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Abstract: It is known that the identification performance of a multi-aircraft formation (MAF) of
narrowband radar mainly depends on the time on target (TOT). To realize the identification task
in one rotated scan with limited TOT, the paper proposes a novel identification-while-scanning
(IWS) method based on sparse recovery to maintain high rotating speed and super-resolution for
MAF identification, simultaneously. First, a multiple chirp signal model is established for MAF in a
single scan, where different aircraft may have different Doppler centers and Doppler rates. Second,
based on the sparsity of MAF in the Doppler parameter space, a novel hierarchical basis pursuit (HBP)
method is proposed to obtain satisfactory sparse recovery performance as well as high computational
efficiency. Furthermore, the parameter estimation performance of the proposed IWS identification
method is analyzed with respect to recovery condition, signal-to-noise ratio and TOT. It is shown that
an MAF can be effectively identified via HBP with a TOT of only about one hundred microseconds
for IWS applications. Finally, some numerical experiment results are provided to demonstrate the
effectiveness of the proposed method based on both simulated and real measured data.

Keywords: narrowband radar; multi-aircraft formation (MAF); identification-while-scanning (IWS);
sparse recovery; hierarchical basis pursuit (HBP)

1. Introduction

Multi-aircraft formation (MAF) identification is an important task [1–4] for air search radar,
where both the aircraft number and their motion information are of particular interest. For the
narrowband radar, aircraft in the MAF can be densely distributed in a single beam and a single
range cell of echoes. Although wideband waveforms have been introduced to distinguish between
aircraft in difference range cells [4–10], a high A/D sampling frequency and huge data storage
are required. Moreover, wideband waveforms may bring difficulties on target detection due to
the energy being distributed along different range cells and the unknown range migration among
different high range resolution profiles (HRRPs) [1]. Therefore, narrowband radar systems are still
widely used in air search radars [1,11,12]. Though different aircraft in MAF may not be separated
along the low range resolution profiles, different Doppler parameters, which are caused by different
positions and motions of targets during a long time on target (TOT), provide a new approach for
MAF identification [1,13,14]. In this regards, the third-order polynomial Fourier transform (PFT) [1]
and many other time-frequency analysis (TFA) methods [13,14] have been proposed in a long TOT,
e.g., one or several seconds. However, a long TOT cannot be obtained in many scenarios due to the
following three reasons. First, the TOT is an important resource for radar, especially for wide-area
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search radar, and it needs to allocate the illumination time to detect targets from different directions.
Second, modern radar is expected to have a quick response to environmental change, and the MAF
information should be determined as soon as possible. Third, a dynamic frame-by-frame observation
of MAF is expected in many applications to reflect the MAF time-varying motion. Specifically,
for mechanically rotated or electronically scanned radar, it is hoped that an MAF can be identified in a
single scan without decrease of the rotation speed as well as the data rate for target report. Therefore,
the identification-while-scanning (IWS) in a short TOT is preferred for MAF identification in many
practical applications.

The echoes of the MAF should be composed by different polynomial phase signals (PPS) with
respect to different aircraft [1]. Furthermore, in this paper the echoes are derived as the composition of a
multiple chirp signals (MCS) model in a short TOT of a single scan. Thus the IWS issue in a short TOT is
equivalent to an estimation of multiple chirp components, in which the main problem is how to realize
super-resolution of these components in a short TOT for IWS application. Fortunately, as the number
of aircraft is limited, the MCS can be regarded as sparse in the whole parametric space. Therefore,
in this paper the MAF identification is investigated by introducing sparse recovery (SR), which is
recently discussed in radar area, especially for synthetic aperture radar (SAR) imaging [11,12,15–20].
The SR theory indicates that if a signal is sparse on some basis, it can be exactly reconstructed from
limited samples with high probability. SR is originally realized by l0 norm minimization, which
is an NP-hard problem and intractable to solve directly. Fortunately, if the measurement matrix
satisfies the restricted isometry property (RIP) [21] with appropriate restricted isometric constants,
the l0 norm minimization can be approximated to the solvable l1 norm minimization, which can
be realized by convex optimization or greedy algorithms. Compared with greedy algorithms,
such as orthogonal matching pursuit (OMP) [22,23], convex optimization algorithms like basis
pursuit (BP) [24] have higher recovery accuracy but much more computational complexity. In the
MAF identification issue, convex optimization is preferred since the target number needs to be
estimated accurately. On the other hand, off-grid problem of SR [25,26] may be inevitable since the
real Doppler parameters of MAF can be any continuous real values while the grid of the basis are
pre-discretized. Although refining the grids can increase the recovery probability, it will also create a
heavy computation burden and recovery efficiency loss. Therefore, to solve the off-grid problem and
maintain a moderate computation complexity, hierarchical recovery has been proposed in the field of
SR. In literatures [27,28], a hierarchical matching pursuit is proposed and applied to sparse coding in
image classification. In [29,30], grid refinement is utilized for better SAR and ISAR imaging. In these
former works, though, the effective grid setting rule is not well discussed. In this paper, a hierarchical
basis pursuit (HBP) method is proposed. It is clearly shown that the MAF can be effectively identified
via HBP in a short TOT of only one hundred microseconds for IWS applications.

The remainder of the paper is organized as follows. In Section 2, the MAF signal model is
established based on narrowband signals in a short TOT. In Section 3, the MAF identification is
discussed by SR and the HBP method for IWS application is proposed with detailed performance
analysis. In Section 4, some results of simulations and real measured data are provided to demonstrate
the effectiveness of the proposed method. In Section 5, some conclusions are drawn.

2. Multi-Aircraft Formation Signal Model in Short Coherent Integrated Time

We have proposed a two-dimensional MAF signal model in [1] in long coherent integrated
time (LCIT), e.g., several seconds. In this paper, we focus on the model for IWS applications in
a short TOT, e.g., from several tens to one hundred micro-seconds, in a single scan for coherent
integration. The geometry of an MAF scenario is rewritten in Figure 1 with two aircraft for simplicity.
Three Cartesian coordinates are introduced for the convenience of derivation. UOV is the radar
coordinate and the radar is located at the coordinate origin, O. XOY is the reference coordinate,
where the axis Y coincides with the axis V and X is parallel to U. |Oo| = R0 and |·| is the absolute
value operator. The third coordinate {x(k)o(k)y(k), k = 1, ..., K} is the target coordinate, where o(k) is the
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k-th aircraft geometry center, K is the aircraft number of the MAF and the origin of the k-th targets’
coordination is located at

(
X(k)

0 , Y(k)
0

)
in XOY. The aircraft are assumed in the same beam and the

same range cell from the constraint∣∣∣X(k)
0

∣∣∣ ≤ (R0 + ∆R) θ/2 , 0 ≤ Y(k)
0 ≤ ∆R (1)

where θ is the azimuth beam width, ∆R is the range resolution of the narrowband radar. The radar
light of sight (LOS) angle is θ

(k)
0 , corresponding to the angle ∠UOo(k). The radial direction is denoted

as the axis of Y and the tangential direction is the axis of X.
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Figure 1. MAF geometry for the narrowband radar.

Normally, the motions of aircraft in the MAF cannot change rapidly for the safety reason, thus only
the first and second order motions needs to be considered, i.e., the radical velocity v(k)y , the tangential

velocity v(k)x , the radical acceleration a(k)y and the tangential acceleration a(k)x , should be considered.

Thus, an arbitrary scatterer P of the k-th target is located at
(

x(k)p , y(k)p

)T
in the k-th target coordinates,

which corresponds to the location
(

X(k)
0 + x(k)p , Y(k)

0 + y(k)p

)T
in radar coordinates and (·)T is the

transpose operator. The range from the scatterer P to the radar versus t can be expressed as

r(k)p (t) = |OP (t)| =
∣∣∣Oo(k) (t) + o(k)P (t)

∣∣∣. (2)

Usually, closely spaced scatterers cannot be effectively identified in a limited illumination time,
even in several seconds of LCIT, so the phase differences among scatterers in a same aircraft can be
omitted, which means that each aircraft in MAF contributes one Doppler component. Therefore, the
MAF signal model can be approximated to the combination of K components of four-order polynomial
phase signal (PPS) as

s (t) =
K

∑
k=1

σ(k)exp
{

j2π
[

f (k)1 t + f (k)2 t2 + f (k)3 t3 + f (k)4 t4
]}

, (3)

where f (k)l is the first order phase coefficient, l = 1, 2, 3, 4, which can be expressed as

f (k)1 = 2
(

X(k)
0 Ωk (t) + v(k)y,0

)
/λ, (4)

f (k)2 =

a(k)y +

(
v(k)x,0

)2

R0
+

X(k)
0 a(k)x

R0

 /λ, (5)
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f (k)3 =
v(k)x,0a(k)x

λR0
, (6)

f (k)4 =

(
a(k)x

)2

4λR0
, (7)

where σ(k) is the backscattering amplitude of the k-th target, Ω(k) (t) is the equivalent rotation velocity
generated by the k-th target’s tangential motion. Usually, the rotation velocity Ω(k) (t) of each target
can be assumed to be identical and denoted by Ω.

The linear phase coefficient f (k)1 causes the Doppler shift, while the quadratic term, cubic term
and fourth-order term cause the Doppler dispersion. In the TOT, the Doppler frequency dispersion
caused by the quadratic term, cubic term and fourth-order term are respectively denoted by Fds2,
Fds3 and Fds4 as

Fds(k)2 = 2 f (k)2 T = 2

a(k)y +

(
v(k)x,0

)2

R0
+

X(k)
0 a(k)x

R0

 T/λ, (8)

Fds(k)3 = 3 f (k)3 T2 =
3v(k)x,0a(k)x

λR0
T2, (9)

Fds(k)4 = 4 f (k)4 T3 =

(
a(k)x

)2

λR0
T3. (10)

Normally, the velocity v(k)x,0 will be several hundred meters per second, the acceleration

a(k)x < 10 m/s2, and the radial range between the MAF and the radar R0 > 10 km. For the application
of IWS, the TOT T is about 100 ms. Also, the wavelength of far-range search radar will be larger than
3 cm, the Doppler frequency dispersion by the cubic and fourth-order term meets

Fds(k)3 <<
1

2T
=

ρ f

2
, (11)

Fds(k)4 <<
1

2T
=

ρ f

2
, (12)

where ρ f = 1/T represents the Doppler center resolution cell. Equations (11) and (12) indicate that

the dispersion Fds4 and Fds(k)3 can be omitted in the short during time T as well as the cubic and

fourth-order phase modulation. Moreover, the quadratic term Fds(k)2 will cause an obvious Doppler

rate dispersion compared with Fds(k)4 and Fds(k)3 . Thus, the MAF signal versus t for IWS application
can be approximated as

s (t) =
K

∑
k=1

σ(k)exp
{

j2π
[

fakt + fbkt2
]}

, (13)

where the k-th aircraft is decided by its Doppler center fak and Doppler rate fbk, jointly. Therefore,
the narrowband coherent MAF signal in IWS application is equivalent to a model of K components of
chirp signals, i.e., multiple chirp signal (MCS) model.

The 2D geometry UOV established in is an observation plane composed of the radar LOS and the
instant velocity vector of MAF at t = 0. Actually, the targets of MAF may move out of the UOV plane
in a real 3D space. Fortunately, in a short TOT, e.g., one hundred microseconds for IWS usage, the 3D
motion can well be assumed bounded in the plane of UOV and the high-order motions can be omitted.
Thus the MAF signal still can be modeled as the combination of different chirp components with
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respect to different aircraft in a 3D space. That is, the dimension of the matrices and the complexity of
the recovery in a 3D geometry will be as same as those in 2D geometry in a short TOT.

Besides, for safety reasons, the aircraft in a stable MAF may normally keep the identical motion,
which is called rigid MAF formation. In that case, the MCS can be verified to have the same Chirp
rate [31]. However, in some scenarios, the aircraft in a MAF may have different motions and change
their relative positions in the flight, which is called non-rigid formation. Also, two different MAF
formations may possibly appear in the same range cell of the same beam. Therefore, this paper mainly
discusses the non-rigid MAF identification as in Equation (13), and the rigid one can be regarded as a
special case of Equation (13).

3. IWS MAF Identification via Sparse Recovery Methods

It is shown in Equation (13) that MAF identification can be realized for IWS application by
estimating the number of chirp components as well as their parameters. However, the TOT in one IWS
single scan is too short to discriminate each chirp component for conventional methods. Therefore,
sparse recovery approaches are introduced in this Section to solve the resolution problem. Moreover,
it is shown that the number of chirp components as well as their parameters, i.e., Doppler centers
and Doppler rates, can be estimated by the sparse recovery, simultaneously. Based on Equation (13),
the dictionary of sparse recovery consisted of the chirp atoms with different Doppler centers and rates
for the over complete representation. However, retrieving the chirp information is a two-dimensional
parameter search problem with a considerable computational burden. To reduce the computational
complexity and sustain a high accuracy for the convex optimization, a HBP recovery method is further
proposed for MAF identification in this section.

3.1. Overview of Sparse Recovery Theory

The framework of SR indicates that with the assumption of sparsity, the N × 1 dimensional signal
vector s can be expressed as

s = Ψf, (14)

where Ψ is a N × Z dimensional basis matrix, f is a Z × 1 dimensional reconstructed signal vector
with sparsity of K, i.e., only K elements of f are nonzero and K << Z. From the compressed sensing
theory, the s can be recovered from its limited observation y with length of M and M << N, which can
be expressed as

y=Φs, (15)

where y is the measurement vector and Φ is an M × N measurement matrix. Then we can obtain

y =Φs = ΦΨf =Θf, (16)

where the dictionary Θ = ΦΨ.
According to Equations (14)–(16), the recovery of s is equivalent to the recovery of f. Thus the

following will only focus on the recovery of f. If the measurement matrix Θ is chosen properly, f will
be recovered from the locations of the nonzero entries of f.

The principle of BP is to find a representation of the signal whose coefficients have minimal l1
norm, as represented by Equation (17)

min||f||1 subject to Θf = y, (17)

where y is the samples of the signal in a noise-free environment.
In the case of standard white Gaussian noise with deviation of σ, Basis Pursuit denoising (BPDN)

is proposed, which is the solution of
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min
f

(
1
2
||y−Θf||22 + λ||f||1

)
. (18)

Assuming the dictionary is normalized, then the parameter λ is related to the noise power, usually
set as λC = σ

√
2log(C), with C is the cardinality of the dictionary.

BPDN is implemented by searching the best solution to Equation (18) on the whole f axis,
which requires a large amount of time for computation. To make BPDN feasible in practical
application, a HBP method is proposed in this paper by hierarchically search to reduce the computation
burden remarkably.

3.2. MAF Identification by HBP Method

At first we prove the sparsity of the formation signal represented in the transform domain. Rewrite
the formation signal in Equation (13) in the discrete form as

s [n] =
K

∑
k=1

σ(k)exp
[

j2π
(

f (k)1 Tsn + f (k)2 T2
s n2
)]

, (19)

and s = (s [1] , s [2] , · · · , s [N])T . Form the basis matrix Ψ in a row vector consisted by different
Doppler centers and Doppler rates as

Ψ =


exp (−j2π (p1 + q1))

exp
(
−j2π

(
2p1 + 22q1

))
...

exp
(
−j2π

(
Np1 + N2q1

))
· · ·
· · ·
. . .
· · ·

exp
(
−j2π

(
p1 + qQ

))
· · · exp

(
−j2π

(
pi + qj

))
· · · exp

(
−j2π

(
pP + qQ

))
exp

(
−j2π

(
2p1 + 22qQ

))
· · · exp

(
−j2π

(
2pi + 22qj

))
· · · exp

(
−j2π

(
2pP + 22qQ

))
...

. . .
...

. . .
...

exp
(
−j2π

(
Np1 + N2qQ

))
· · · exp

(
−j2π

(
Npi + N2qj

))
· · · exp

(
−j2π

(
NpP + N2qQ

))


N×PQ

, (20)

where the subscript i in pi varies from 1 to P, and for each i the subscript j in qj traverses from 1 to Q.
Thus there are P × Q combinations for pi and qj, corresponding to each columns in Ψ.

Assume that only the first M samples of the formation signal s[n] can be obtained in one scan, i.e.,
y = (s [1] , · · · , s [M])T , which means the observation matrix Φ has the form as

Φ =


1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 0 1 0 · · · 0


M×N

. (21)

Then the dictionary Θ can be written as

Θ = ΦΨ =


exp (−j2π (p1 + q1)) · · · exp

(
−j2π

(
pi + qj

))
· · · exp

(
−j2π

(
pP + qQ

))
exp

(
−j2π

(
2p1 + 22q1

))
· · · exp

(
−j2π

(
2pi + 22qj

))
· · · exp

(
−j2π

(
2pP + 22qQ

))
... · · ·

... · · ·
...

exp
(
−j2π

(
Mp1 + M2q1

))
· · · exp

(
−j2π

(
Mpi + M2qj

))
· · · exp

(
−j2π

(
MpP + M2qQ

))


M×PQ

. (22)

Thus, the MAF samples y is represented by

yM×1 = ΦM×NsN×1 = ΦM×NΨN×PQfPQ×1 = ΘM×PQfPQ×1. (23)

The number of the nonzero elements of f in the basis matrix Ψ corresponds to the aircraft number,
and the aircraft Doppler parameters can be estimated by the chirp basis corresponding to the nonzero
elements in f. Specifically, the locations of the nonzero elements in f represent the aircraft’s Doppler
center and Doppler rate, jointly. Therefore, f is sparse with only a few non-zero entries, which can be
solved by BPDN in Equation (18).

Since the computation for the optimization of Equation (18) largely depends on the size of the
measurement matrix Θ, the atoms of Θ can be designed in two hierarchies with different grids.
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Specifically, in the first hierarchy, the atoms in the measurement matrix Θ1, expressed as θ1(pi, qj),
should have a wider range to ensure that the signal components can totally be covered. To keep Θ1

as small as possible, the grid among the atoms is allowed to be large to a great extent. While in the
second hierarchy, atoms in the measurement matrix Θ2 have a much smaller grid, and only need to
cover the small range of the non-zero atoms based on the sparse recovery result of the first hierarchy.
Compared to the traditional BP method, the HBP method can keep the same accuracy and reduce the
computational complexity significantly.

An example is given to demonstrate the implementation of the HBP strategy. The signal is
supposed to be constructed by two chirp components with Doppler center fa1 = 1.4 Hz, fa2 = 7.2 Hz
and Doppler rate fb1 = 2 Hz/s, fb2 = 9 Hz/s respectively. The CPI is 100 ms. In the first hierarchy,
the grids for the Doppler center and rate are set as 2 Hz and 10 Hz/s, as shown in Figure 2. In the
second hierarchy, the dictionary is finer with more intensive grids of 0.1 Hz and 1 Hz/s. As shown in
Figure 2 in the first hierarchy, the signal can be recovered by the items of the dictionary around the
true value of the rough parameters. In the second hierarchy, the signal is recovered by the exact items
as the Doppler parameters fall on the grid. The example above indicates that the tuning of the grid is
important for the successfully recovery of the signal, which will be discussed in our future work.
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3.3. The Discussion on Performance Analysis and the Grid Setting Rule for the HBP Method

To characterize the recovery ability of a given dictionary, the RIP and the coherence measure are
two main metrics. Normally, the former is an NP-hard problem [19] to determine the RIP constants
while the latter may be a simpler choice [32–34]. Although coherence measure is less accurate than RIP
as the recovery condition, it has more explicit expression and is physically meaningful in our case of
Equation (23). Therefore, in this section, the coherence is discussed and analyzed to test the recovery
ability of the dictionary Θ. The coherence [17] of Θ is defined as the largest absolute inner product
between any two columns θi, θj in Θ

µ (Θ) = max
1≤i<j≤N

∣∣〈θi, θj
〉∣∣

||θi||2||θj||2
. (24)

where 〈·, ·〉 is the inner product operator. According to Theorem 12 of chapter 1 in [35], a sparse vector
f can be successfully recovered by CS framework given a length-N observed echo y and the dictionary
Θ, as long as the aircraft number K satisfies

K <
1
2

(
1 +

1
µ (Θ)

)
. (25)

According to the Welch bound [36], the coherence of a basis matrix is always in the range
µ (Θ) ∈

[√
(N −M) / (M(N − 1)), 1

]
. If N >> M, the lower bound for µ (Θ) approximates to
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1/
√

M. According to Equation (25), the upper bound for the aircraft number K which can be uniquely
reconstructed will be (1 +

√
M)/2. The coherence of the atoms θi, θj in the measurement matrix Θ can

be derived as

µ
(
θi, θj

)
=

1
M

∣∣∣∣ M
∑

n=1
exp

(
−j2π

(
pii Tsn + qij T

2
s n2
))

exp
(

j2π
(

pji Tsn + qjj T
2
s n2
))∣∣∣∣

=
1
M

∣∣∣∣ M
∑

n=1
exp

(
−j2π

((
pii − pji

)
Tsn +

(
qij − qjj

)
T2

s n2
))∣∣∣∣

=
1
M

∣∣∣∣ M
∑

n=1
exp

(
−j2π

(
∆pTsn + ∆qT2

s n2))∣∣∣∣
, (26)

where ∆p = pii − pji and ∆q = qii − qji .
Notably, the coherence expression of Equation (26) has a similar expression to the ambiguity

function [37], because they all reflect the correlation with the shifted parameters in a certain dimension.
The proposed sparse recovery method provides a super-resolution way to identify the aircraft.

Since the theoretical resolution of the sparse recovery method depends on the dictionary’s atoms,
the resolution can reach as high as possible if the selected steps of ∆p and ∆q are small enough, ideally.
However, the possible resolution is limited by the coherence of the measurement matrix Θ. That is,
if the steps of ∆p and ∆q are too small, the MAF signal cannot be reconstructed successfully since the
coherences for the atoms in the dictionary are too large. Therefore, it can be inferred that the resolution
for sparse recovery methods can be defined as the minimum steps for ∆p and ∆q meeting Equation (25)
where K = 2. That is

ρp,CS, ρq,CS = argmin
∆p ,∆q

(
µ (Θ) >

1
3

)
(27)

It should be mentioned that the recovery capability defined by Equation (25) is an issue of
probability, which gives a strict condition to recover the signal with high recovery probability. However,
in most cases which cannot satisfy Equation (25), the sparse recovery can still succeed if the SNR is
high enough. In brief, much higher resolution can be obtained for the proposed HBP method than
those of Equation (27) to satisfy MAF identification in one IWS scan.

Accordingly, the choice of the hierarchical grids is vital to the performance of sparse recovery.
From analysis above, we give the grid setting rule for the MAF as follows. The atoms in the first layer
can be rough in a wider range, with the grids in the same magnitude of the resolutions. Then the
second hierarchy will reconstruct the signal with higher accuracy. The atoms in the second layer are
selected in the neighbors of the recovery result in the first hierarchy with grids as small as one-tenth of
the resolutions. It should be pointed that although smaller grids may bring errors for recovery, signals
can still be identified well in relatively high SNR conditions. Moreover, in the second layer, the number
of atoms is greatly reduced which can improve the recovery performance to some extent.

At last, the computational complexity is discussed. As BP method consists of a solution of the
convex optimization problems and can be recast as a linear programming [24,38] if the non-zero
components are real, which has the polynomial computation, i.e., typically O(n3), where n is the
number of atoms in the dictionary for sparse recovery. Thus it may be computational expensive or
infeasible in real applications when n is large. In contrast, the greedy algorithms have been proposed
to reduce the computation complexity to O(nK2) with lower recovery accuracy, where K is the number
of non-zero entries [38] and K << n. According to the proposed flowchart of HBP in Section 3, the HBP
method reduces the computational complexity of BP [24] remarkably from O(n3) to O(n3

1) + O(n3
2),

where O(n3
1) is the computational complexity of the first hierarchy search and n1 = n/C1 is the atom

number in the dictionary of the first hierarchy and C1 is the grid distance times of first hierarchy grid
on the original dense grid. O

(
n3

2
)

is the second hierarchy search complexity and n2 = C2K is the atom
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number in dictionary of the second hierarch, where K is the sparsity, i.e., the aircraft number, and C2 is
the search atom numbers neighboring each of the K nonzero entries.

4. Numeric Experiments of the Proposed HBP Method

In this section, the results of both the simulation data and the real measured data are provided
to demonstrate the effectiveness of the proposed HBP method for IWS applications. The system
parameters are listed as follows. The signal carrier frequency fc = 1 GHz, the pulse repetition
frequency (PRF) is 300 Hz, transmitting signal bandwidth B = 1 MHz and the sampling frequency
fs = 2 MHz. For a typical narrow-band coherent radar, assume that the antenna beam width is 4◦ with
rotation speed 6 revolutions per minute (RPM), then the short TOT for coherent integration will be
about 100 ms for the MAF identification in IWS applications.

4.1. MAF Performance Analysis

The aircraft number of the MAF is two and the slant range between the MAF and radar is 12 km.
The locations in the reference coordinate are X(1)

0 = −100 m and X(2)
0 = 100 m respectively. The motion

parameters are listed in Table 1, from which the Doppler centers and Doppler rates for the two aircraft
can be calculated from the parameters in Table 1.

Table 1. The motion parameters of the two-aircraft MAF.

Motion Parameters
Aircraft1 Aircraft2

Radical Tangential Radical Tangential

Location Y(1)
0 = 12, 000 m X(1)

0 = −100 m Y(1)
0 = 12, 000 m X(2)

0 = 100 m
Velocity v(1)y = 100 m/s v(1)x = 50 m/s v(2)y = 100 m/s v(2)x = 50 m/s

Acceleration a(1)y = 0 m/s2 a(1)x = 0.05 m/s2 a(2)y = 1 m/s2 a(2)x = 0.05 m/s2

The MAF identification results by the HBP method are demonstrated as follows. Figure 3 shows
the identification correct probability of the aircraft number versus SNR with 100 Monte Carlo samples,
which illustrates that the correct probability reaches more than 90% when the SNR is higher than 30 dB.
Figure 4a,b show the recovery accuracy for the Doppler center and the Doppler rate with 100 times of
Monte Carlo simulation. The estimation accuracy of the proposed HBP method is compared with the
CRLBs for each parameter. In Figure 4, both accuracies of the Doppler centers and Doppler rates all
approaches to the CRLBs when SNR increases gradually, which shows that the proposed HBP method
can obtain high accuracies.
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Figure 3. The identification correct probability of aircraft number versus SNR.



Sensors 2016, 16, 1972 10 of 14
Sensors 2016, 16, 1972  10 of 14 

 

(a) (b)

Figure 4. Estimation results of HBP compared to CRLB. (a) The Doppler center estimation; (b) 
Doppler rate estimation. 

With the increase of the TOT, the MAF identification will be more accurate. Figure 5 gives the 
correct identification probability of the aircraft number with different TOTs. When the TOT added 
up to 200 ms, the SNR requirement for 92% identification rate was reduced by nearly 15 dB.  

 
Figure 5. The MAF identification rate versus TOT. 

The identification results for different aircraft numbers are shown in Figure 6a,b. For the TOT of 
100 ms, the method can effectively identify as many as six targets with correct identification 
probability more than 80% when SNR is higher than 60 dB. For the TOT of 200 ms, MAF number can 
be correctly estimated with a probability of over 95% when SNR is higher than 30 dB. 

 
(a) (b)

Figure 6. The correct identification probability versus MAF aircraft number. (a) T = 100 ms;  
(b) T = 200 ms. 

10 20 30 40 50 60 70 80 90 100
10-2

10-1

100

101

SNR/dB

R
M

SE
 o

f D
op

pl
er

 c
en

te
r e

st
im

at
io

n/
(H

z)

 

 

CRB
Aircraft1
Aircraft2

10 20 30 40 50 60 70 80 90 100

100

SNR/dB

R
M

SE
 o

f D
op

pl
er

 ra
te

 e
st

im
at

io
n/

(H
z/

s)

 

 

CRB
Aircraft1
Aircraft2

10 20 30 40 50 60 70 80 90 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

SNR/dB

Id
en

tif
ic

at
io

n 
co

rr
ec

t p
ro

ba
bi

lit
y

 

 

100ms
150ms
200ms

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR/dB

Id
en

tif
ic

at
io

n 
co

rr
ec

t p
ro

ba
bi

lit
y

 

 

3 targets
4 targets
5 targets
6 targets

10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR/dB

Id
en

tif
ic

at
io

n 
co

rr
ec

t p
ro

ba
bi

lit
y

 

 

3 targets
4 targets
5 targets
6 targets

Figure 4. Estimation results of HBP compared to CRLB. (a) The Doppler center estimation; (b) Doppler
rate estimation.

With the increase of the TOT, the MAF identification will be more accurate. Figure 5 gives the
correct identification probability of the aircraft number with different TOTs. When the TOT added up
to 200 ms, the SNR requirement for 92% identification rate was reduced by nearly 15 dB.
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Figure 5. The MAF identification rate versus TOT.

The identification results for different aircraft numbers are shown in Figure 6a,b. For the TOT of
100 ms, the method can effectively identify as many as six targets with correct identification probability
more than 80% when SNR is higher than 60 dB. For the TOT of 200 ms, MAF number can be correctly
estimated with a probability of over 95% when SNR is higher than 30 dB.
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Figure 6. The correct identification probability versus MAF aircraft number. (a) T = 100 ms;
(b) T = 200 ms.
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4.2. Comparison with the PFT Method

In this part, HBP method is compared with the second-order PFT method proposed in [1], with the
same MAF parameter of Table 1 with T = 0.1 s. The searching result for the second-order PFT method
in f2 − f1 plane is give in Figure 7, where the two aircraft cannot be identified due to the short TOT as
well as the low parameter resolution. The result shows that the PFT method failed to estimate the MAF
information. In fact, only when the coherent time T > 0.8 s can the parameters be well estimated by
PFT. The results indicate that the proposed HBP is a super-resolution method while PFT is not suitable
for IWS applications.
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Figure 7. The second-order PFT result in f2 − f1 plane. (a) Coherent time T = 0.1 s; (b) Coherent time
T = 0.8 s.

4.3. MAF Identification Based on Real Measured Data

The real measured data are obtained by an experimental radar system with parameters listed in
Table 2. In the experiments, the location and velocity information can be obtained by the record of
track for each aircraft, thus the real Doppler information can be calculated to evaluate the performance
of the HBP method.

Table 2. System parameters in the real measured data experiment.

Fc B PRF CPI SNR

700 MHz 2 MHz 400 Hz 100 ms 40 dB

Case 1. The MAF is constituted by two aircraft. The frequency spectrum of the signal is obtained by
fast Fourier transform (FFT), as shown in Figure 8a. The identification result by HBP in one CPI is shown
in the Doppler center–Doppler rate plane of Figure 8b, with the parameter estimation result in Table 3.
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Figure 8. The two-aircraft MAF identification result. (a) Frequency spectrum of the MAF formation;
(b) The MAF identification result by HBP.
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Table 3. Parameter estimation result.

Aircraft1 Aircraft2

Doppler
Center/(Hz)

Doppler
Rate/(Hz/s)

Doppler
Center/(Hz)

Doppler
Rate/(Hz/s)

Real value 245.1 0.3 249.3 0.3
Estimation value 245.5 0 250.0 0

Case 2. The data of MAF is formed by four aircraft. The frequency spectrum and recovery
result are given as Figure 9a,b, where both aircraft number and their Doppler parameters are all well
identified as seen in Table 4.
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Figure 9. The four-aircraft MAF identification result. (a) Frequency spectrum of the MAF formation;
(b) The MAF identification result by HBP.

Table 4. Parameter estimation result.

Aircraft1 Aircraft2 Aircraft3 Aircraft4

Doppler
Center/

(Hz)

Doppler
Rate/

(Hz/s)

Doppler
Center/

(Hz)

Doppler
Rate/

(Hz/s)

Doppler
Center/

(Hz)

Doppler
Rate/

(Hz/s)

Doppler
Center/

(Hz)

Doppler
Rate/

(Hz/s)

Real value 250.3 7.6 260.3 8.4 268.6 11.7 278.1 10.9
Estimation

value 250.0 5.5 259.0 7.5 268.0 10.5 277.0 9.5

From the above experiment results, the effectiveness of the HBP for MAF identification is verified
and the estimation accuracy for the Doppler center and Doppler rate is about 1 Hz and 2 Hz/s,
respectively, which agrees with the simulation results in Section 4.1.

5. Conclusions

In this paper, MAF identification is discussed for IWS application for narrowband radar,
based on a proposed MCS signal model where each aircraft can be represented by a chirp signal
with a different Doppler center and Doppler rate. To realize super-resolution discrimination
in a short TOT, sparse recovery is introduced for IWS applications in this paper. Furthermore,
block-sparse MAF Doppler distribution is exploited to form an HBP method, which can reduce
the computation complexity of the convex optimization algorithms and sustain high reconstruction
accuracy, simultaneously. Thus the aircraft number as well as their Doppler parameters can be
identified via the proposed HBP for each aircraft in MAF. Furthermore, the recovery condition,
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accuracy, resolution and computational complexity are discussed for the proposed method to show its
high performance, respectively. Finally, some numerical experiment results of both simulated data and
real measured data are provided to demonstrate the effectiveness of the proposed HBP method.
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