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Abstract: Non-destructive soil water content determination is a fundamental component for many
agricultural and environmental applications. The accuracy and costs of the sensors define the
measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this
study was to evaluate five commercially available and relatively cheap sensors usually grouped with
impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH2O EC-10, ECH2O EC-20,
ECH2O EC-5, and ECH2O TE (all FDR) were tested on silica sand and loess of defined characteristics
under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil
water contents from dry to saturated conditions (pure water and saline water). The gravimetric
method was used as a reference method for the statistical evaluation (ANOVA with significance level
0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture
estimates. Variance component analysis arranged the factors contributing to the total variation as
follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%),
and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole
range of water content, especially the sensors ECH2O EC-5 and ECH2O TE, which also performed
surprisingly well in saline conditions.

Keywords: water content sensors; impedance; Frequency Domain Reflectometry (FDR); performance;
factory calibration; own calibration; comparison; bulk density; salinity; sand; soil

1. Introduction

Non-destructive soil water content determination is a fundamental component of agricultural
applications such as precision agriculture and irrigation scheduling [1,2]. Several techniques exist
for automated continuous point-scale soil water content measurements. For field application and
sensor network realization, the costs of a single sensor need to be minimized and the lifetime needs
to be maximized [3]. This study is focused on techniques based on dielectric characterization of the
soil. Soil dielectric permittivity determination is applied in a variety of soil water sensing probes
like Time Domain Reflectometry (TDR) [4–7] and Frequency Domain Reflectometry (FDR) [8–13].
Two publications related to sensors and their calibration and measurement accuracy for different
soil conditions and influence of organic matter content were presented in 2016 [14,15]. Of these two
methods, FDR is the more recent method and offers relatively accurate measurements for reasonable
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costs. The FDR and capacitance methods represent alternatives to TDR, which performs precisely
but at a high price. They offer the possibility of continuous measurement and good applicability to
various soils [16–18]. The disadvantage of the FDR sensors, which is often mentioned, is their high
susceptibility to soil environmental effects [19,20]. The sensitivity of soil water content determination
is mainly affected by parameters like the frequency of measurement, temperature, soil texture, soil
bulk density, organic matter content, and electric conductivity. Chen and Or [19] concluded that the
optimum frequency for measurement is 100 MHz. This frequency minimizes the effect of the so-called
Maxwell–Wagner polarization.

Laboratory and field testing for different soil types is usually carried out by the producers of the
sensors during the sensor development process. The producers usually provide customers with the
results of tests for certain generalized basic soil types to cover soils from the whole world. This is
why a lot of attention is paid to site- and purpose-specific calibrations e.g., [8,13,15,21–27]. The aim
of such calibration is to obtain soil water content data with desirable accuracy. In order to obtain the
highest possible accuracy, the abovementioned parameters need to be considered. It can be useful
to identify a contribution of each parameter being considered. This knowledge can be helpful in
a standard calibration methodology development. Although this aim has been discussed several
times in specialized conferences [25,26], no standard calibration methodology has been presented
yet. The aim of this study was not only to calibrate ThetaProbe ML2x, ECH2O EC-10, ECH2O EC-20,
ECH2O EC-5, and ECH2O TE sensors, but also to contribute to the knowledge about the different
factors affecting measurement accuracy.

Sensors based on a capacitance technique consist of a capacitor or condenser as a passive electronic
component, consisting of a pair of conductors separated by a dielectric medium, while capacitance can
be defined as the ability of two conductors to store charge when a voltage is applied across them [9].
Decagon Devices, Inc. (Pullman, WA, USA) developed various sensors based on a capacitance
technique [28]; e.g., sensors from the ECH2O family EC-10, EC-20, EC-5, and ECH2O TE. The soil water
content sensors are available in many varieties differing in length, size, and shape and with additional
features such as temperature and electrical conductivity measurements. Factory calibrations show
high variation in accuracy for different textural classes of soil and electrical conductivity [21,29,30].
Bogena et al. [3] published an evaluation of two low-cost soil water content sensors, ECH2O EC-5 and
ECH2O EC-20 (Decagon Devices Inc., Pullman, WA, USA) in comparison with a TDR probe under
laboratory and field conditions. Capacitor sensors usually use measuring frequencies between 5 and
100 MHz. In this frequency range, the imaginary part of permittivity is significantly high, which is
mainly due to the effect of high ionic conductivity and dielectric absorption [31,32]. Hence the sensors
are highly affected by the electrical conductivity or salinity of the soil. Furthermore, the effect of
temperature and the air gap between the probe sensing body and soil is significant [13].

Sensors based on an impedance technique determine the impedance of a coaxial transmission line,
which depends on its physical dimensions and the dielectric permittivity of the soil porous medium.
Gaskin and Miller [10,12] conducted initial research on the potential use of the impedance technique
to determine soil water content. The Macaulay Land Use Research Institute in Aberdeen, Scotland has
developed the probe and Delta-T Devices Ltd. (Cambridge, UK) produces it as a ThetaProbe ML2x for
volumetric water content measurement. The ThetaProbe generates a 100 MHz sinusoidal signal and
outputs the measured impedance of the sampling medium as an analogue DC voltage between 0 and
1 V. The 100 MHz signal frequency was chosen to minimize the effect of ionic conductivity [12]. The soil
sampling volume consists of a cylindrical four-signal rod array approximately 4 cm in diameter and
6 cm long, surrounding a center signal rod [12,33].

The performance of the soil water sensor can be evaluated in terms of resolution, sensitivity,
repeatability, precision, and accuracy. Resolution is commonly assumed to be the smallest change in
the measured quantity that can be detected in the output reading [34]. Resolution can be expressed
either as a proportion of the reading or in absolute terms [35]. Sensitivity is generally defined as the
minimum input of physical parameter that will create a detectable output change [35] or the ratio of
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the change in sensor output to a change of the quantity to be measured [34]. Repeatability (sometimes
called reproducibility) can be described as the degree to which an experiment can be accurately
replicated by someone else. It can be used to describe the ability of a sensor to provide the same result
under the same circumstances [36]. Precision is usually defined as the ability of a measurement to be
consistently repeated. An ideal sensor would measure exactly the same value for a number of repeated
measurements. The real sensors output a range of values spread close to the actual correct value [35].
The accuracy of the sensor can be defined as the maximum difference that will exist between the
measured value and the true (real, actual) value determined by a standard reference procedure [35].
In other words, it is the ability of a measurement to match the actual value of the measured quantity.

In this study, the performance of five soil water content sensors, (i) impedance soil water probe
ThetaProbe ML2x (Delta-T Devices, Ltd., Cambridge, UK); and FDR (ii) ECH2O EC-10; (iii) ECH2O
EC-20; (iv) ECH2O EC-5; and (v) ECH2O TE (Decagon Devices Inc., Pullman, WA, USA), was evaluated
in terms of the accuracy in comparison with a standard gravimetric method to determine the water
content in soils. Although a new version of ThetaProbe (ML3) and new sensors made by Decagon are
being produced, the tested sensors are still widely used in praxis and research. Factory-set and our
own calibration equations were applied in order to evaluate the ability of the sensor to determine the
water content of artificially prepared soil profiles of three different dry bulk densities. The sensors
were tested in two porous materials (silica sand, loess) and the effect of electrical conductivity was
also considered. The use of silica sand ensured repeatable creations of profiles of different water
contents/electrical conductivity, so the accuracy of the measurement was not affected by other factors
such as the non-homogeneity of the profiles. The effect of temperature was minimized by performing
the experiments under controlled laboratory conditions at a constant temperature of 20 ◦C.

2. Materials and Methods

2.1. Methods to Determine Soil Water Contents

2.1.1. Referential Method

The water content determination by standard gravimetric method was used in this study [37].
Standard cylindrical sampling rings of 100 cm3 were taken, weighed, and dried in an oven at 105 ◦C
until they reached a constant weight. The mass of water present in the sample is given by the difference
in mass between the wet and dry sample. Water content by mass is defined as the mass of water
divided by the mass of dry soil. The conversion into volumetric equivalent can be done by multiplying
the gravimetric water content by the dry bulk density of the sample, with a knowledge of water density
(the density of water was assumed to be 1.0 g·cm−3). The volumetric water content was calculated
using Equation (1):

θ =
mw −md

md
ρb (1)

where ρb (M·L−3) is the dry bulk density to which the material is packed, and mw (M) and md (M) are
the wet and dry material samples taken from the container.

2.1.2. Instrumental Methods

ThetaProbe ML2x (Delta-T Devices Ltd., Cambridge, UK)

ThetaProbe (Figure 1) is a commonly used impedance sensor that generates 100 MHz sinusoidal
signal and outputs the measured impedance of the sampling medium as an analogue DC voltage
between 0 and 1 V for a range of dielectric constant, ε, between 1 and 32, corresponding to a volumetric
water content of approximately 0.5 m3·m−3. ThetaProbe consists of a waterproof housing containing
an electronic circuit and an array of four parallel stainless steel rods (3 mm in diameter and 60 mm
long). The sampling volume is defined by the dimensions of the probe: a cylinder of 40 mm in
diameter and 60 mm long surrounding the centrally located signal rod (volume of approximately
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75 cm3). The impedance of this array corresponds with the impedance of the soil, which has two
components, apparent dielectric constant and ionic conductivity. The effect of ionic conductivity was
minimized by employing a frequency of 100 MHz and thus the soil impedance changes depend almost
solely on the apparent dielectric constant of the soil. The apparent dielectric constant of the soil is
determined by the soil moisture, because the dielectric constant of water (~81) is much higher than the
soil particles (3–5) and that of the air (1). The details of the measuring technique can be found in the
works of Gaskin and Miller [10,12].
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The relationship between ThetaProbe output (V) and square root of dielectric constant (
√

ε) can
be fitted by a linear or third-order polynomial relationship (Equations (2) and (3)):

√
ε = 4.44V + 1.10 (2)

√
ε = 4.70V3 − 6.40V2 + 6.40V + 1.07 (3)

The relationship between water content θ and ThetaProbe voltage output V was defined as follows:

θ =
[4.44V + 1.10]− a0

a1
(4)

θ =

[
4.70V3 − 6.40V2 + 6.40V + 1.07

]
− a0

a1
(5)

where a0 and a1 are 1.6 and 8.4, respectively, for mineral soil.
The manufacturers rated the accuracy of this generalized calibration at±5.0% of volumetric water

content [33]. To minimize the error in the generalized calibration, the manufacturer recommends using
a soil-specific (own) calibration. According to the manufacturer, by executing a soil-specific calibration,
the rated accuracy increases up to ±1.0% of volumetric water content θ. To perform a soil-specific
calibration, the manufacturer recommends two different approaches: (i) a two-point technique and
(ii) direct regression analysis.

(i) A two-point technique requires two raw output readings, one for the initially moist sample and
the second for the dried sample (θ ≈ 0). Calibration coefficients a0 and a1 are determined from the wet
and dry readings compared to the water contents determined by a referential (gravimetric) method.
If the volumetric water content θ ≈ 0, the value of a0 is equal to

√
ε0, which can be directly calculated

by substituting the probe raw output from the dry sand/soil according to Equations (2) or (3). Then,
after calculating the

√
εw for the wet material and substituting it into the following formula together

with the known values of a0 and θ, a1 can be obtained from the following equation:

a1 =

√
εw −

√
ε0

θ
(6)
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where ε0 [-] and εw [-] are the dry and wet dielectric permittivity, respectively, and θ is the volumetric
water content.

With known values of a1 and a0, the volumetric water content can be calculated using Equation (4)
for linear conversion and using Equation (5) for polynomial conversion of ThetaProbe output in V to

√
ε.

(ii) The direct regression analysis relates the raw probe output and the volumetric water content
determined by the gravimetric method. Although Delta-T dataloggers are able to store a linear or
non-linear conversion characteristic permanently in their software using a linearization table, an Excel
spreadsheet) was used to develop the calibration equations (linear and third-order polynomial type) in
this study.

Sensors from the ECH2O Family (Decagon Devices Inc., Pullman, WA, USA)

Sensors from the ECH2O family are widely available and use devices employing capacitance
technique to determine the soil water content. In principal, the capacitance technique of soil water
content determines the dielectric permittivity of the medium by measuring the charge time of
a capacitor, using the soil as a dielectric medium. All sensors from the ECH2O family determine water
content by using a dielectric measurement; the ECH2O EC-10 and ECH2O EC-20 use a measurement
frequency of about 10 MHz, while ECH2O EC-5 and ECH2O TE use a measurement frequency of
70 MHz. In addition to volumetric water content, the sensor ECH2O TE also measures the temperature
and bulk electrical conductivity. The dimensions of ECH20 EC-10 are as follows: 14.5 cm (total length)
× 3.17 cm (sensor width) × 0.15 cm (sensor thickness); while they are 25.4 cm × 3.17 cm × 0.15 cm for
ECH2O EC-20. The sampling volume of the sensors ECH2O EC-10 and ECH2O EC-20 is approximately
0.7–1 cm around the sensor and runs along the length on both sides of the 10 or 20 cm long probe [24].
The manufacturer declared a 2-cm zone of influence with respect to the flat surface with very little or no
sensitivity at the extreme edges of the probes [38]. Considering the dimensions, the sampling volume for
ECH2O EC-10 can be approximated to 125 cm3, and 250 cm3 for ECH2O EC-20. While ECH2O EC-10 and
ECH2O EC-20 differ only in the length over which the measurement is being averaged, ECH2O EC-5 and
ECH2O TE were completely redesigned. ECH2O EC-5 and ECH2O TE use the same circuitry, but ECH2O
TE has digital output instead of analog (voltage) output like the others. The dimensions of ECH20 EC-5
are as follows: 8.9 cm (total length) × 1.8 cm (sensor width) × 0.7 cm (sensor thickness); while they are
10.0 cm × 3.2 cm × 0.7 cm for ECH2O TE. The sampling volume (maximum measurement volume) of
the ECH20 EC-5 and ECH2O TE sensors is declared by the manufacturer [39] to be 240 cm3 for ECH20
EC-5 and 715 cm3 for ECH2O TE.

The schemes and dimensions of the tested sensors from the ECH2O family (ECH2O EC-10, ECH2O
EC-20, ECH2O EC-5, and ECH2O TE) are displayed in Figure 2.

Calibration equations for ECH2O EC-5, ECH2O EC-10, and ECH2O EC-20 given by the
manufacturer are available in two forms: (i) applicable when a Decagon (Decagon Devices Inc.,
Pullman, WA, USA) datalogger is used and (ii) applicable when a non-Decagon datalogger is used.
The ECH2O TE probe provides data in a digital form, so there is only one calibration equation for all
datalogger types. Manufacturers’ calibration equations (factory calibration) used in this study with the
Decagon datalogger are displayed in Table 1.

In this study, the standard calibration procedure for capacitance probes based on [40] was used.
The calibration equations derived for sensors from the ECH2O family use a linear regression analysis of
the results from gravimetrically determined volumetric water content and probe raw output readings.
The simple general model is given as (Equation (7)):

Y = C + mX (7)

where C is a constant, intercept of the linear regression line, and m is the slope of the regression line,
while Y is the soil volumetric water content θ(-) and X is the raw output reading of the probe (RAW).
This calibration model is the one that is consistently used by the manufacturer.
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Table 1. Factory calibration equations for sensors from the ECH2O family using Decagon datalogger
(Equations (8)–(11)).

Sensor Type Calibration Equation Equation Number

ECH2O TE θ = 10.90 × 10−4 RAW − 0.629 (8)
ECH2O EC-5 θ = 8.50 × 10−4 RAW − 0.480 (9)

ECH2O EC-10 θ = 5.71 × 10−4 RAW − 0.376 (10)
ECH2O EC-20 θ = 4.24 × 10−4 RAW − 0.290 (11)

2.2. Experimental Setup

As is indicated by the manufacturers, conducting soil-specific calibration following the
recommended procedures increases the possibility of achieving better accuracy in volumetric soil
water content measurements. Due to this fact and in order to compare the results from this work
with the data provided by the manufacturers, precise application of the recommended procedures
was maintained. In this study, both types of sensors (from the ECH2O family and ThetaProbe), were
calibrated in laboratory conditions with a constant temperature of 20 ◦C for two porous materials;
(i) silica sand and (ii) loess. The silica sand (produced by Sklopísek Střeleč, a.s., Czech Republic) had
a high content of SiO2 (about 98.6%) and its particle size ranged from 0.063 to 0.400 mm with a mean
diameter of 0.14 mm. The particle density of 2.65 g·cm−3 was determined by the water pycnometer
method. The loess (Haplic Chernozem, substrate loess) was taken from the experimental field of the
Czech University of Life Sciences, Prague, Czech Republic. The field is located at an altitude of 286 m
above sea level with latitude 50◦08′ N and longitude 14◦24′ E. The average surface dry bulk density
measured at 5-cm intervals up to 20 cm depth varied from 1.3 to 1.5 g·cm−3 with average particle
density of 2.5 g·cm−3 [41].

The sieved material (particles smaller than 2 mm in diameter) was packed into a calibration
container of rectangular shape with dimensions of 33 cm (length) × 23 cm (width) × 13 cm (height)
with a volume of 10 L. The sand/soil was packed as homogeneously throughout the container as
possible. The sand/soil was packed layer by layer in eight layers; each layer, about 1.6 cm thick,
was packed and compacted into its defined volume and dry bulk density before adding the next
one. The procedure to create rather homogeneous dry bulk density of sand/soil packing is almost
identical to the procedure published several times in the scientific literature, for example in [23].
For sand, three different levels of dry bulk density were prepared for each tested sensor; (i) loose;
(ii) moderate; and (iii) compact packing. (i) Loose packing (LP) for sensors from the ECH2O family had
an average dry bulk density of 1.00 g·cm−3 and 1.16 g·cm−3 for testing the ThetaProbe; (ii) Moderate
packing (MP) for sensors from the ECH2O family had an average dry bulk density of 1.20 g·cm−3 and
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1.35 g·cm−3 for testing of the ThetaProbe; (iii) Compact packing (CP) for sensors from the ECH2O
family had an average dry bulk density of 1.40 g·cm−3 and 1.62 g·cm−3 for testing of the ThetaProbe.
Two 10-L containers (see above) were prepared for each tested soil water content. Sensors from the
ECH2O family were placed together into one container, while ThetaProbe was placed in the other
one. Unfortunately, the same values of dry bulk densities were not reached in the second container
where the ThetaProbe was tested. This fact made a direct comparison with the ECH2O sensors more
difficult; however, three levels (LP, MP and CP) were observed. Attention was paid to the homogeneity
of the bulk density evaluated, for comparison on three cores (applied classical “core method” for
determination of dry bulk density) taken from a box of certain bulk density at the end of each sensor
test (see again [23]). For the Chernozem soil, only one level of dry bulk density was prepared and
evaluated, an average of 1.20 g·cm−3. This value was difficult to obtain for higher soil water contents,
namely 29% and 39% by volume, when values of dry bulk density reached 1.30 and 1.35 g·cm−3; the
dry bulk density referred to in the remainder of the text as moderate packing (MP).

When the measurement was finished an undisturbed soil sample (100 cm3) was taken from the
surface at each soil water content step to check the soil water content and dry bulk density of each
container. The sensors ECH2O EC-5, ECH2O TE, and ThetaProbe were inserted vertically from the
surface into the filled container, while sensors ECH2O EC-10 and ECH2O EC-20 were fully buried
horizontally. The insertion angle was thus an issue of difference. However, the effect of the insertion
angle was tested using sand with a constant dry bulk density (CP with a value of 1.5 g·cm−3) and water
content (15.0 vol %). No statistically significant difference was observed for insertion angle (vertical,
horizontal) for each of the tested sensors (SD ranged from 0.0 to 0.68 mV for vertical installation
and from 0.0 to 0.90 mV for horizontal installation). The main source of non-unified results can be
attributed to the achieved level of homogeneity rather than to the insertion angle.

Special attention was paid to the sensor placement within the container; sensor dimensions,
sampling volumes, and measurement ranges were taken into account to ensure unaffected
measurements. A plastic spoon was used to dig a shallow trench in the half-full soil container
for a full length of ECH2O EC-10 and ECH2O EC-20 sensors. The sensors were placed in the same
depth (on the fourth soil/sand layer) next to each other, 5 cm from the plastic side of the container.
Each sensor was set into its own trench with its long axis horizontally located and the flat plane of
the probe oriented vertically. A small amount of sand or soil material was added over the probes and
evenly packed on both sides of the probes. The same procedure was repeated until the probe was
completely buried under the sand/soil material with the desired dry bulk density. Then the container
was topped up again in layers. Then the ECH2O EC-5 and ECH2O TE sensors were fully inserted from
the surface; there was a 3 cm thick soil/sand layer between the edges of the ECH2O EC-5 and ECH2O
TE prongs and depth with plates of the ECH2O EC-10 and ECH2O EC-20 sensors (considering the
2-cm range of ECH2O EC-10 and ECH2O EC-20 sensors, 1 cm of maximal reach from the prongs’ tips,
and the 3 cm soil/sand layer) [38,39]. Each sensor was also 5 cm from the plastic side of the container
and 10 cm from each other [39].

This packing procedure was repeated for eight different water contents for sensors from ECH2O
family and for nine different water contents for testing the ThetaProbe for each type of packing.
The standard method, which is recommended by Decagon Devices Inc. in their calibration procedure, was
used. The soil moisture was changed in one direction only by step-by-step wetting and uniformly mixing
throughout until it almost reached saturation, so the effect of the hysteresis could be neglected. After the
probes were inserted, readings were taken with an Em50 datalogger (Decagon Devices, Inc., Pullman, WA,
USA) for sensors from the ECH2O family and an HH2 moisture meter (Delta-T Devices Ltd., Cambridge,
UK) for ThetaProbe. The data were collected as unprocessed output, raw reading, or voltage in mV and
as volumetric water content in %, which was used in the quality evaluation of the factory calibration.

The performance of the probes was also studied with respect to their sensitivity to changes in
the electrical conductivity of the sand. A solution prepared by dissolving 2 g of Sodium Chloride
(NaCl) into distilled water was used to wet the silica sand packed to THE desired dry bulk density
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of (1.35 g·cm−3). The silica sand was wetted from its air dry water content up to near saturation and
6 to 7 points of soil water measurements were taken for different levels of water content. Then the
same soil was allowed to air dry again, so the other set of measurements following the same wetting
procedure was evaluating the probes’ performance for more saline conditions. This procedure was
repeated one more time to obtain three levels of sand salinity.

2.3. Sensor Performance Evaluation

The sensor performance was evaluated mainly with respect to accuracy, meaning how close the
measured values of soil water content were in comparison with the “true” values determined by the
reference method (volumetric water content based on the determination by the gravimetric method).

2.3.1. Absolute Difference (AD)

In the literature [42], the absolute difference between two real numbers is defined as the distance
on the real line between these two points. Doležal et al. [22] used the absolute difference for evaluation
of measurement accuracy of ThetaProbe sensors. The absolute difference can be described by the
following equation:

AD = |θreal − θmeasured| (12)

where θreal is the volumetric water content determined by multiplying the dry bulk density by the
gravimetric sand/soil water content and θmeasured is the volumetric water content determined by the
particular soil water sensor based on the factory and our own calibration equations.

2.3.2. Standard Deviation (SD)

Standard deviation is one of the most used measures quantifying the amount of variation of a
set of data, describing how tightly all the data are clustered around the mean of the dataset. Its value
is strongly influenced by outlying values [43]. Standard deviation is expressed in the same units as
the data being evaluated. A standard deviation close to 0 indicates that the data points tend to be
very close to the mean value of the dataset, while a high value of standard deviation indicates that
the data points are spread out over a wide range of values. The standard deviation of a sample of the
population can be calculated as follows:

SD =

√
∑
(
θ − θ

)2

n− 1
(13)

where θ is the water content under an evaluation, θ is the mean value of the data set (water content
under evaluation), and n is the number of measurement points.

2.3.3. Root Mean Square Error (RMSE)

Root mean square error or root mean square deviation is a frequently used measure of the
difference between the value predicted by a model and the “real” value actually observed. The root
mean square error represents the sample standard deviation of the differences between predicted
and observed values. The root mean square error was used as a measure of accuracy in different
published works dealing with soil water content determination [3,8,44]. Root mean square error is
a good measure of accuracy when comparing different models to predict only a particular variable,
because it is a scale-dependent measure. Root mean square error can be calculated using Equation (14):

RMSE =

√
1
n∑ (θreal − θmeasured)

2 (14)

where θreal is the volumetric water content determined by multiplying the dry bulk density by the
gravimetric sand/soil water content, θmeasured is the volumetric water content determined by the
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particular soil water sensor based on the factory and our own calibration equations, and n is the
number of measurement points.

2.3.4. Coefficient of Determination

Coefficient of determination is a measure used in statistical model analysis to evaluate how well
a model explains and/or predicts future outcomes. It is used as an accuracy indicator for the applied
model. In general, a model fits the data well if the differences between the observed values and the
values predicted by a model are small and unbiased. The coefficient of determination can be defined as
the percentage of the response variable variation that is explained by a model; its value in percentage is
always between 0 and 100. In general, the higher the value the better the model fits the data; however,
it cannot determine whether the coefficient estimates and predictions are biased [45]. The coefficient of
determination is usually denoted as R2, r2, or R-square, referring to the squared value of correlation
coefficient, r. The correlation coefficient measures the strength and direction of a relationship (linear)
between two variables. The value of the correlation coefficient is between −1 and +1; the + sign is used
for positive linear correlation, while the – sign is used for negative correlation. If there is not any or
a weak correlation, the value of r is close to 0.

The mathematical formula for computing the correlation coefficient is as follows:

r =
N

N
∑

i=1
xiyi −

N
∑

i=1
xi

N
∑

i=1
yi√√√√[N

N
∑

i=1
xi

2 −
(

N
∑

i=1
xi

)2
] [

N
N
∑

i=1
yi

2 −
(

N
∑

i=1
yi

)2
] (15)

where xi is an independent variable, yi is a dependent variable, and N denotes the number of data
pairs xi and yi.

2.3.5. Analysis of Variance (ANOVA)

Analysis of variance is a particular form of statistical hypothesis testing used in the analysis
of experimentally observed data. It can be used as an explanatory tool to explain observations.
The calculations of ANOVA can be characterized as computing a number of means and variances,
dividing two variances and comparing the ratio to a “true” value to determine statistical significance.
The effect of any treatment is estimated by taking the difference between the mean of the observations
that receive the treatment and the general mean [46]. Analysis of variance is usually performed in order
to confirm a statistically significant difference between groups on some variable. Analysis of variance
on significance level α = 0.05 for RMSE values of soil water contents determined by gravimetric method
and by tested sensor application was carried out in this study.

3. Results

3.1. Results for ThetaProbe ML2x (Delta-T Devices Ltd., Cambridge, UK)

The soil-specific calibration of the ThetaProbe was carried out for sand/soil material by both of the
above described approaches: (i) a two-point technique and (ii) direct regression analysis. The factory
and our own values of calibration constants a0 and a1 are described in the table below (Table 2).
The possible range of parameters a0 and a1 given by the manufacturer for mineral soils is between 1
and 2 for a0 and between 7.6 and 8.6 for a1. Just on the basis of comparisons of obtained values of a0

and a1 for our own linear and our own polynomial calibrations for sand/soil material, no significant
improvement of soil water determination was expected. Some of the values of a1 were outside of the
commonly obtained range of values. This is supported by higher values of RMSE for most of the water
content data based on our own two-point calibrations (Table 3).
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Table 2. Values of factory and own constants a0 and a1 for two-point ThetaProbe calibration equations
for sand/soil materials.

Type of Conversion Constants Loose Packing
(Sand)

Moderate
Packing (Sand)

Compact
Packing (Sand)

Moderate
Packing (Soil)

Linear conversion of V output to
√

ε
a0 1.46 1.47 1.49 1.72
a1 5.29 7.06 8.1 9.02

Polynomial conversion of V output to
√

ε
a0 1.54 1.56 1.58 1.85
a1 5.34 7.02 7.88 7.96

Factory settings for mineral soils a0 1.6
a1 8.4

Table 3. Performance comparison of factory and own calibrations for two-point calibration approach
of ThetaProbe: R2 values, average AD (vol %), and RMSE values (vol %).

Calibration Type Tested Material Packing R2 Average AD (vol %) RMSE (vol %)

Linear factory Soil Moderate 0.953 1.88 2.32
Polynomial factory Soil Moderate 0.949 1.89 2.45

Linear own Soil Moderate 0.953 2.05 2.42
Polynomial own Soil Moderate 0.949 2.03 2.36

Linear factory Sand Loose 0.982 4.51 4.73
Polynomial factory Sand Loose 0.991 3.40 3.61

Linear own Sand Loose 0.982 6.17 9.06
Polynomial own Sand Loose 0.991 4.98 7.08

Linear factory Sand Moderate 0.998 2.64 2.95
Polynomial factory Sand Moderate 0.999 1.77 1.91

Linear own Sand Moderate 0.998 3.64 4.89
Polynomial own Sand Moderate 0.999 2.34 3.14

Linear factory Sand Compact 0.990 2.35 2.17
Polynomial factory Sand Compact 0.995 1.21 1.16

Linear own Sand Compact 0.990 3.01 2.78
Polynomial own Sand Compact 0.995 1.36 1.36

Based on the results, the determination of own parameters for the two-point calibration approach
cannot be recommended for sand/soil materials tested in this study, as slightly less accurate results of
soil water content measurement were obtained in comparison with the simple use of factory calibration
settings. This result is in agreement with studies [11,47] that concluded that the difficulty especially
in sandy soil originates in the pore system’s instability in dry conditions and thus affects the a0

determination. On the contrary, the second approach (obtaining our own calibration equations by
direct regression analysis) provided better results than those based on the factory calibration settings.
Our own linear and third-order polynomial equations are listed in Table 4. The better accuracy obtained
by application of our own linear and third-order polynomial equations is confirmed by the lower
values of AD and RMSE (Table 5). A graphical comparison of the real volumetric water contents
obtained on the basis of the gravimetric method and the volumetric water contents measured by
ThetaProbe using factory and our own linear and polynomial calibration equations described in Table 4
is presented in Figure 3.

Table 4. Own linear and third-order polynomial calibration equations for ThetaProbe (direct
regression approach).

Tested Material Packing Regression Type Equation

Soil Moderate Linear y = 49.734x − 5.672
Soil Moderate Third-order polynomial y = 360.14x3 − 596.55x2 + 355.24x − 52.53

Sand Loose Linear y = 41.925x + 1.329
Sand Loose Third-order polynomial y = 63.827x3 − 101.39x2 + 86.101x − 3.236
Sand Moderate Linear y = 43.703x − 0.421
Sand Moderate Third-order polynomial y = 43.165x3 − 59.145x2 + 66.790x − 2.788
Sand Compact Linear y = 45.577x − 1.886
Sand Compact Third-order polynomial y = 115.52x3 − 155.39x2 + 105.12x − 8.1418
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Table 5. Performance comparison of factory (displayed in Table 3) and our own calibrations for direct
regression approach of ThetaProbe: R2 values, averaged AD (vol %), and RMSE values (vol %).

Calibration Type Tested Material Packing R2 Average AD (vol %) RMSE (vol %)

Linear own Soil Moderate 0.953 1.78 1.46
Polynomial own Soil Moderate 0.999 0.19 0.16

Linear own Sand Loose 0.982 0.92 1.08
Polynomial own Sand Loose 0.997 0.35 0.47

Linear own Sand Moderate 0.998 0.34 0.41
Polynomial own Sand Moderate 0.999 0.22 0.24

Linear own Sand Compact 0.990 0.79 1.10
Polynomial own Sand Compact 0.997 0.59 0.62
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3.2. Results for Sensors from the ECH2O Family (Decagon Devices Inc., Pullman, WA, USA)

The soil-specific calibration of the four selected sensors from the ECH2O family (ECH2O EC-10,
ECH2O EC-20, ECH2O EC-5, and ECH2O TE) was carried out for sand/soil material using the direct
regression approach. Our own linear calibration equations for loose, moderate, and compact packing
of sand and moderate packing of soil are displayed in Table 6.

Table 6. Our own linear calibration equations for sensors from the ECH2O family (RAW is the sensor
output in mV and θ is water content in vol %).

Sensor Type Material Packing Calibration Equation

ECH2O TE Soil Moderate θ = 0.1248 RAW − 76.164
ECH2O EC-5 Soil Moderate θ = 0.0949 RAW − 53.587

ECH2O EC-10 Soil Moderate θ = 0.0906 RAW − 66.463
ECH2O EC-20 Soil Moderate θ = 0.0686 RAW − 54.38

ECH2O TE Sand Loose θ = 0.0689 RAW − 34.96
ECH2O EC-5 Sand Loose θ = 0.0671 RAW − 31.113
ECH2O EC-10 Sand Loose θ = 0.1097 RAW − 52.722
ECH2O EC-20 Sand Loose θ = 0.0836 RAW − 40.528

ECH2O TE Sand Moderate θ = 0.0831 RAW − 44.811
ECH2O EC-5 Sand Moderate θ = 0.0734 RAW − 37.168
ECH2O EC-10 Sand Moderate θ = 0.0722 RAW − 32.798
ECH2O EC-20 Sand Moderate θ = 0.0567 RAW − 25.485

ECH2O TE Sand Compact θ = 0.0951 RAW − 53.7
ECH2O EC-5 Sand Compact θ = 0.0815 RAW − 43.313
ECH2O EC-10 Sand Compact θ = 0.0557 RAW − 26.018
ECH2O EC-20 Sand Compact θ = 0.0450 RAW − 21.359
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The ability of the sensor to provide an accurate soil water content measurement was described
graphically (Figure 4) and evaluated by the same statistical measures as ThetaProbe; determination
coefficient R2, absolute difference AD (vol %), and RMSE (vol %). These statistics are summarized in
Table 7 and discussed later on.Sensors 2016, 16, 1912 13 of 22 
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Table 7. Performance comparison of factory and own calibrations for direct regression approach of
sensors from ECH2O family: R2 values, average AD (vol %) and RMSE values (vol %).

Factory Linear Calibration Own Linear Calibration

Sensor Type Material Packing R2 Average
AD (vol %)

RMSE
(vol %) R2 Average

AD (vol %)
RMSE
(vol %)

ECH2O TE Soil Moderate 0.962 2.25 2.88 0.962 1.98 2.31
ECH2O EC-5 Soil Moderate 0.977 2.97 3.07 0.977 1.54 1.80
ECH2O EC-10 Soil Moderate 0.968 4.83 5.81 0.968 1.91 2.12
ECH2O EC-20 Soil Moderate 0.972 4.84 5.83 0.972 1.81 1.97

ECH2O TE Sand Loose 0.963 1.34 3.68 0.992 0.49 0.62
ECH2O EC-5 Sand Loose 0.982 3.40 5.85 0.982 0.77 0.93
ECH2O EC-10 Sand Loose 0.926 13.06 16.43 0.928 1.45 1.86
ECH2O EC-20 Sand Loose 0.811 11.90 15.08 0.810 2.17 3.02

ECH2O TE Sand Moderate 0.983 1.27 2.80 0.983 0.95 1.11
ECH2O EC-5 Sand Moderate 0.986 1.56 3.28 0.986 0.85 0.98
ECH2O EC-10 Sand Moderate 0.917 11.81 15.05 0.917 2.07 2.43
ECH2O EC-20 Sand Moderate 0.930 11.26 13.93 0.930 1.96 2.23

ECH2O TE Sand Compact 0.976 1.35 2.16 0.978 1.19 1.44
ECH2O EC-5 Sand Compact 0.981 1.29 2.61 0.981 1.09 1.32
ECH2O EC-10 Sand Compact 0.977 7.18 10.02 0.963 0.38 0.49
ECH2O EC-20 Sand Compact 0.993 7.87 10.02 0.991 0.75 0.90

3.3. Performance Evaluation of Tested Sensors to Measure the Water Content in Saline Conditions

The performance of all tested sensors was also evaluated for their possible use in the field with
saline irrigation water. The test was carried out for sandy medium of a dry bulk density of 1.35 g·cm−3

(compact packing). The saline irrigation water was prepared as a solution of 2 g of table salt (NaCl) in
1.0 L of distilled water, creating a solution with electrical conductivity (EC) of 3300 mS·m−1. The sand
was wetted by the salt solution step by step in six or seven stages from dry to ca. 25 vol %. After the
measurements at the last stage the sand was dried (the water evaporated while the salt remained) and
another wetting procedure with the salt solution started. In total, three rounds of drying/wetting
of the sand were carried out, simulating the repeated use of saline water for irrigation. A set of
reference data based on non-saline water application was also prepared (salinity 0) and volumetric
water contents were used for the “Reference line” construction. Factory linear calibrations (Equation (8)
for ThetaProbe and equations displayed in Table 1 for sensors from the ECH2O family) and our own
linear calibration equations for sandy material under compact packing (equations displayed in Table 4
for ThetaProbe and in Table 6 for sensors from the ECH2O family) were applied to evaluate the ability
of the sensor to accurately measure the volumetric water content in saline conditions. Both factory
and our own linear calibrations performed quite well for all tested sensors for the first round of the
drying/wetting cycle. The more saline the conditions, the higher the AD between the measured and
real values of volumetric water contents. Furthermore, with increasing salinity (after the second and
third rounds of the drying/wetting cycle), the sensors ECH2O EC-10 and ECH2O EC-20 performed
poorly, consistently and significantly overestimating the real volumetric water contents. For the first
round of the drying/wetting cycle, the averaged AD ranged between 0.64 vol % (ECH2O TE) and
4.09 vol % (ECH2O EC-20). For the second and third rounds the ADs were much bigger for sensors
ECH2O EC-10 and ECH2O EC-20 (average AD ranged between 10.36 vol % and 16.74 vol %) when
compared to the other three tested sensors, where the average AD ranged between 1.75 vol % and
16.74 vol %. Our own linear calibrations performed quite well only for three out of the five tested
sensors. ECH2O EC-10 and ECH2O EC-20 practically failed to measure the volumetric water content
in saline conditions (after the second round of wetting by saline water). The AD between the real
volumetric water contents and those measured by the sensors ECH2O EC-10 and ECH2O EC-20
increased significantly after the second and again after the third round of the drying/wetting cycle
(the average AD started at about 12 vol %, than increased up to about 21 vol %, and for the third
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round the values reached about 27 vol %). Detailed AD and RMSE values for all five tested sensors
for factory and our own linear calibrations are presented in Table 8. Probably the best and most
stable measurements over the range of all three rounds of drying/wetting cycles with saline water
application was provided by ECH2O EC-5, regardless of the calibration type (linear or our own). Also,
ThetaProbe provided very stable and linearly related results with slightly higher AD than ECH2O EC-5
for more saline conditions (after the second and third rounds of the wetting/drying cycle). However,
the accuracy of the measurements was within an acceptable range for the first and second rounds of
the wetting/drying cycle (RMSE < 5 vol %). The accuracy can be improved in more saline conditions
by using salinity-specific calibration because of the stable and linear outcome when relating measured
and real volumetric water contents, which were consistently overestimated.

Table 8. Performance comparison of factory and our own linear calibrations for all five tested sensors
in saline conditions: average AD (vol %) and RMSE values (vol %).

Factory Linear Calibration Own Linear Calibration

Sensor Type Material Packing Salinity 1 Average AD
(vol %)

RMSE
(vol %)

Average AD
(vol %)

RMSE
(vol %)

ECH2O TE Sand Compact 1st round 0.64 0.72 0.42 0.62
ECH2O EC-5 Sand Compact 1st round 2.81 2.90 0.92 0.95

ECH2O EC-10 Sand Compact 1st round 4.03 4.42 10.73 11.51
ECH2O EC-20 Sand Compact 1st round 4.09 4.49 12.95 13.66

ThetaProbe Sand Compact 1st round 1.32 1.63 2.00 2.03
ECH2O TE Sand Compact 2nd round 1.82 1.93 0.93 1.07

ECH2O EC-5 Sand Compact 2nd round 1.75 2.37 1.41 1.43
ECH2O EC-10 Sand Compact 2nd round 11.11 12.23 20.55 21.43
ECH2O EC-20 Sand Compact 2nd round 10.36 11.22 21.25 21.79

ThetaProbe Sand Compact 2nd round 3.79 4.31 4.65 4.79
ECH2O TE Sand Compact 3rd round 4.63 4.71 3.49 3.52

ECH2O EC-5 Sand Compact 3rd round 1.80 1.97 2.53 2.91
ECH2O EC-10 Sand Compact 3rd round 16.74 17.12 26.62 26.87
ECH2O EC-20 Sand Compact 3rd round 16.06 16.45 27.39 27.61

ThetaProbe Sand Compact 3rd round 7.58 7.64 7.70 7.71
1 Increasing salinity level due to repeated saline water application on the sand material; 1st round = the initially
dry sand was wetted by saline water, then the water was evaporated (salt remained) and new wetting with
saline water started = 2nd round, etc.

A graphical comparison of the ability of the tested sensors to measure the volumetric water
content under saline conditions using factory and own linear calibrations is given in Figure 5.

Analysis of variance based on the RMSE values for measured and real volumetric water contents
confirmed some expectations and also revealed some surprising results. The five tested sensors
were grouped into two homogeneous groups that performed significantly differently from each other.
Good performance was provided by sensors from the ECH2O family working on higher frequency
(ECH2O EC-5, ECH2O TE (LS mean cca 1.8 vol %) and ThetaProbe (LS mean cca 4.0 vol %)) but
worse performance was seen for the ECH2O sensors working at lower frequencies (ECH2O EC-10 and
ECH2O EC-20 (LS mean cca 14.1 vol %)). As expected, the higher the salt content, the higher the value
of RMSE; however, ECH2O EC-5 also performed very well after the third round of the drying/wetting
cycle, not differing much from the reference line when non-saline water was applied (Figures 6 and 7).
Figure 7 also presents a statistical comparison of ECH2O EC-5 with other four tested sensors, showing
significantly higher RMSE values for measurements with ECH2O EC-10 and ECH2O EC-20.
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4. Discussion

4.1. Discussion of the Results of ThetaProbe ML2x

The analysis of variance showed a statistically significant relationship between RMSE and both
predictor variables (calibration type and packing) at the 95.0% confidence level. The predictor material
was removed from the model as it was shown that this predictor does not have a statistically significant
relationship with the RMSE. Practically no statistically significant differences were obtained when all
types of ThetaProbe calibration were compared (Figure 8); however, some improvement in accuracy
was obtained when our own linear and third-order polynomial calibrations were determined using
the direct regression approach. The effect of dry bulk density factor (packing) shows the importance
of good contact between the probe sensing rods and soil/sand particles, because significantly higher
RMSE values were obtained for loose packing (Figure 9). All the results indicate the need for our own
calibration (direct regression approach) for sand/soil with lower values of dry bulk density.
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Recently, wireless sensor network technology has been used for catchment-scale measurements
and hydrological processes descriptions, e.g., [48,49]. According to [11], ThetaProbe has received
acceptance in the remote sensing community for soil water content measurements at the soil
surface [50]. The field soil-specific calibrations based on the direct regression approach can lead
to more precise outcomes and thus justify its labor and cost.

4.2. Discussion of the Results for Sensors from the ECH2O Family

When evaluating the performance of sensors from the ECH2O family, it is necessary to mention
the fact that the sensors have different sizes, shapes, and operating frequencies. The first two factors
are suppressed by the used homogeneous material placed in a large rectangular container of a volume
of 10 L. According to the applied operating frequency, the sensors from the ECH2O family can be
divided into two groups: (i) sensors operating at a frequency of 70 MHz (ECH2O TE and ECH2O
EC-5) and (ii) sensors operating at a frequency of 5 MHz (ECH2O EC-10 and ECH2O EC-20). The same
groupings are reflected in the evaluation of measurement accuracy: sensors operating at a higher
frequency performed significantly better (average RMSE 3.3 vol % for factory calibration and 1.3 vol %
for our own linear calibration; see Table 7). The factory calibrated sensors used in loosely packed
sand consistently undermeasured the values of volumetric water content when compared to those
determined on the basis of the gravimetric method. This was particularly evident for sensors ECH2O
EC-10 and ECH2O EC-20, where the absolute differences between the measured and real values
ranged between 1.3 and 13.1 vol % (Table 7). For compacted sand the maximum value of average
absolute difference decreased to 7.9 vol %, which is still too high for accurate measurement (Table 7).
This finding is in agreement with the manufacturer’s statement that the factory calibrations for ECH2O
EC-10 and ECH2O EC-20 sensors do not provide sufficiently accurate results and an own calibration
is needed. The quality of the own calibration performance is confirmed by the results obtained in
this study (Figure 10). This is in accordance with the results of Kizito et al. [20], who concluded that
the sensitivity of the capacitance sensors’ measurements is primarily affected by their measurement
frequency. A statistically significant effect of the material (sand/soil) in which the volumetric water
content was measured was observed for sensors operating at a lower measurement frequency of
5 MHz (ECH2O EC-10 and ECH2O EC-20). Regardless of the applied calibration type, the dry bulk
density effect appeared to be significant, especially for the ECH2O EC-10 and ECH2O EC-20 sensors
(Figure 11). Similarly to the ThetaProbe, the results show the importance of good contact between the
sensors and sand/soil being measured, which the compact packing ensures.
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A significant improvement in recently developed sensors from the ECH2O family ECH2O EC-5
and ECH2O TE was observed in this study. In comparison with the older ECH2O EC-10 and ECH2O
EC-20, they are able to measure volumetric water content with good accuracy regardless of the soil
type and dry bulk density value. Naturally, if a soil water content sensor is to reach its maximum
accuracy, a soil-specific calibration needs to be carried out [51,52].

On the contrary, specifically calibrated older sensors ECH2O EC-10 and ECH2O EC-20 can perform
measurements with good accuracy of a more representative value as higher volumes of soil/sand are
being sampled and averaged to provide volumetric water content reading. Czarnomski et al. [21],
on the basis of a field experiment, concluded that ECH2O EC-20 (in the text designated as EC-20)
performed nearly as well as a TDR probe, which is commonly assumed to be one of the most accurate
water content probes.

4.3. Discussion of the Ability of Tested Sensors to Measure the Water Content in Saline Conditions

Testing of the sensors under saline conditions was performed in three rounds, as described in
Sections 2.2 and 3.3. Usually, the use of our own calibration equations for non-saline conditions
means a significant improvement in the measurement accuracy of the tested sensors. Surprisingly, this
statement is not valid for saline conditions, where, in general, factory linear calibrations consistently
performed better than our own calibrations for all three rounds of the drying/wetting cycle with saline
water application (Figure 12).
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Although the differences were not statistically significant for each drying/wetting cycle of saline
water application, the statistical results need to be checked for individual sensors, as there are big
differences between them (Table 8). The own linear calibration for ECH2O TE performed better
than the factory linear calibration for all three drying/wetting cycles, while our own calibration for
ECH2O EC-5 only did so for the first two cycles. The differences between the RMSE values (factory
vs. own) ranged from 0.11 to 1.19 vol % for ECH2O TE and from −0.94 to 1.95 vol % for ECH2O
EC-5. ThetaProbe performed better with the factory linear calibrations for all three drying/wetting
cycles; the differences between the RMSE values (factory vs. own) ranged from −0.07 to −0.48 vol
% for ECH2O TE. The ECH2O EC-10 and ECH2O EC-20 performed similarly, with poor accuracy in
saline conditions. The values of RMSE (vol %) increased with increasing salinity, on average from
4.5 vol % to 16.8 vol % for factory linear calibration and from 12.6 vol % to 27.2 vol % for our own
linear calibration for non-saline conditions. These high values affected the statistical outcome when
evaluating all sensors together in Figure 12, showing the factory linear calibration as a better choice
when compared to the own linear calibration.

The findings of this study are in accordance with Seyfried and Murdock [18], who tested the
adapted ECH2O TE and ECH2O EC-5 sensors for different measurement frequencies. The sensitivity
of the tested sensors to given levels of salinity decreased with increasing operating frequency.
The differences in accuracy of soil water content measurement between the tested sensors from the
ECH2O family can be explained mainly by the differences in their operating frequency. Results obtained
by Bogena et al. [3], who tested the ECH2O EC-5 sensor, showed its sensitivity to bulk electrical
conductivity with a maximum error of 6 vol % for bulk electrical conductivity of 1 dS·m−1 and soil
water content of 51 vol %. They also stated that the older type ECH2O EC-20 was more sensitive to
bulk electrical conductivity than ECH2O EC-5. Scudiero et al. [53] suggested using a newer version of
ECH2O TE, ECH2O 5TE, which works at a frequency of 70 MHz for continuous monitoring of soil
moisture content and solute dynamics in saline soils.

5. Conclusions

The final selection and application of the particular soil water content sensor is based on
a combination of different factors that need to be taken into account: suitability of the sensor for
the particular purpose (material type, measured volume, sensor durability, etc.), the required accuracy
of the measurement, and, last but not least, the cost. The published experience of others can help
with this decision-making process. Research on soil water content measurement is a dynamic process
reflecting the need for relatively cheap, precise, and automated systems, especially for irrigation
purposes, where saving water has become a very pressing issue.
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This study evaluated five commercially available and financially affordable soil water content
sensors. All five tested sensors (ThetaProbe ML2x produced by Delta-T Devices, Ltd., Cambridge, UK,
and sensors from the ECH2O family produced by Decagon Devices Inc., Pullman, WA, USA: ECH2O
EC-10, ECH2O EC-20, ECH2O EC-5, and ECH2O TE) performed very well if the proper calibration was
applied. The two-point calibration approach for ThetaProbe did not lead to any measurement accuracy
improvement and thus cannot be recommended. On the contrary, application of the direct regression
approach has led to an improvement in accuracy for all five tested sensors. Generally, the measurement
accuracy increased with increasing value of dry bulk density, emphasizing the importance of good
contact between the sensor and the sand/soil. For use in saline conditions, only three out of the five
tested sensors can be recommended: ECH2O EC-5, ECH2O TE, and ThetaProbe. For ThetaProbe
applications in saline conditions, when only factory and our own calibrations for non-saline conditions
are available, factory calibration leads to more accurate results.
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