n2, . . . , nm} represents the node set at the competitive layer,
Vec = {vec1, vec2, . . . , vecm} represents the input dimension vector set; vi = (veci1, veci2, . . . , vecid)

represents i-th input dimension vector; d is the dimension of the input dimension vector; n0 is the
initial node; σk(ni) is the neighborhoods of node ni at k-th time of iteration, and σk(ni) = σ0 exp(− k

τ ) ,
σ0 is the initial value of σni (usually a bigger value), τ is exponential decay constant. This algorithm
is summarized in the flowchart of Figure 4. Then, the detailed process of ODSOFM algorithm is
as follows:

Step 1: Initiate node n0, neighborhoods σ(n0),weight dimension vector ωn0 , the maximum number
of iteration Imax, and growth threshold GT, ωn0 is a random value ranging from 0 to 1, at the
initial period, lt = 1, GT is calculated according to Equations (5) and (6), and then each vector

of the input vector set Vec is standardized between 0 and 1. When it is veci = (
d
∑

j=1
vec2

ij)
1
2 then

the standardized veci is ˙veci =
(

veci1
veci

, veci2
veci

, . . . , vecid
veci

)
.

Step 2: Select the input dimension vector sequentially from Vec and search the current network node
collection N for the best matching node (bmn) of the vector v, calculated by Equation (7);

Step 3: Calculate the error between bmn and v as E according to Equation (8). If E ≤ GT, skip to
Step 4 for weight value updating, if not, go to Step 5 for the node growth operation;

Step 4: Adjust bmn neighborhood’s weight value via Equation (9).

ωnj(k + 1) =

{
ωnj(k) j /∈ σk+1(bmn)

ωnj(k) + LR(k) · (v̇−ωnj(k)) j ∈ σk+1(bmn)
(9)

In the above equation, LR(k) is the learning rate, when k→ ∞, LR(k)→ 0 and ωnj(k), ωnj(k + 1)
are the weight values of nj respectively prior and post adjustment. σk+1(bmn) is the
neighborhood when bmn is at k + 1 times of iteration.

Step 5: Generate a new node np of bmn, and make ωnp = ˙vec;
Step 6: LR(t + 1) = LR(t)× α, α is the regulating factor of LR, 0 < α < 1;
Step 7: Repeat Step 2 to Step 6 till all input dimension vectors in V have been trained completely;
Step 8: Make lt = lt + 1, repeat Step 2 to Step 7 and enter into the next iteration period till no more

new nodes are generated in the network.
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Figure 4. Flowchart of ODSOFM algorithm.

4.2. Group Migration Bee Colony Optimization Scheduling Algorithm (GMBCOS)

The users’ requests are mapped into corresponding logical groups by using ODSOFM based on
the distributed buffering access model, the analysis showing that the distributed solution of the ABC
(Artificial Bee Colony) algorithm [46,47] features high efficiency, outstanding synergicity and is robust.
A kind of group request migration scheduling algorithm is proposed based on the optimized ABC
algorithm to search for the globally optimal solution.

4.2.1. Basic Principle of the Artificial Bee Colony Algorithm

The ABC algorithm is a new intelligent algorithm based on the feeding behavior of bee colonies.
Honey gathering is a process of searching for the optimal solution. A bee colony comprises three groups
of bees: employed bees, onlooker bees and scout bees. Searching for the optimal solution involves
basic behaviors such as searching for a honey source by the honey gathering bees and onlooker bees,
calling for onlooker bees, and giving up the old honey source for a new one. In the process, the honey
content of the honey source responds to the adaptability function of the optimization problem.

It is assumed that the initial group contains N solutions (the number of employed bees), each of the
solutions xi is a dimensional vector, meaning the Number i location of a honey source; j ∈ {1, 2, . . . , D}
indicates the j-dimension component of solution vector. The detailed process of bee colony searching
for the optimal solution is described as follows:
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(1) Searching for honey source, in which the employed bee and onlooker bee search for a honey
source in the manner shown in Equation (10):

vij = xij + ζij(xij − xkj) (10)

In the equation, vij refers to the new honey source location searched by Number i bee responding
to Number j dimension, while xij refers to the honey source location searched by current Number
i bee responding to Number j dimension. xij refers to Number j location of the randomly selected
honey source k, k ∈ {1, 2, . . . , D}, and k 6= i. ζij is the disturbance factor with a value being
random between −1 and 1, which determines the search range for xij.

(2) Onlooker bee selects honey source. If the honey content of the new source is no less than
that of the old one, then the employed bee accepts the location of the new source location,
otherwise, it will continue to explore the old source. This can be understood as the employed
bee determining a honey source by applying a greedy selection. When all the employed
bees finish searching, they convey the information on the honey source to the onlooker bees,
which will select the honey source based on the honey content and by means of Round Robin
(RR). The equation for the selection probability is as follows:

pi =
Fi

N
∑

n=1
Fn

(11)

In the equation, Pi refers to the selection probability for Number i solution, and Fi is the fitness
value for Number i solution. This value corresponds to the honey mass at this point.

(3) Given the honey source and new solution is generated randomly, in case a specific solution is
still not improved after iterlim times of recycling the iteration threshold, and the benefit degree
of the honey source is not the global optimal solution, this indicates that the solution falls into a
locally optimal solution and the solution should be given up. The employed bees responding to
the solution should be changed to scout bees, which work to generate a new solution randomly
to replace the old one as Equation (12) shows.

xij = xmin
ij + rand(0, 1) · (xmax

ij − xmin
kj ) (12)

In the equation, rand(0, 1) refers to the random numbers generated between 0 and 1, while xmin
ij

and xmax
ij respectively refer to the upper and lower limits of Number i honey source of

j-dimension component.

4.2.2. Group Migration Bee Colony Optimization Scheduling Algorithm (GMBCOS)

It is understandable from the above paragraphs that the basic ABC represents such merits as fewer
parameters for control, and easier computing and realization. However, it is easy for this to appear to
be a “premature“ phenomenon, and the stride length of the search is largely random, causing the local
search of the algorithm to be weaker and the convergence speed to be slower.

In this regard, the article introduces chaos theory and the particle location updating mechanism
of the Particle Swarm Algorithm respectively with the purpose of improving ABC and thus solves the
problem of DAPVDC when the migration of massive user’ requests occurs. This process is described
in detail as follows.

(1) Chaos features randomness, ergodic property and regularity, enabling ergodicity of all kinds of
status unrepeatedly within a specific rand and based on its own rule. With these characteristics,
it is easy for chaos optimization to appear to be a locally optimal solution; and, if a specific
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solution is still not improved after iterlim times of recycling in ABC, this indicates that the
solution falls into a locally optimal solution. In such a case, the scout bees will not select a new
solution anymore according to Equation (12), but will generate a chaos sequence by utilizing the
ergodic property of the chaos movement and based on the solution of the currently stagnant
search. The optimal location in such a chaos sequence is going to replace the original location,
causing the solution of the stagnant search to continue evolving, thus enhancing convergence
speed and accuracy. The detailed steps are as follows:

(a) To initialize a typical chaos system:

zn+1 = µ · zn + (1− zn) n = 1, 2, . . . , r (13)

where r refers to the sequential length, and µ refers to the control parameter. When µ = 4,
the system is in the status of chaos. By the time the value of µ is determined, an explicit
chaos sequence z1, z2, · · · , zr can be iterated from an arbitrary initial value z1 ∈ [0, 1].

(b) To assume that the solution for the current search stagnancy is xi, which is mapped
into the domain of definition [0, 1] of the chaos system mentioned above as in the
following equation:

z1
ij =

xij − xmin
ij

xmax
ij − xmin

ij
i = 1, 2, . . . , N; j = 1, 2, . . . , D (14)

An iteration based on Equation (13) results chaos variable sequence zΦ
i (Φ = 1, 2, . . . , iterlim),

in which itermax refers to the maximum number of iteration for bee colony local search.
(c) To bring chaos sequence zΦ

i back to the original solution space via inverse mapping
xij = xmin

ij + zm
ij · (xmax

ij − xmin
kj ), resulting in x‘

i = (x‘
i1, x‘

i2, . . . , x‘
iD), and to calculate the

adaptive value F(x‘
i) and compare it to the original, and maintain the optimal solution.

(d) To complete the process of optimization if the local maximum number of iteration iterlim,
otherwise, return to Step b.

(2) In the process of searching for honey sources, employed bees and onlooker bees are merely
searching through single-dimensional variables, and ignore the impact from variables of other
dimensions, causing the convergence speed of the algorithm to reduce. Comparatively, in a
particle algorithm, particles are update based on a globally optimal solution so that a better
convergence speed can be maintained.

Inspired by this process, this article introduces a historically optimal location into the process of
honey source searching. The new equation for the updated location is:

vij =

xij + ζij · Fi−Fbest
Fk−Fbest

· (xij − xkj) + λe−
iter

itermax · (xbestj − xij) Fk 6= Fbest

xij + ζij · (xij − xkj) + λe−
iter

itermax · (xbestj − xij) Fk = Fbest

(15)

where Fbest refers to the adaptive value of the historically optimal honey source; iter refers to the
current number of iteration; itermax refers to the maximum number of iteration; and λ, a parameter,
is set as a constant. xbestj refers to j-dimension component for the current optimal solution.

The new location updating equation enables the globally optimal solution to play a guiding role to
some extent, in the honey source search trend. What is more, it keeps a larger stride length at the initial
period of iteration, which has benefit in extending the searching space of the algorithm, weakening the
guiding role of the globally optimal solution and enhancing the algorithm’s convergence speed of the
globally optimal solution.
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Figure 5. Flowchart of GMBCOS algorithm.

Using the analysis above, this article designs a Group Migration Bee Colony Optimization
Scheduling algorithm (GMBCOS) based on the optimized ABC algorithm. This algorithm is
summarized in the flowchart of Figure 5. In detail, the algorithm has the following steps.

Step 1: Initiation, to carry out logical grouping and efficiency verification of the users’ requests from
different geographical locations;

Step 2: Randomly generate a number of initiative solution collection xi, with the problem dimension
as D, iterlim as the iteration threshold, N as the total number of honey sources, itermax as the
maximum number of iteration, and iter = 1;

Step 3: Calculate the fitness value of honey sources, F(xi), and record the current optimal fitness
value as Fbest;
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Step 4: Generate new locations according to Equation (15), and the employed bees select honey
sources with the greedy selection mechanism;

Step 5: Onlooker bees select honey sources according to Equation (11);
Step 6: Onlooker bees generate new locations according to Equation (15) and select honey sources

with the greedy selection mechanism;
Step 7: Give up the solution when it is still not improved (falls into locally optimal) after iterlim times

of recycles continuously, and convert the employed bees corresponding to the solution to
scout bees, which will generate a new solution to replace the old one according to the given
chaos search mechanism;

Step 8: Record the optimal solution so far;
Step 9: iter = iter + 1; judge if the condition for termination is met-if yes, terminate and output the

optimal solution; and if not, go back to Step 3 for re-search.

4.3. Steps to Realize MSACM

Step 1: Initialize the DAPVDC problem, relevant functions and parameters, set the value of the
relevant measurement parameters and constraint conditions for the DAPVDC problem,
and move onto Step 2;

Step 2: Initialize the synergistically distributed buffer access model according to the parameters
relevant to the DAPVDC problem, and move onto Step 3;

Step 3: According to the synergistically distributed buffer access model, use the ODSOFM algorithm
to divide the massive access requests into dynamic groups based on the location characteristics;

Step 4: Use the GMBCOS algorithm to compute the model result regarding virtual logical requests,
and move onto Step 5;

Step 5: Save the computed result and exit.

4.4. Analysis of MSACM Performance

The access scheduling strategy comprises two parts: the ODSOFM algorithm and GMBCOS
algorithm. For the former, the growth threshold (GT) determines the network growth scale. When GT
is comparatively large, ODSFM will have proportionally more weight value updating operations and
generates less joints to be included in the target network, yet the speed of generating the network
is faster and only realizes the clustering of coarse particles. In contrast, when GT is comparatively
small, ODSFM will have proportionally more joint growth operations and generates more joints to be
included in the target network, yet the speed of generating the network is slower and only realizes the
clustering of fine particles. When the disturbance factor (DF) is introduced, it is always set to a larger
value for initiation. It can be known from Equation (6) that GT at this moment is smaller and is able
to categorize the transmission orders roughly, enabling an overall grasp of the group transmission
order. With an increasing number of iterations, the value of DF grows larger, enabling more accurate
results on clustering and realizing clustering in layers. Additionally, it is known from Equation (5) that
the increasing number of iterations results in to GT having a weaker role in adjustment, more weight
value updating operations, being able to more easily select the properties that have a major function in
the clustering result and ignore the properties with minor functions. Furthermore, this will reduce the
computational work and further enhance the algorithm’s convergence speed and execution efficiency.

The optimized ABC-based algorithm, GMBCOS, introduces the fitness value that is so far the
optimal honey source to enhance the global development capacity, and the search radius appears to
be a ladder-type variation for developing the optimal solution as the number of iteration grows.
This balances the exploration for the optimal capacity and development capacity well, and the
algorithm presents excellent convergence and viability. This algorithm shows an identifiable role
division among the three kinds of bees—the employed bees work to maintain the optimal solution;
the onlooker bees enhance convergence speed; and the scout bees enhance the capacity to get rid of the
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locally optimal solution. When the scout bees are updating the stagnant solution, the article algorithm
uses a chaos search mechanism to increase the solution diversities, continuing to optimize the stagnant
solution and further enhancing the convergence speed and accuracy.

Regarding the complexity of executing the MSACM mechanism, the number of iterations is Imax;
the number of input nodes is N; the maximum number of iteration operations of each round
is NlogN; the maximum space occupation is N; the overall time complexity after Imax times of
iteration is o(Imax × NlogN); and the space complexity is o(N). However, the number of initial
solutions for GMBCOS is N. A chaos sequence with a length of r will be generated via chaos search
every time when the chaos search is being performed, with r << N. The maximum execution
number of each iteration of the employed bees and onlooker bees is NlogN; the maximum globally
executing number is itermax, the total number of search executed by the algorithm is NlogN × itermax.
Hence, the overall space complexity of the MSACM mechanism is o(N) and the time complexity
is o(Max{Imax × NlogN, NlogN × itermax}). In the real process of operation, as itermax is bigger
than Imax, so the time complexity of MSACM is o(NlogN × itermax) and the space complexity is o(N).

5. Performance Evaluation

5.1. Experiment Environment and Parameter Setting

The experiment platform is mainly composed of three groups of low-cost clusters, namely,
sending server cluster, access server cluster and storing server cluster. The sending server cluster
primarily works to simulate sensor nodes to send massive sensor data, with each sending server
deploying the same program at the sending end and controlling sensor data of various size and rate.
The sensor data all bear area characteristics, for which the sending server cluster carries out parallel
control via the MPI (Message Passing Interface) environment. The access server cluster works on
access processing for the massive sensor data. The access cluster is regarded as a virtual data center.
Each of the servers deploys the MSACM mechanism, and Hadoop and Ganglia software. The entire
access cluster manages the resources via Hadoop and monitors the resource variation via Ganglia.
The storing server cluster stores the data processed by the access server. Each server deploys HBase
software. This a kind of distributed storage of the massive structured or non-structured sensor data
processed by the access server.

The sending server cluster consists of 8 physical machines, each configured with a 4-core CPU,
Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz, 4 G memory, 250 G hard disk, 1000 M network card,
64-bit CentOS-6.4. The deployment structure is shown in Figure 6a. The storing server cluster consists
of 8 physical machines, each configured with 8-core CPU, Intel(R) Xeon(R) E5-2603 v2 @ 1.80 GHz,
16 G memory, 2 T hard disk, rotating speed 7200 rpm, 1000 M network card, 64-bit CentOS-6.4. It is
configured with an HBase distributed storing database, each of the storing nodes being configured with
Hadoop-2.6.0, HBase-0.96 and zookeeper-3.4, and also Ganglia-3.7.1 software to detect the resource
utilization situation at the nodes. The deployment structure is shown in Figure 6b. The access
server cluster consists of 16 physical machines connected with a network cable of 7 categories and
2 sets of 1 GB D-Link Ethernet Switch, each configured with 8-core CPU, Intel(R) Core(TM) i7-4790
CPU @ 3.60 GHz, 40 G memory, 12 pieces of 1000 M network card, and 1 T hard disk. The deployment
structure is shown in Figure 6c. These 16 physical machines are arranged with 64 virtual servers to
compose a virtual data center. Each of the virtual machines is configured with 8 G memory, 4-core CPU,
200 G hard disk, 64-bit CentOS-6.4, and Hadoop-2.6.0, Ganglia-3.7.1 for resource management and
monitoring. These virtual machines are divided into a few groups based on their location property.
The experiment builds up a sending server cluster with 8 groups of physical servers, each group with
2 sets of Linux virtual machines. These 16 sets of Linux virtual machines simulate the sending request
user end from different areas. Each of the user ends sends a specific amount of access requests via
the multi-threading sending program. These massive access requests from various areas send service
requests regularly toward the access cluster servers at the virtual data center. A single distributed
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buffering access system is arranged to a virtual server selected from each of the access server groups to
inquire the mapping relation between the logical request group and the virtual server. The MSACM
mechanism is deployed for each virtual access server. In the end, a distance control system is applied
to control the 16 local client hosts sending their service requests of different mass and thus build up
a massive access environment for the IoT. Each virtual client host opens a number of service request
threading based on the test scale. Each thread sends a number of service request packets, each with
a size of 128 bytes.

With the comprehensive consideration of the real scenario of massive request access, it is initialized
that the number of solution N = 30, and the request order dimension ranges from 3 to 6. A larger
request order dimension will require higher difficulty in computing and it will be easier to test
the bottleneck of the algorithm. In this case, with the maximum dimension value being set at
D = 4, the growth threshold (GT) and disturbance factor (DF) can be calculated according to
Equations (5) and (6). The initiative neighborhood radius reflects the request order’s range of
clustering. At the initiative, the order categorization is always indistinct, as a larger value is set
for σ0, which, however, has little impact on the clustering result, as different initiative domain may
acquire the same result even after different times of iteration, with σ0 = 12. The adjustment factor α of
the Learning Rate (LR) reflects the degree of ease of the request order clustering when iteration times
of service request order increase. With 0 < α < 1, a larger α indicates that the request command more
easily finds its category. It ranges from 0.6 to 0.9 according to the characteristics of the service requests’
scale of simulated users. Without loss of generality, in this paper, we set α = 0.75 according to the
literature [48], and set itermax = 60, itermax = 200 according to the literature [49].

(a) (b) (c)

Figure 6. Grouping of server cluster. (a) Sending server cluster; (b) Storing server cluster; (c) Access
server cluster.

5.2. MSACM Performance Test

The test commences with the experimental environment and parameters set as aforementioned.
Without loss of generality, both algorithms are executed ten times independently to obtain the
average statistical results in each experiment. The experiment is designed with consideration of
the following aspects:

(1) In the situation of steadily increasing service request speed, the request arrival rate (RAR) is
compared between MSACM and the other algorithms. RAR is defined as: RAR = number of
service requests with successful arrival/total number of service requests;

(2) In the situation of steadily increasing service request speed, network delay (ND) is compared
between MSACM and other algorithms. ND herein refers to the average network delay;

(3) In the situation of steadily increasing number of access service requests, the load balance rate
(LBR) is compared between MSACM and other algorithms. The load of Number i access
server at the moment of t is set as πi, the total number of online virtual machines is κ, the
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average load of the access cluster is π = π1+π2+···+πκ
κ , and the load balance rate is defined as

LBR = 1
κ

κ

∑
i=1

(πi − π)2;

(4) In the process of a gradually growing number of virtual servers, the resource utilization rate
(RUR) is compared between MSACM and other algorithms. The number of online virtual
machines is set as κ, the time consumed by Number j access servers when requesting access
is ATj, the real occupation time of Number j access servers is OTj, then RUR is defined as

RUR = 1
κ

κ

∑
j=1

ATj
OTj

;

(5) In the situation of a steadily growing number of service requests, the migrating cost rate (MCR)
is compared between MSACM and other algorithms. The number of online virtual machines is
set as κ, the migrating time consumed by Number j access servers when requesting access is
MTj, and the time consumed by Number j access servers when requesting access is ATj, then

MCR of the access server cluster is defined as MCR = 1
κ

κ

∑
j=1

MTj
ATj

.

5.2.1. Experiment 1: RAR Performance with Different Request Rate

In this experiment, RAR performance is tested under the condition that the maximum request rate
is 1 million packets per second and the minimum is 0.82 million packets per second. In order to evaluate
RAR performance, the experiment uses the WRR [43] algorithm, which is based on Round-Robin
Scheduling, Kafka [50], which is a distributed message publishing and subscribing mechanism, and the
MSACM algorithm proposed in this paper.
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Figure 7. RAR with different request speed.

In Figure 7, the horizontal coordinates refer to access service request speed; wps refers to
ten thousand access request packets sent by clients per second; and the vertical coordinates refer
to the request arrival rate. When the request speed remains below 88 wps, the network resources
and computing resources in the virtual data center are plentiful, WRR and Kafka show a satisfactory
access performance, without the occurrence of packet loss. When the request rate is 90 wps, the RAR
of WRR algorithm is 92.38%, the RAR of Kafka is 95.67% and the RAR of the MSACM algorithm
is 98.12%. However, with a rising request speed, the network bears a larger load and network
links start being blocked and packet loss begins at the virtual data center. This phenomenon is
especially apparent in WRR and Kafka. When the request rate reaches 94 wps, MSACM still maintains
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a request arrival rate of 93.85%, whereas the other two algorithms have a request arrival rate lower
than 85%. With ever growing request concurrency, virtual servers have a high consumption of
resources, with weakening communication capacity between virtual machines and an unapparent
scheduling effect of both algorithms. Gradually, the request arrival rate of the three algorithms
becomes largely different—MSACM performs well while the Round-Robin Scheduling-based WRR
algorithm has the lowest rate. In the process of the request speed gradually increasing from 82 wps
to 100 wps, the RAR of the MSACM algorithm changes quite gentle, which shows that MSACM
algorithm has a good robustness. This also shows that Kafka, an outstanding distributed message
system, cannot effectively solve the distributed access problem for virtual data centers at the DACIOT.

5.2.2. Experiment 2: ND Performance with Different Request Rate

In this experiment, the network delay (ND) variation of the three algorithms is tested when the
access request speed varies from 0.82 million to 1 million packets per second.

In Figure 8, the horizontal coordinate refers to the access service request rate while the vertical
coordinate refers to average network delay. In the process of the request speed gradually increasing
from 82 wps to 86 wps, it can be seen from the figure that the load at each access server remains low
and network link congestion does not appear as the access cluster enjoys ample network resources
when the access service request rate is low. Network delay mainly refers to the transmission time.
In this sense, the network delay of the three algorithms is all low and at similar levels. Strictly, WRR is
more slightly advanced than the other two algorithms. As MSACM needs to use ODSOFM algorithm
to classify the access requests, it shows a slightly longer delay as there is more frequent transmission
of virtual machines. Nevertheless, with an ever growing request rate, the access server consumes
resources at a faster pace; network bandwidth has less resources; service requests require a longer time;
and thus the average network delay increases. When the access service request rate surpasses 86 wps,
the three algorithms clearly start to differ from each other; and when it reaches 88 wps, Kafka has
a shorter network delay than WRR. When the request speed increases to 94 wps, the average network
delay of MSACM is 93 ms, and the average network delay of WRR reaches 137 ms, and the average
network delay of Kafka reaches 118 ms. With the ever growing pressure from the access servers,
the time to process the service request and network transmission gradually starts to increase, and the
three algorithms start to differ from each other clearly in the network delay. Generally, however,
MSACM has a shorter average network delay than the other two algorithms. It also has a slower
variation, indicating better stability.
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5.2.3. Experiment 3: LBR Performance with Variable Request Scale

In this experiment, the variation of the load balance rate (LBR) of the access server cluster of the
three algorithms is tested when the service request number grows gradually from 50 million packets
to 100 million with a stride length of 5 million.

In this experiment, as shown in Figure 9, the horizontal coordinates refer to the number of service
requests with a unit of 1 million packets; and the vertical coordinates refer to the load fluctuation
rate. When the service request number is below 60 million, the virtual access cluster server can
deal efficiently with the service requests and the virtual data center does not have pressure from
network communication and resource consumption. In the experiment, the three algorithms all
have a lower LBR. In addition, as MSACM has consumed some network bandwidth resources when
it continues inquiring the distributed buffering system at the initial period, LBR is slightly higher
than the Round-Robin Scheduling-based WRR. When the number of service request increases to
65 million, the LBR of MSACM algorithm has a better performance than Kafka and WRR, which reflects
the advantage that MSACM utilizes ODSOFM algorithm to group the service requests. With the
ever growing number of service requests, the data center experiences larger pressure and frequent
scheduling. In this experiment, the three algorithms present increasing LBR and jitter on different
levels. When the request number reaches 75 million, WRR has the highest LBR, followed by Kafka
and MSACM. Later, as WRR requires frequent task scheduling, communication between the virtual
machines grows, so WWR shows the lowest LBR. On the other side, Kafka shows a sharply weakening
LBR along with an increasing number of service requests. As network communication reduces in the
buffering mechanism, MSACM has better LBR than both Kafka and WRR.
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Figure 9. LBR of various number of access service request.

5.2.4. Experiment 4: RUR Performance with Variable Access Servers

In this experiment, variation of resource utility rate (RUR) of the data center is tested when the
number of virtual access servers varies from 30 to 64 and the request rate remains at 88 wps.

In Figure 10, the horizontal coordinates refer to the number of switched-on virtual machines,
and the vertical coordinate refers to data center’s RUR. It can be seen from these three experiments
that the three algorithms all have high access request acceptability when the access request rate
remains at 88 wps, which is when the performance of each differs. This is the reason why the
experiment tests the impact of the number of online virtual machines on RUR under the condition of
an appropriate access request rate. In the beginning, the effective resources of the virtual data center
is the bottleneck of the current massive service requests, the algorithm of WRR, Kafka and MSACM
are lack of computing resources, which lead to the service request coming about more resources
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competition. As the experimental results shows, when the number of access virtual machines is
below 50, the amount of resource requirements is not satisfied. With an increasing number of access
virtual machines, each computing tasks in the virtual data access center can be assigned more CPU
and memory resources, and the time to complete the service access requests gradually reduces. In this
experiment, the data center’s RUR of the three algorithms increases gradually, however, the scheduling
strategy of MSACM has obvious advantages, and so the RUR of virtual data center is slightly higher in
MSACM. With a further increase in the number of virtual machines, the impact on communication
time gradually weakens; with adequate resources, the time to complete the service access requests is no
longer increasing; and the time variation of access to the occupied virtual machines is also weakening.
Therefore, the RUR of the three algorithms no longer varies. From the perspective of RUR, MSACM has
better convergence than the other two algorithms.
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Figure 10. Resource utility rate of different numbers of online virtual machines.

5.2.5. Experiment 5: MCR Performance with Variable Request Scale

In this experiment, the variation of the migration cost rate (MCR) of the access server cluster
of MSACM is tested when the number of service requests grows gradually from 50 million packets
to 100 million with a stride length of 5 million.

In Figure 11, the horizontal coordinates refer to the number of service requests with a unit
of 1 million packets; and the vertical coordinates refer to migration cost. Migration consists of both
data migration and status migration. It can be seen from the figure that the migration cost value is
only 2.11%, implying a very short time occupied by migration. At this moment, very few access nodes
have the request for migration as the processing capacity of the access nodes in the access cluster
can accommodate the small number of access requests. The consumption cost mainly lies in access
processing. At this stage, MSACM mechanism takes advantages of ODSOFM algorithm to group
different types of service requests, then with the cache model, MSACM is able to quickly dispatch these
grouped requests to the corresponding access server for processing. Furthermore, the whole process
occupies less network resources and computing resources of the virtual data center. As the request
number continues to grow, resource consumption including network bandwidth and CPU also grows
gradually and part of the access nodes reach the threshold of their processing capacity. At this moment,
the migration of data and status between nodes starts to grow. In the process of migration, the status
migration consumes large amounts of memory resources, and the data migration consumes more
bandwidth resources. In the case of massive service requests, MSACM needs to use the scheduling
policies frequently for migration, which will slow the network congestion. When the request number
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reaches 75 million, MCR has already reached 20.16%. The time consumed by migration affects the time
to complete the request access. However, the migration cost varies very little as the request number
further grows. This indicates that the scheduling strategy of MSACM enables the access cluster to
reach a reasonably good status of balance. Moreover, each of the access nodes is able to execute the
access processing task in a balanced manner. This indicates that MSACM has a comparatively good
coordinative migration capacity and is robust.

0

5

10

15

20

25

30

50 55 60 65 70 75 80 85 90 95 100

M
C

R
 (

%
)

Number of requests (million)

Figure 11. Migration cost of varied number of access service requests.

5.2.6. Analysis

The above experiments evaluate the performance of MSACM from the aspects of request arrival
rate, average network latency, load fluctuation rate, resource utilization and migration costs. Under the
condition of the same request speed, experiment 1 and experiment 2 respectively test the request arrival
rate and the average network delay of WRR, Kafka and MSACM. The above two experimental results
in Figures 7 and 8 show that, due to the load effect of the distributed cache access model, MSACM can
guarantee all of the service requests access to the virtual data center by dynamically scheduling the
resources of virtual data centers, and the network delay is less than 80 ms when there are sufficient
network resources. In general, when the request speed remains below 90 wps, MSCAM can sustain
the communication resource consumption of service requests, and keep more than 98% of the request
arrival rate. From a more global perspective, MSCAM has a better performance than Kafka and WRR
under the condition of existing resources in the virtual data center.

Combined with the analysis shown in Figures 9 and 10, the communication between server nodes
in the virtual data server varies with the change of the number of service requests, and the network
resource in the virtual data center fluctuates as well. Moreover, the scheduling strategy of MSACM
can promote the performance of the load conditions and resources optimization. In the case of high
concurrency, MSACM’s swarm scheduling algorithm can effectively transfer the service requests from
the service access node of the higher load pressure to that of the lower load pressure, thus maximizing
the use of the virtual data center’s resources. In the aspect of load-balance evaluation, depending on
the caching mechanism, MSACM can record the history optimal scheduling path, and reduce the
network communication, which reflects the optimal load balancing ability. Furthermore, Figure 11
shows that MSACM can effectively control the migration cost. When the number of service access
requests is growing, the proportion of the time consumed for task migration and the time consumed
for service access gradually stabilizes, which shows the advantage of request grouping. This also
shows that MSACM has good coordination capacity and robustness in respect to request migration.
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When there are very limited network resources and limited physical resources of the access cluster,
the MSACM mechanism is more efficient than the other methods (WRR and Kafka) when solving the
problem of large-scale service request distributed access to virtual data center.

6. Conclusions

The Data Access Center for the Internet of Things (DACIOT), as the end of the sensor network
application, plays a determinative role in massive sensor data access and control. Modern new-type
data centers are primarily supported by virtualization technology, which is an important means
to enhance resource utility. In a virtual environment, focusing on the massive amount of access
requests for sensor data in different locations, this paper first designs a distributed buffering access
model with a separation between location and information. Then, this paper utilizes an improved
self-organizing feature map neural network (SOFM) for dynamic grouping according to the location
information. Further, CPU, memory and network resources stored in the virtual data center are
unified in an abstractive manner. The paper also proposes a group migration bee colony optimization
scheduling algorithm based on the artificial bee colony algorithm (ABC). In terms of solving the
problem of the Internet of Things’s large-scale service request distributed access to virtual data center,
this algorithm can enhance the request arrival rate (RAR) with shorter average network delay and
better load balance capacity and resource utility. Moreover, MSACM has a good coordinative migration
capacity and is robust in relation to request migration.

Further work will cover an extension of the proposed access model, on the basis of which, we will
study in-depth the large-scale distributed service request queues of TCP and the UDP flow congestion
control algorithm. Future work will also take into consideration the fairness of service request access.
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48. Faigl, J.; Kulich, M.; Vonásek, V.; Přeučil, L. An application of the self-organizing map in the non-Euclidean
Traveling Salesman Problem. Neurocomputing 2011, 74, 671–679.

49. Karaboga, D.; Akay, B. A modified artificial bee colony (ABC) algorithm for constrained optimization
problems. Appl. Soft Comput. 2011, 11, 3021–3031.

50. Goodhope, K.; Koshy, J.; Kreps, J.; Narkhede, N.; Park, R.; Rao, J.; Ye, V.Y. Building LinkedIn’s real-time
activity data pipeline. IEEE Data Eng. Bull. 2012, 35 , 33–45.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model and Definitions
	The Proposed Massive Sensor Network Data Access and Control Mechanism (MSACM)
	Optimized Dynamic Self-Organizing Feature Maps (ODSOFM)
	ODSOFM Introduction
	 Description of Optimized Dynamic SOFM

	Group Migration Bee Colony Optimization Scheduling Algorithm (GMBCOS)
	Basic Principle of the Artificial Bee Colony Algorithm
	Group Migration Bee Colony Optimization Scheduling Algorithm (GMBCOS)

	Steps to Realize MSACM 
	Analysis of MSACM Performance

	Performance Evaluation
	Experiment Environment and Parameter Setting
	 MSACM Performance Test
	Experiment 1: RAR Performance with Different Request Rate
	Experiment 2: ND Performance with Different Request Rate
	Experiment 3: LBR Performance with Variable Request Scale
	Experiment 4: RUR Performance with Variable Access Servers
	Experiment 5: MCR Performance with Variable Request Scale
	Analysis


	Conclusions

