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Abstract: The detection of environmental mercury (Hg) contamination requires complex and
expensive instruments and professional technicians. We present a simple, sensitive, and portable
Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone
equipped with a light meter app was used to detect, record, and process signals from a smartphone-based
microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized
assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction
between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to
an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric
sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and
produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL
with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg2+. The detection
could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid,
and sensitive, and it provides new strategies for the on-site detection of mercury contamination in
any environment.

Keywords: smartphone; microwell reader; mercury ions; colorimetric aptamer nanosensor;
gold nanoparticle

1. Introduction

Mercury is one of the most toxic and harmful elements to human health [1–3]. Through mining,
solid waste incineration, and the combustion of fossil fuels, mercury has leached into water,
air, and soil [4–7]. Mercury accumulates in the human body through food and drinking water
taken from Hg(II)-contaminated sources such as irrigated farmland and polluted bodies of water.
Mercury accumulation in the body leads to brain and liver damage [8,9]. Therefore, there is a great
need for simple, reliable on-site analyses for Hg2+ in surface water and could potentially prevent
mercury-related illness through the early detection of environmental contamination. A series of
spectroscopic methods have been used to measure trace concentrations of Hg2+ in environmental
samples, such as atomic absorption spectroscopy (AAS) [10,11], inductively coupled plasma mass
spectrometry (ICP-MS) [12,13], and atomic fluorescence spectrometry (AFS) [14]. While these assays
are highly sensitive, selective, and accurate, they require complex sample preparation procedures,
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expensive and bulky instruments, and professionally trained personnel to run the tests. Many of
these tests are also not portable, and samples need to be collected and returned to a lab for analysis.
Therefore, they are limited in use and not well suited for rapid on-site detection of mercury.

Recent advances in biosensors have shown great promise for using portable heavy metal
chromium assays in resource-limited environments [15–18]. Electrochemical biosensors [19,20],
plasmon-enhanced photoelectrochemical sensors [21], surface-enhanced Raman spectroscopy
(SERS)-based biosensors [22], colorimetric biosensors [23,24], and fluorescent sensors [25,26] have
been reported as alternative approaches for mercury ion detection, providing high sensitivity,
specificity, and ease of signal read-out. However, these reported systems are still difficult to be used
in resource-limited environments due to their relatively complex operations and the requirement for
expensive or bulky instruments, such as UV-visible (UV-vis) spectrometers, fluorescence spectrometers,
Raman spectrometers, and electrochemical workstations to analyze the assay readouts.

The development of a simple, portable, affordable detection system would significantly improve
the ease of detection of heavy metal contamination in remote locations or delicate ecosystems.
Smartphones are portable, widely available, user-friendly, and therefore well suited to act as an effective
platform for on-site detection [27,28]. Many interesting biosensors have been designed based on
smartphones utilizing mobile apps and various connected devices, such as high-performance cameras
and light sensors [28–36]. For example, Wei et al. reported a dual-illumination color and dual-cuvette
hand-held detection platform that used a smartphone’s camera and image processing app for
monitoring mercury contamination in water [37]. Another group, Ana et al., designed a colorimetric and
fluorescence quantitative detection platform based on a smartphone’s cameras and image processing
app to detect a prostate-specific antigen (PSA) in a whole blood sample [38]. Wang et al. synthesized
nitrogen-doped carbon nanodots and used these nanodots to detect mercury, and the results were
produced using a smartphone app [35]. Here, our group developed two detection methods based
on a smartphone’s ambient light sensor and light meter app, which can be used for on-site detection
of mercury contamination [39,40]. Compared with traditional biosensors, our smartphone-based
biosensor is more efficient, simple, and user-friendly, and only a very small volume of sample is used
for the assay. This results in a lowered overall cost, making this portable assay easily available for
use in on-site tests outside laboratories. We demonstrate that our smartphone-based platform for
bioanalysis is widely scalable and has potential additional prospective applications.

To provide an accurate and portable platform to sensitively quantify heavy metal ion in water
samples, we report a system here that consists of an Android phone (MI 4) and a lightweight (3.5 g)
attachment. The principle is based on using an ambient light sensor of a smartphone to measure
mercury-induced subtle transmitted light intensity changes in a gold nanoparticle-based colorimetric
assay. The colorimetric assay for Hg2+ was first introduced by the Yang group [41]. We demonstrate
that our assay is extremely sensitive to mercury in water samples, with a limit of detection (LOD)
of ~0.28 ng/mL. This assay can easily detect the maximum contaminant level (MCL) of mercury(II)
recommended for drinking water as established by the U.S. Environmental Protection Agency (EPA)
and the World Health Organization (WHO) (2 and 1 ng/mL respectively), making it highly useful for
determining whether drinking water is safe for consumption [42,43].

2. Materials and Methods

2.1. Materials and Apparatus

The DNA was synthesized and purified by Shanghai Sangon Biotechnology Co., Ltd.
(Shanghai, China), and it had the following sequence: (5’-AAAAAAAAAATTCTTTCTTCCCCTT
GTTTGTT-3’). Chloroauric acid (HAuCl4) was purchased from Sigma-Aldrich. All aqueous solutions
were prepared with double-distilled water (ddH2O) (Milli-Q, Millipore, Boston, MA, USA). All other
chemicals were of analytical grade and used without any further purification. Light-emitting diodes
(LEDs) (510 nm) were purchased from Shenzhen OCtai Co., LTD. (Shenzhen, China). A battery (3 V)
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was purchased from VSAI. Transparent white plastic pipes with a diameter of 12 mm, and with
a resistance of 30,000 Ω, with a switch and wires were collected from a local store. A 20 mM phosphate
buffer containing 100 mM KCl (pH 7.0) was used throughout the experiments. UV-vis adsorption
spectra were recorded on a synergy H1 hybrid multi-mode microwell reader (Bio-Tek Instruments,
Inc., Winooski, VT, USA). ICP-MS (ThermoFisher, Waltham, MA, USA) was also used.

2.2. Synthesis of Gold Nanoparticles (AuNPs)

AuNPs (~16 nm diameter) were prepared using a citrate reduction of HAuCl4 through
an established procedure [44]. Briefly, a HAuCl4 solution (2 mL 1% HAuCl4) was rapidly added
to 100 mL of boiling ddH2O with vigorous stirring in a round bottom flask. Subsequently, 4 mL of
a 1% sodium citrate solution was rapidly added to the solution. The solution was boiled for 10 min,
during which its color changed from pale yellow to wine red, and the reaction mixture was then
stored at 4 ◦C before use. AuNPs were characterized by transmission electron microscopy (TEM) using
a PHILIPS TECNAI-10 transmission electron microscope with an acceleration voltage of 120 kV.

2.3. Design of the Smartphone-Based Microwell Reader (MR S-Phone) Attachment

The auxiliary device consists of a switch, a 30,000 Ω resistor, three batteries (3 V), and a 520 nm
LED. All of these electrical and optical elements were consolidated into a cylindrical plastic housing
(diameter = 14 mm; length = 38 mm; weight = 3.5 g). The profile was implemented on a smartphone’s
ambient light-sensor (MI-4).

2.4. Colorimetric Detection of Hg2+

A standard AuNPs-aptamer colorimetric analysis experiment was carried out as follows: 50 µL
AuNPs (16 nm in diameter) were mixed with a 3 µM aptamer (which is a single-stranded short
oligonucleotide that exhibits high specificity for binding Hg2+ in a 20 mM phosphate buffer (pH 7.0) and
incubated for 10 min to form the probe solution. Next, 10 µL of water sample solution containing Hg2+

(0–128 ng/mL) were added to the probe solution and incubated for 10 min, followed by an addition of
10 µL NaCl (3 M) for colorimetric detection. A photograph was taken, and the TEM images revealed
that the morphology of the AuNPs-aptamer was different at different concentrations of Hg2+.

2.5. Procedure of Hg2+ Detection Using the Synergy H1 Hybrid Multi-Mode Microplate Reader and the MR
S-Phone System

The typical mercury detection experiment was carried out as follows: First, a 10 µL water sample
solution containing Hg2+ was added to 50 µL AuNPs-aptamer probe solutions and incubated for 10 min.
Next, 10 µL of 3 M NaCl were added to the sample, and the absorption spectrum (400 nm to 760 nm)
of the sample, the absorption light intensity (520 nm), and the transmitted light intensity were detected
using a synergy H1 hybrid multi-mode microplate reader and the MR S-phone system, respectively.

The procedure for using the MR S-phone system to detect Hg2+ is as follows: Following the
colorimetric analysis of the water sample, the sample was inserted in a custom-designed attachment
(described above). The attachment was then connected to the ambient light sensor on a smartphone.
The microwell containing the sample was positioned in the middle of the LED and ambient light
sensor. The attachment was activated, and the excitation light from the LED was transmitted through
the sample and then measured by the ambient light sensor. Lastly, we used the light meter app to
record and display the collected data.

3. Results and Discussion

3.1. Overview of the Smartphone-Based Microwell Reader (MR S-Phone) Attachment

We developed a battery-powered attachment that can be connected to a smartphone’s ambient
light sensor to quantify the mercury concentration in aqueous samples using a colorimetric aptamer
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nanosensor. This device is comprised of a switch, which was used to control the instruments; a 10,000 Ω
resistance, which was used to adjust light intensities; three button batteries (3 V), which were used
to power the LED; and the LED (520 nm), which was used to provide a stable light source. In this
colorimetric aptamer nanosensor for Hg2+, the maximum absorption wavelength of the samples
was determined to be 520 nm. Therefore, we selected an LED with an emission wavelength of
520 nm. These components were assembled in a cylindrical plastic housing (diameter = 12 mm;
height = 42 mm) with a total weight of 3.5 g. The water samples were contained in a microwell with
black walls and a transparent bottom. This microwell was selected because it can eliminate the ambient
light interference, ensuring the ambient light sensor of the smartphone only receives light from the
LED in the attached device (Figure 1).
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Figure 1. Schematic illustration of the microwell reader installed on an Android-based smartphone
and image of the actual optical microwell reader.

3.2. The Principle of the MR S-Phone-Based Hg2+ Colorimetric Detection System

A diagram of the MR S-phone-based Hg2+ colorimetric detection system is displayed in Figure 2.
First, the synthesized AuNPs in aqueous solution are stable: AuNPs aggregate in a high salt solution
due to a net change in surface charge, and the solution color will change from red to purple or
blue [45,46]. The aptamer, which is a single-stranded DNA oligonucleotide, adsorbs to the surface
of the AuNPs, protecting them from aggregating in a high salt solution, and the solution retains its
characteristic red color. When Hg2+ is present in the sample, the aptamer will preferentially interact
with Hg2+. This results in aptamer desorption from the AuNPs, further resulting in AuNP aggregation
and sample color changing from red to purple or blue. After the colorimetric assay was completed,
the microwell containing the sample was put into the MR S-phone attachment, and the assay liquid
was then put into the MR S-phone attachment. Then, the MR S-phone attachment was connected to
the ambient light sensor of the smartphone to produce a readout of the results. For a positive sample
control, NaCl (3 M) was added to the AuNPs without any aptamer present, the reaction solution
changed to blue, and the transmitted light intensity increased as determined using the ambient light
sensor. For a negative control sample, AuNPs were not treated with NaCl, the color of the reaction
solution was red, and the transmitted light intensity of the sample was unchanged. Subsequently,
a series of mercury concentrations were tested, and the results indicated that the transmitted light
intensities of the samples scaled linearly with the concentration of Hg2+.
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Figure 2. Schematic illustration of the workflow for the smartphone-based microwell reader
(MR S-phone)-based Hg2+ colorimetric detection system. In the absence of heavy metal contaminants
(lower), the aptamer adsorbs to AuNPs, which protects the AuNPs from aggregation induced by the
addition of high-concentration salt. In Hg2+-positive samples, the aptamers are competed away from
AuNPs by Hg2+. Therefore, when the solution is treated with NaCl, the AuNPs aggregate, and the
solution changes to blue. The light meter app is then used in combination with the phone attachment
to detect the transmitted light intensity of each sample. When Hg2+ is present, the MR S-phone system
detects an increase in transmitted light intensity. When samples lack Hg2+, the AuNPs are protected
by the aptamers in high-concentration salt; therefore, the solution remains red, and no change in
transmitted light intensity is detected.

3.3. AuNP-Based Aptamer-Assay for Detection of Hg2+

The colorimetric assay is based on the principle that the characteristic color of the AuNPs-aptamer
solution will change from red to purple when NaCl is added to a sample containing Hg2+. As shown in
Figure 3a, a clearly distinguishable color change from brilliant red to light purple can be observed with
the naked eye. When the Hg2+ concentration increased from 0 to 128 ng/mL, the reaction solutions
gradually turned purple. The TEM images revealed that the morphology of the AuNPs (~16 nm)
gradually changed from mono-dispersion to aggregation with increasing concentrations of Hg2+

(0 ng/mL, 2 ng/mL, 16 ng/mL, and 128 ng/mL) and 3 M NaCl (Figure 3b). As mentioned above,
the degree of aggregation depends on the Hg2+ concentration.
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Figure 3. The characterization of AuNP-based aptamer-assay for detection of Hg2+. (a) Image of the
assay colorimetric change with different concentrations of Hg2+; (b) TEM images of AuNPs mixed
with a 3 µM aptamer and 3 M NaCl, in the presence of various concentrations of Hg2+.

3.4. The Performance of the MR S-Phone System for Hg2+ Detection

The Hg2+-specific aptamer can be adsorbed on AuNPs, which protects AuNPs from aggregation
induced by the addition of high-concentration NaCl. Different concentrations of Hg2+ from 0–128 ng/mL
were added to the prepared AuNPs-aptamer, and the absorption spectrometry and transmitted light
intensity were measured using the synergy H1 hybrid multi-mode microwell reader and the MR
S-phone system, respectively.

The UV-vis spectroscopy (Figure 4a) was used to explore the change in AuNP aggregation
induced by Hg2+ in this system. The dispersed AuNPs displayed a surface plasmon peak at 520 nm.
Upon aggregation, the intensity of the 520 nm peak decreased. Next, a standard Hg2+ concentration
curve was used to determine the linear range of the spectroscopic assay (Figure 4b). The linear
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range of the assay was determined to be 1–64 ng/mL with a correlation of 0.996, exhibiting
an excellent sensitivity.

To evaluate the MR S-phone system, Hg2+ samples at various concentrations were tested, and the
results were analyzed using the light meter app. As shown in Figure 4c, the transmitted light intensity
increased with increasing Hg2+ concentration. Using a standard curve of Hg2+ with the transmitted
light intensity assay, the LOD for the Hg2+ colorimetric assay was determined to be 0.28 ng/mL,
and the linear detection range was from 1 ng/mL–32 ng/mL with a correlation of 0.991 (Figure 4d).
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spectroscopy based on the colorimetric detection of different concentrations of Hg2+; (b) Calibration
curve of colorimetric assay for detecting Hg2+ using the intensity of the 520 nm peak; (c) Transmitted
light intensity of the MR S-phone system with different concentrations of Hg2+; (d) The calibration
curve of the MR S-phone system for detection of Hg2+. Each value represents the mean of three
independent experiments (n = 3).

3.5. The Selectivity of the MR S-Phone System

In order to evaluate the specificity of the sensor in detection of Hg2+, the cross-reactivity was
also explored using other metal ions, including Cu2+, Ag+, Pb2+, Cd2+, Cr3+, Co2+, and Fe2+, and the
cross-reactivity rate was normalized to Hg2+ reactivity. As shown in Figure 5, the cross-reactivity
rates of Cu 2+, Ag+, Pb2+, Cd2+, Cr3+, Co2+, and Fe2+ were less than 10% using the AuNPs-aptamer
smartphone mercury assay, suggesting that this system has a high specificity for detecting Hg2+.
However, most real-world systems consist of mixtures of heavy metal ions; therefore, we also
detected the mixtures samples (Figure S1). The result demonstrates high selectivity using the MR
S-phone system.
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ICP-MS (%) 

Result of the 
MR S-Phone 

(ng/mL) 

Recovery of 
the MR 

S-Phone (%) 

Coefficient of 
Variation (%) 

Tap 
Water 

1 0.98 98 0.97 ± 0.01 97 1.0 
10 10.1 101 11.4 ± 0.06 113 0.5 
20 21 105 18.6 ± 0.17 93 0.9 
30 29.7 99 30.8 ± 0.15 102 0.5 

Pearl 
River 

2 1.9 95 2.2 ± 0.1 110 4.5 
13 12.4 95.4 13.8 ± 0.15 105 1.1 
22 22.3 101 22.3 ± 0.2 101 0.9 
31 30.8 99.4 31.1 ± 0.25 103 0.8 

4. Conclusions 

We developed a novel aptamer colorimetric assay for the detection of mercury (Hg) 
contamination in aqueous samples, which employs a novel detector device based on a smartphone. 
The linear detection range of this method for Hg2+ was 1 to 32 ng/mL, and the LOD was 0.28 ng/mL. 
The strategy presented here has several significant advantages: first, the method is simple, cheap, 
portable, and easy to operate; second, the method has high sensitivity and selectivity for the 
detection of mercury. Our newly established method can significantly improve and simplify tests 
for on-site assessment of mercury contamination in ground water and drinking water. This strategy 
could also be potentially adapted for the detection of other heavy metal contaminants in the 
environment. 
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Figure 5. The selectivity of the MR S-phone detection method. The MR S-phone system was used
to detect the presence of other metal ions (Cu2+, Ag+, Pb2+, Cd2+, Cr3+, Co2+, and Fe2+). Each value
represents the mean of three independent experiments (n = 3).

3.6. Analysis of Samples

The feasibility of the MR S-phone system for the analysis of spiked Hg2+ tap water samples
and Pearl River samples (Guangzhou, China) was validated. The analytical results are shown in
Table 1. The recoveries for all these cases were 93%–113%, suggesting that the MR S-phone system has
a relatively high recovery.

Table 1. Detection of Hg2+ in tap water samples and Pearl River samples (Guangzhou, China) using
the MR S-phone system.

Sample
Spiked

Concentrations
(ng/mL)

Result of
ICP-MS
(ng/mL)

Recovery of
ICP-MS (%)

Result of the
MR S-Phone

(ng/mL)

Recovery of
the MR

S-Phone (%)

Coefficient of
Variation (%)

Tap Water

1 0.98 98 0.97 ± 0.01 97 1.0
10 10.1 101 11.4 ± 0.06 113 0.5
20 21 105 18.6 ± 0.17 93 0.9
30 29.7 99 30.8 ± 0.15 102 0.5

Pearl River

2 1.9 95 2.2 ± 0.1 110 4.5
13 12.4 95.4 13.8 ± 0.15 105 1.1
22 22.3 101 22.3 ± 0.2 101 0.9
31 30.8 99.4 31.1 ± 0.25 103 0.8

4. Conclusions

We developed a novel aptamer colorimetric assay for the detection of mercury (Hg) contamination
in aqueous samples, which employs a novel detector device based on a smartphone. The linear
detection range of this method for Hg2+ was 1 to 32 ng/mL, and the LOD was 0.28 ng/mL. The strategy
presented here has several significant advantages: first, the method is simple, cheap, portable, and easy
to operate; second, the method has high sensitivity and selectivity for the detection of mercury.
Our newly established method can significantly improve and simplify tests for on-site assessment of
mercury contamination in ground water and drinking water. This strategy could also be potentially
adapted for the detection of other heavy metal contaminants in the environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/16/11/1871/s1.
Figure S1: The selectivity of the MR S-phone detection method.
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