
sensors

Article

Toward Optimal Computation of Ultrasound Image
Reconstruction Using CPU and GPU

Udomchai Techavipoo 1,*, Denchai Worasawate 2, Wittawat Boonleelakul 2,
Rachaporn Keinprasit 1, Treepop Sunpetchniyom 1, Nobuhiko Sugino 3 and
Pairash Thajchayapong 1

1 National Electronics and Computer Technology Center, Pathumthani 12120, Thailand;
rachaporn.keinprasit@nectec.or.th (R.K.); treepop.sunpetchniyom@nectec.or.th (T.S.);
pairash@nstda.or.th (P.T.)

2 Department of Electrical Engineering, Faculty of Engineering, Kasetsart University,
Bangkok 10900, Thailand; fengdcw@ku.ac.th (D.W.); wittawat_1@yahoo.com (W.B.)

3 Department of Information Processing, Tokyo Institute of Technology, Tokyo 152-8552, Japan;
sugino.n.aa@m.titech.ac.jp

* Correspondence: udomchai.techavipoo@nectec.or.th; Tel.: +66-2-564-6900

Academic Editor: Vittorio M. N. Passaro
Received: 13 September 2016; Accepted: 10 November 2016; Published: 24 November 2016

Abstract: An ultrasound image is reconstructed from echo signals received by array elements of
a transducer. The time of flight of the echo depends on the distance between the focus to the array
elements. The received echo signals have to be delayed to make their wave fronts and phase coherent
before summing the signals. In digital beamforming, the delays are not always located at the sampled
points. Generally, the values of the delayed signals are estimated by the values of the nearest samples.
This method is fast and easy, however inaccurate. There are other methods available for increasing the
accuracy of the delayed signals and, consequently, the quality of the beamformed signals; for example,
the in-phase (I)/quadrature (Q) interpolation, which is more time consuming but provides more
accurate values than the nearest samples. This paper compares the signals after dynamic receive
beamforming, in which the echo signals are delayed using two methods, the nearest sample method
and the I/Q interpolation method. The comparisons of the visual qualities of the reconstructed
images and the qualities of the beamformed signals are reported. Moreover, the computational
speeds of these methods are also optimized by reorganizing the data processing flow and by applying
the graphics processing unit (GPU). The use of single and double precision floating-point formats
of the intermediate data is also considered. The speeds with and without these optimizations are
also compared.

Keywords: array transducer; CUDA; dynamic receive beamforming; graphics processing unit;
image reconstruction; ultrasound imaging

1. Introduction

Ultrasound imaging using arrays of transducer elements has been widely applied in medicine [1,2]
and industry [3,4]. One of its challenges is to deal with real-time applications. To improve the image
qualities, many imaging techniques require more complex algorithms [5,6], possibly resulting in
longer computational time and preventing them from being real-time. An ultrasound image is
composed of many scanlines. Each scanline is created from beamforming of many echo signals,
i.e., coherent delay-and-sum of echo signals received by transducer array elements. The transducer
sends pulse signals and receives echo signals reflected from scatterers or interfaces inside an object
before beamforming these echo signals to form a scanline on an image. These processes are repeated
for different scanline locations to form the entire image. Generally, the beamforming adds delays to

Sensors 2016, 16, 1986; doi:10.3390/s16121986 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1986 2 of 17

the signals received from the array elements. These delay values are calculated from the distances
between the elements and a focal point on the scanline in order to equalize the wave fronts and the
phases of the echo signals at that focus. This receive beamforming can be performed at many focal
points on a scanline, e.g., dynamically beamforming at every point on a scanline. However, the delays
need to be adjusted for each focus. Using inaccurate delays results in noisy beamformed signals [7].

At present, many ultrasound devices digitize the echo signals that come from the transducer
array elements before beamforming. The required beamforming delays are hardly ever matched
with the existing sampling points. Therefore, the subsample estimation of the delayed signal values
among these sampling points is needed. The values of the nearest samples are usually used because
of the fast processing. Using the values from the nearest samples is equivalent to using inaccurate
delay times. This makes the delayed signals dephased, and the summation of these signals provides
smaller magnitudes. Moreover, the delayed signals could be dephased further if the sampling rate
is insufficient. For example, if the sampling rate is less than two times of the carrier frequency,
two consecutive samples are separated more than a half of carrier period apart, and therefore,
the nearest samples could take the values that their phase difference is one π radian. This makes the
summation of the magnitudes go to zero instead of the maximum. Another subsample estimation uses
the in-phase (I) and quadrature (Q) components of the echo signals. If the system has a sampling rate
equal to four (or a multiple of four) times the pulse center frequency, these I/Q components can be
found easily using a quarter wavelength shift. These I/Q components can be used to calculate the
values of the delayed signals using phase rotational circuitry [8]. However, if the sampling rate is
not equal to four (or a multiple of four) times the pulse center frequency, the generalized sub-sample
delay method [9] can be applied. It calculates the Q components using trigonometric functions of
the angular deviation between the existing samples and the exact quarter wavelength shift. This I/Q
interpolation method provides better estimates than the nearest sample method, but extra processing
time is required for its complex algorithm.

Researchers have applied field programmable gate arrays (FPGA) for beamforming in order to
increase the processing speeds. A single FPGA has been used in an ultrasound imaging system in order
to meet the high processing requirements of the beamforming [10,11]. The beamforming algorithms
need to be suitably optimized for the FPGA in terms of the memory size, the number of the logic
gates and the data transferring speed to/from the FPGA. For this reason, the delays are generally
precomputed and kept in the FPGA memory to save computational time and logic gates. The number
of focal points is also reduced to save the FPGA memory, e.g., instead of focusing on every point on the
scanline, the scanline is divided into windows, and each window has only one focal point. Moreover,
the size of the windows also increases along the depth to further reduce the focal points [12]. Because
of using one focal point per window, other points in that window are out of focus. The out-of-focus
delay error can be compensated using precomputed linear line approximation [13,14]. These methods
are the so-called pseudo-dynamic receive beamforming. The proper adjustment of the algorithms for
FPGA is quite a challenge because of the dependence of the hardware design and the FPGA resources.
Moreover, the development on FPGA requires experienced programming skill on specific languages,
such as Verilog or VHDL, which take time for the development.

Graphics processing units (GPU) have been used for graphic processing and other applications
that need computational speed. This has developed from a fixed-function special-purpose
processor into a full-fledged parallel programmable processor with fixed-function special-purpose
functionality [15]. Its programming environment has been changed from graphics application
program interfaces (API) to high-level language interfaces, such as NVIDIA’s compute unified device
architecture (CUDA), with which general developers are already familiar. Currently, it has been used in
ultrasound beamforming [16–19]. The plane wave compounding and synthetic aperture (SA) imaging
computations have been speeded up by an array of two GPUs; one is used to analyze and beamform
the echo signals to generate low resolution images, and the other is used to compound those results
to a high resolution image [16]. Another SA-based algorithm using low numbers of transmit and

Sensors 2016, 16, 1986 3 of 17

receive elements (one and two, respectively) is also accelerated using a GPU [17,18]. There are four
processes, i.e., band-pass filtering, beamforming, envelope detection and display, where the GPU
executes each process at a time by using all available GPU cores in parallel. Moreover, a GPU is also
used to estimate the depth-dependent frequency of the pulse before applying the results to demodulate
the beamformed radiofrequency (RF) signals [19].

In this paper, the data processing flow for ultrasound image reconstruction is reorganized to
reduce the computational time. The improvement of the beamformed signal quality after using the
I/Q interpolation method for subsample estimation instead of using the nearest samples has been
investigated to demonstrate the tread-off between the signal quality and the computational time caused
by the algorithm complexity. This investigation includes programming using the CPU and GPU for
the calculation to find suitable implementation recommendations. The beamforming using the I/Q
interpolation method in which the sampling frequency is not equal to four times the pulse center
frequency is compared to the nearest sample method. The output signals after beamforming using
these two methods are compared to our reference beamforming results obtained using upsampled
echo signals with a high sampling rate. The mean squared errors of the beamformed signals between
the reference and our methods are compared. The visual qualities of the ultrasound images and the
quality of the beamformed signals reconstructed using these methods are compared.

This paper is extended from the preliminary work in [20]. Further optimization of the computer
programs has been done. The direct convolution instead of the Fourier transform method for
DC cancellation has been investigated and used to improve the computational time. In addition,
more experimentations in different computer platforms, 16-bit and 32-bit, of the compiled programs
and in different precisions of the floating-point (FP) formats, single precision (FP32) and double
precisions (FP64) for the intermediate data have been explored to optimize the computational time.
Furthermore, the number of repetitions and the number of experimental datasets have increased to
enhance the conclusion.

2. Materials and Methods

2.1. Ultrasound Imaging System

Our ultrasound imaging system [21] is composed of three parts. The first part is the ultrasound
probe used for sending pulses and receiving echo signals. It is a 7.5-MHz linear probe with 80 elements
and a 0.5-mm element spacing. The second part is the pulsers and controller board. It is composed
of 32 transmit/receive (T/R) switches, 32 pulsers and an FPGA controller. The controller receives
commands from a computer via an RS232 port. The third part is the acquisition board. It contains an
analog-to-digital convertor (ADC) card (8 channels, 12-bit and 40-MHz sampling rate) and a capture
card. It digitizes the echo signals and transfers the data to a computer via USB 2.0. The schematic of
the system is shown in Figure 1. The ADC contains on-chip selectable −3-dB cutoff frequencies of
high-pass and low-pass filters. For our experiment, these cutoff frequencies are set at 3.73 to 11.56 MHz,
suitable for the 7.5-MHz probe center frequency.

2.2. Experimental Data

The digitized echo signals from each array element of the probe are acquired from our ultrasound
imaging system [21]. Thirty-two consecutive array elements are used to transmit pulses for a scanline.
The transmit focusing is set at a 6-cm depth. The same set of array elements is then used to receive
the echo signals. The echo signals are digitized and transferred to the computer. Then, they are
offline beamformed on the computer. A precision multi-purpose phantom (403GS LE, Gammex Inc.,
Middleton, WI, USA) is used in our experiment. Three experiments are performed by scanning this
phantom at 3 locations: (1) its anechoic target and ±6-dB grey scale targets; (2) its ±6-dB grey scale
targets and high scatterer target; and (3) its pin targets. The sound speed in the material is 1540 m/s.

Sensors 2016, 16, 1986 4 of 17

Eighty-one scanlines are collected, and each scanline contains 8192 samples. The total data size is
42.5 Mbytes (=8192 samples × 32 receive signals × 81 scanlines × 2 bytes per sample).Sensors 2016, 16, 1986 4 of 17

Figure 1. The schematic of our ultrasound imaging system with a tissue-mimicking phantom and a
computer. T/R, transmit/receive.

2.3. Image Reconstruction Algorithms

Block diagrams of a conventional and our image reconstruction algorithms are shown in
Figure 2. The conventional algorithm in Figure 2a is composed of four processes, DC cancellation,
beamforming, envelope detection and log compression. Our proposed algorithm in Figure 2b is
modified from the conventional one by switching the DC cancellation to be after the beamforming
and by combining it with the envelope detection and log compression. The switching could be done
by assuming that the DC cancellation and the beamforming are linear operations. This switching
reduces the number of signals to be filtered from 32 to 1, thus reducing the computational time. The
process details for each block in Figure 2 are as follows.

(a) (b)

Figure 2. Block diagrams of the processes used for the ultrasound image reconstruction in the
conventional (a) and the proposed (b) methods.

2.3.1. DC Cancellation

A high-pass filter is applied for removing the DC components from the echo signals. It is an
equiripple linear-phase FIR filter of length 11. It is designed using MATLAB (MathWorks Inc., Natick,

Figure 1. The schematic of our ultrasound imaging system with a tissue-mimicking phantom and
a computer. T/R, transmit/receive.

2.3. Image Reconstruction Algorithms

Block diagrams of a conventional and our image reconstruction algorithms are shown in Figure 2.
The conventional algorithm in Figure 2a is composed of four processes, DC cancellation, beamforming,
envelope detection and log compression. Our proposed algorithm in Figure 2b is modified from the
conventional one by switching the DC cancellation to be after the beamforming and by combining it
with the envelope detection and log compression. The switching could be done by assuming that the
DC cancellation and the beamforming are linear operations. This switching reduces the number of
signals to be filtered from 32 to 1, thus reducing the computational time. The process details for each
block in Figure 2 are as follows.

Sensors 2016, 16, 1986 4 of 17

Figure 1. The schematic of our ultrasound imaging system with a tissue-mimicking phantom and a
computer. T/R, transmit/receive.

2.3. Image Reconstruction Algorithms

Block diagrams of a conventional and our image reconstruction algorithms are shown in
Figure 2. The conventional algorithm in Figure 2a is composed of four processes, DC cancellation,
beamforming, envelope detection and log compression. Our proposed algorithm in Figure 2b is
modified from the conventional one by switching the DC cancellation to be after the beamforming
and by combining it with the envelope detection and log compression. The switching could be done
by assuming that the DC cancellation and the beamforming are linear operations. This switching
reduces the number of signals to be filtered from 32 to 1, thus reducing the computational time. The
process details for each block in Figure 2 are as follows.

(a) (b)

Figure 2. Block diagrams of the processes used for the ultrasound image reconstruction in the
conventional (a) and the proposed (b) methods.

2.3.1. DC Cancellation

A high-pass filter is applied for removing the DC components from the echo signals. It is an
equiripple linear-phase FIR filter of length 11. It is designed using MATLAB (MathWorks Inc., Natick,

Figure 2. Block diagrams of the processes used for the ultrasound image reconstruction in the
conventional (a) and the proposed (b) methods.

2.3.1. DC Cancellation

A high-pass filter is applied for removing the DC components from the echo signals. It is
an equiripple linear-phase FIR filter of length 11. It is designed using MATLAB (MathWorks Inc.,
Natick, MA, USA) to have a 0.1-MHz stopband with −50 dB of attenuation and a 7-MHz passband
with a 0.1-dB ripple. Even though the ADC chip has a band-pass filter as described earlier, there still

Sensors 2016, 16, 1986 5 of 17

exists small DC offset around−2 to 18 digital output levels (around a−2.7 to 23.9-µV input at a 51.3-dB
gain) remaining in the signals. This DC component is, therefore, removed in this stage.

This high-pass filter can be applied to the echo signals by (1) using direct convolution in the time
domain or (2) using the fast Fourier transform (FFT) to multiply the frequency components in the
frequency domain and then using the inverse Fourier transform to transform them back to the time
domain. Precomputed frequency components of the filter are used. These frequency components
are calculated by zero padding the filter coefficients to have the same length as of the signals before
applying the Fourier transform. These two approaches are tested to find the optimum computational
time. The results are shown in the next section.

2.3.2. Beamforming

The delay-and-sum beamformer is used. Two interpolation methods are compared, the nearest
sample method and the I/Q interpolation method with the sampling frequency not equal to 4 times
(or a multiple of 4 times) the pulse center frequency [9].

The nearest sample method simply selects the sample, snearest, that is closest to the needed delay
time, i.e.,

snearest = S (t)|t=nnearestTs , (1)

nnearest = round ((tre f + τ
)

/Ts)), (2)

where S(t) is the echo signal; nnearest is the number of samples closest to the needed delay; tref is the
reference time at the acquired depth of the scanline, i.e., tref = d/c, where d is the depth and c is the
sound speed in tissue equal to 1540 m/s; τ is the needed real delay time; and Ts is the sample period
equal to 1/fs, where fs is the sampling frequency.

The I/Q interpolation method selects two samples, one is the nearest sample, snearest, as described
above, and the other is the closest sample to the quadrature shift from the nearest sample, sQ-shift. This
quadrature shift is equal to 0.25Tc, where Tc is the period of the pulse center frequency and equal to
1/fc, where fc is the carrier frequency. This sQ-shift can be calculated as:

sQ-shift = S (t)
∣∣∣t=(nnearest+nQ-shift)Ts (3)

nQ-shift = round (0.25 Tc/Ts) (4)

where nQ-shift is the number of samples closest to the quadrature shift. The I/Q interpolated value, sI/Q,
can be calculated by:

sI/Q = snearest [cos (a) + sin (a) tan (e)] + sQ-shift [sin (a) sec (e)] (5)

a = 2π fc

(
tre f + τ − nnearestTs

)
, (6)

e = 2π fc

(
nQ-shiftTs − 0.25Tc

)
(7)

where a is the angular remaining to the real delay value; and e is the angular shift error between
the quadrature shift and its nearest. For our ultrasound imaging system, where fc = 7.5 MHz and
fs = 40 MHz, nQ-shift obtained from Equation (4) is equal to 1 sample, and e obtained from Equation (7)
is approximately equal to −0.3927 radians.

The delay times for each depth can be precalculated for all echo signals and for all scanlines,
i.e., 32 echo signals and 81 scanlines. Note that the nearest sample method uses the delay times in the
integer number of samples, while the I/Q interpolation method uses the delay times in FP numbers of
samples. For our experiments, a 4-byte integer (int) is used for the nearest sample method, and both
FP64 (double) and FP32 (float) are used in the I/Q interpolation method. The total memory sizes to keep
these delay times are around 85 MBytes for the integers and the FP32s and 170 MBytes for the FP64s.

Sensors 2016, 16, 1986 6 of 17

2.3.3. Envelope Detection

The Hilbert transform is used for the envelope detection. It is done by applying the Fourier
transform, modifying the frequency components and applying the inverse Fourier transform [22].
The signal envelope, Env, can be calculated from, Env = sqrt

(
hr2 + hi2

)
, where hr and hi are the real

and the imaginary parts of the Hilbert transform, respectively, and sqrt() is the square root operation.
However, in order to reduce the computational time, the square root operation is not performed, and
therefore, the envelope square, Env2, is kept and used for the next step.

2.3.4. Log Compression

This process is used to adjust the dynamic range of the envelope before displaying on the
monitor. The 10-based logarithmic function is used to adjust the envelope into decibel units (dB),
i.e., EnvdB = 10log

(
Env2). The envelope square is from the previous step. Note that to protect the

undefined condition of log(x) when x ≤ 0, the inputs are truncated to be greater than 10−12 before
being passed to this function.

2.3.5. Combining of DC Cancellation, Envelope Detection and Log Compression

Since the DC cancellation (using high-pass filtering) and the envelope detection (using the Hilbert
transform) are performed in the frequency domain, therefore combining them together reduces the
computations of the Fourier and the inverse Fourier transforms. This is done by precalculating
the frequency components of the high-pass filter and premultiplying them to the Hilbert transform
frequency components. These results are kept in the memory and ready to be applied to the frequency
components of the beamformed signals. After the inverse Fourier transform, the magnitudes of the
signals are calculated and immediately log compressed to save computational time.

2.4. Beamformed Signal Comparison

To evaluate the performance of the proposed ultrasound image reconstruction method, the RF
signals after being beamformed are compared to the reference beamformed signals in terms of the
mean square errors (MSE). The reference beamformed signals are created by using the FP64 and by
the following: (1) upsampling the digitized echo signals 20 times the 40-MHz sampling frequency,
i.e., 800 MHz; (2) DC cancelling or high-pass filtering the upsampled echo signals; and (3) beamforming
the results using the nearest sample method. The sampling frequency of 800 MHz is assumed to be high
enough such that the nearest sample is almost equal to the needed delayed signals. For each scanline,
the RF signals corresponding to the depth between 4 cm and 8 cm are used for the comparisons.
This depth covers the greyscale targets of the phantom and provides a general representation of the
ultrasound signals.

There are 8 combinations of the following schemes to be tested: the conventional and the proposed
methods, the nearest sample and the I/Q interpolation methods and the FP64 and FP32 formats.
The final images from these results are also compared in terms of visual qualities. All of these
computations are performed on MATLAB (MathWorks Inc., Natick, MA, USA) without recording the
computational time.

2.5. CPU and GPU Programming

The computer used in this paper is a laptop computer (G750JW, Asustek Computer (Thailand)
Co., Ltd., Bangkok, Thailand) with the Windows 8 64-bit operating system. The computer specification
is as follows: CPU (CORE i7-4700HQ, Intel Corporation Co., Ltd., Santa Clara, CA, USA), 2.40-GHz
clock speed, 4 cores and 8-GB DDR3 RAM. This laptop contains a graphics card (GeForce GTX 765M,
NVIDIA Corporation Co., Ltd., Santa Clara, CA, USA). The GPU specification is as follows: 3.0 compute
capability, 2048 MBytes global memory, 768 CUDA cores, 863-MHz GPU clock rate, 2004-MHz memory
clock rate, 128-bit memory bus width and 64-GB/s memory bandwidth. The maximum number of

Sensors 2016, 16, 1986 7 of 17

threads per block is 1024. The programming is done using visual C++ with CUDA library Version 6.5.14.
The Fourier and inverse Fourier transforms on the CPU are computed using the Fastest Fourier Transform
in the West (FFTW) library Version 3.3.5 [23], while those on the GPU are done using the NVIDIA
CUDA Fast Fourier Transform library, i.e., cuFFT.

The algorithms for the CPU and the GPU are very similar. The processes in the blocks in Figure 2
are sequentially executed as shown. The CPU or the GPU dedicates all resources to compute each block
at a time. For the GPU, all digitized echo signals are uploaded from the host computer to the device
GPU’s global memory at the beginning, and the results after the envelope detection are downloaded
from the GPU back to the computer.

Beamforming is an embarrassingly parallel problem, which is easy to separate into parallel tasks.
The digitized echo data or the raw data can be considered as 3-D data that are composed of 8192
samples × 32 signals × 81 scanlines. They need to be reconstructed into 2-D data or beamformed data
of 8192 samples × 81 scanlines.

The data flowchart for computing beamforming is shown in Figure 3. The program starts
iteratively executing the first to the last (8192nd) samples of the first scanline. Then, the program shifts
to execute the next scanline until finishing the last (81st) scanline. For the CPU, the for-loops are used
to find the result values of the samples, executing one sample at a time until the last sample. In contrast,
the GPU eliminates the outer for-loop and uses its 768 CUDA cores to execute 768 samples in parallel.
In Figure 3, to evaluate the value of a sample in the beamformed data (on the left), dynamic focusing is
performed by selecting samples from the 32 receive signals (on the center) depending on the required
delay times. These 32 receive signals are parts of the raw data (on the right). These delay times are
precalculated and uploaded to the GPU’s global memory at the beginning. The nearest sample and
the I/Q interpolation methods, already explained in the previous section, are then performed with
summation or interpolation on these selected points.

Sensors 2016, 16, 1986 7 of 17

visual C++ with CUDA library Version 6.5.14. The Fourier and inverse Fourier transforms on the CPU
are computed using the Fastest Fourier Transform in the West (FFTW) library Version 3.3.5 [23], while
those on the GPU are done using the NVIDIA CUDA Fast Fourier Transform library, i.e., cuFFT.

The algorithms for the CPU and the GPU are very similar. The processes in the blocks in
Figure 2 are sequentially executed as shown. The CPU or the GPU dedicates all resources to compute
each block at a time. For the GPU, all digitized echo signals are uploaded from the host computer to
the device GPU’s global memory at the beginning, and the results after the envelope detection are
downloaded from the GPU back to the computer.

Beamforming is an embarrassingly parallel problem, which is easy to separate into parallel tasks.
The digitized echo data or the raw data can be considered as 3-D data that are composed of 8192
samples × 32 signals × 81 scanlines. They need to be reconstructed into 2-D data or beamformed data
of 8192 samples × 81 scanlines.

The data flowchart for computing beamforming is shown in Figure 3. The program starts
iteratively executing the first to the last (8192nd) samples of the first scanline. Then, the program
shifts to execute the next scanline until finishing the last (81st) scanline. For the CPU, the for-loops
are used to find the result values of the samples, executing one sample at a time until the last sample.
In contrast, the GPU eliminates the outer for-loop and uses its 768 CUDA cores to execute 768 samples
in parallel. In Figure 3, to evaluate the value of a sample in the beamformed data (on the left), dynamic
focusing is performed by selecting samples from the 32 receive signals (on the center) depending on
the required delay times. These 32 receive signals are parts of the raw data (on the right). These delay
times are precalculated and uploaded to the GPU’s global memory at the beginning. The nearest
sample and the I/Q interpolation methods, already explained in the previous section, are then
performed with summation or interpolation on these selected points.

Figure 3. The data flowchart for beamforming.

The processing time of each block is recorded using a simple function clock() for the CPU
program and using the following functions, cudaEventCreate(), cudaEventRecord(),
cudaEventSynchronize() and cudaEventElapsedTime(), for the GPU program. These processing
times versus the computer platforms of 32-bit and 64-bit are investigated, as well as those versus the
FP64 and FP32 formats.

The programs measure the computational times for using all combinations of the following: the
conventional and the proposed methods, the nearest sample and the I/Q interpolation methods, the
CPU and the GPU, the 32-bit and the 64-bit platforms of the compiled programs and, finally, the FP64
and the FP32 formats. The programs are compiled and run in release mode for 500 repetitions, and
their computational times for the processes (in the flowcharts in Figure 2) are recorded. The
uploading and downloading of data between the host computer and the device GPU are
also recorded.

Figure 3. The data flowchart for beamforming.

The processing time of each block is recorded using a simple function clock() for the CPU program
and using the following functions, cudaEventCreate(), cudaEventRecord(), cudaEventSynchronize()
and cudaEventElapsedTime(), for the GPU program. These processing times versus the computer
platforms of 32-bit and 64-bit are investigated, as well as those versus the FP64 and FP32 formats.

The programs measure the computational times for using all combinations of the following:
the conventional and the proposed methods, the nearest sample and the I/Q interpolation methods,
the CPU and the GPU, the 32-bit and the 64-bit platforms of the compiled programs and, finally,
the FP64 and the FP32 formats. The programs are compiled and run in release mode for 500
repetitions, and their computational times for the processes (in the flowcharts in Figure 2) are
recorded. The uploading and downloading of data between the host computer and the device GPU
are also recorded.

Sensors 2016, 16, 1986 8 of 17

3. Results and Discussion

The computational times for computing high-pass filtering for the DC cancellation using the
Fourier transform method and the direct convolution are shown in Figure 4. This computations are
performed using the FP64. Surprisingly, the direct convolution is faster than the Fourier transform
method for all cases. These gains are around 1.2- to 1.4-times on the CPU and around 3.9- to 4.7-times
on the GPU. Even though the FFT method has O(n log n) complexity that is better than O(n2) of the
direct convolution, it has been shown in the literature [24,25] that for short lengths of filters and signals,
i.e., a number of samples less 128 points, direct convolution is significantly faster than the FFT method
because of the lower numbers of real multiplications. Moreover, it has been reported that, on GPUs,
the length of the filters can be much longer because of the intensively parallel computation. Note that
the program has to be compiled and run in release mode to see this advantageous outperform of the
direct convolution. Running in debug mode, the performance of the direct convolution is very poor
compared to the FFT method that already uses precompiled libraries of the FFTW or cuFFT. For this
reason, the direct convolution is consequently used in the experiments to compare the processing times.

Sensors 2016, 16, 1986 8 of 17

3. Results and Discussion

The computational times for computing high-pass filtering for the DC cancellation using the
Fourier transform method and the direct convolution are shown in Figure 4. This computations are
performed using the FP64. Surprisingly, the direct convolution is faster than the Fourier transform
method for all cases. These gains are around 1.2- to 1.4-times on the CPU and around 3.9- to 4.7-times
on the GPU. Even though the FFT method has O(n log n) complexity that is better than O(n2) of the
direct convolution, it has been shown in the literature [24,25] that for short lengths of filters and
signals, i.e., a number of samples less 128 points, direct convolution is significantly faster than the
FFT method because of the lower numbers of real multiplications. Moreover, it has been reported
that, on GPUs, the length of the filters can be much longer because of the intensively parallel
computation. Note that the program has to be compiled and run in release mode to see this
advantageous outperform of the direct convolution. Running in debug mode, the performance of the
direct convolution is very poor compared to the FFT method that already uses precompiled libraries
of the FFTW or cuFFT. For this reason, the direct convolution is consequently used in the experiments
to compare the processing times.

Figure 4. The computational times of applying an 11-point high-pass filter on 2592 signals (from
32 Rx elements × 81 scanlines) of 8192 samples using the Fourier transform method and direct
convolution. These methods are executed on different computer platforms of 32 and 64 bits and using
the CPU and the GPU. The error bars are one standard deviation over 100 repetitions

Figure 5 demonstrates the ultrasound images reconstructed using the reference beamformed
signals. These images are displayed in a dB scale ranging from 0 to −80 dB. This range is also used
for all ultrasound images displayed here. As described previously, these reference signals are created
by upsampling the experimental signals into an 800-MHz sampling rate and using the nearest sample
method for estimating the delayed signals in beamforming. These signals are from Experiments 1 to 3,
shown in Figure 5a–c, respectively, and are taken from different locations of the phantom. As shown,
Figure 5a contains three grey scale cylindrical targets that are, from left to right, an anechoic target
representing a fluid-filled cyst and two grey scale targets of −6 dB and +6 dB compared to the
background. Figure 5b also contains three grey scale targets that are, from left to right, −6 dB, +6 dB
and high scatterer targets. Figure 5c contains pin targets that provide a very high amplitude of the
echo signals. The pins are at different depths and in different combinations. The purposes of these
pin targets are for dead-zone measurement, resolution measurement and vertical distance
calibration. These grey scale targets and pin targets should provide comparable objects for general
ultrasound signals.

Figure 6 plots the MSEs between the reference beamformed signals and the beamformed signals
using different methods for all scanlines (Scanline Numbers 1 to 81) and for all experiments
(Experiment 1 to 3). The results from Experiments 1 to 3 are in Figure 6a–c, respectively. The results
are all from double precision floating format (FP64 or D). However, they are from different

Figure 4. The computational times of applying an 11-point high-pass filter on 2592 signals (from 32 Rx
elements × 81 scanlines) of 8192 samples using the Fourier transform method and direct convolution.
These methods are executed on different computer platforms of 32 and 64 bits and using the CPU and
the GPU. The error bars are one standard deviation over 100 repetitions

Figure 5 demonstrates the ultrasound images reconstructed using the reference beamformed
signals. These images are displayed in a dB scale ranging from 0 to −80 dB. This range is also used for
all ultrasound images displayed here. As described previously, these reference signals are created by
upsampling the experimental signals into an 800-MHz sampling rate and using the nearest sample
method for estimating the delayed signals in beamforming. These signals are from Experiments 1
to 3, shown in Figure 5a–c, respectively, and are taken from different locations of the phantom.
As shown, Figure 5a contains three grey scale cylindrical targets that are, from left to right, an anechoic
target representing a fluid-filled cyst and two grey scale targets of −6 dB and +6 dB compared to
the background. Figure 5b also contains three grey scale targets that are, from left to right, −6 dB,
+6 dB and high scatterer targets. Figure 5c contains pin targets that provide a very high amplitude
of the echo signals. The pins are at different depths and in different combinations. The purposes
of these pin targets are for dead-zone measurement, resolution measurement and vertical distance
calibration. These grey scale targets and pin targets should provide comparable objects for general
ultrasound signals.

Figure 6 plots the MSEs between the reference beamformed signals and the beamformed
signals using different methods for all scanlines (Scanline Numbers 1 to 81) and for all experiments
(Experiment 1 to 3). The results from Experiments 1 to 3 are in Figure 6a–c, respectively. The results are
all from double precision floating format (FP64 or D). However, they are from different combinations of
the conventional (C) and the proposed (P) methods and the nearest sample (N) and I/Q interpolation

Sensors 2016, 16, 1986 9 of 17

(IQ) methods, e.g., C-N-D, C-IQ-D, P-N-D and P-IQ-D. In general, the MSEs from C-N-D and P-N-D
are very similar, i.e., the plots are almost on top of each other. These MSEs are higher (poorer) than
those from C-IQ-D and P-IQ-D. These imply that the beamformed signals from the I/Q interpolation
method are closer to the reference signals than those of the nearest sample method. Note that the MSEs
from the single precision floating point format (FP32 or S) are very similar to these results and are not
shown here. The difference of the MSEs for each scanline between the results using the FP64 and the
FP32 is within ±1.2 units of the MSE.

Sensors 2016, 16, 1986 9 of 17

combinations of the conventional (C) and the proposed (P) methods and the nearest sample (N) and
I/Q interpolation (IQ) methods, e.g., C-N-D, C-IQ-D, P-N-D and P-IQ-D. In general, the MSEs from
C-N-D and P-N-D are very similar, i.e., the plots are almost on top of each other. These MSEs are
higher (poorer) than those from C-IQ-D and P-IQ-D. These imply that the beamformed signals from
the I/Q interpolation method are closer to the reference signals than those of the nearest sample
method. Note that the MSEs from the single precision floating point format (FP32 or S) are very
similar to these results and are not shown here. The difference of the MSEs for each scanline between
the results using the FP64 and the FP32 is within ±1.2 units of the MSE.

(a) (b) (c)

Figure 5. Ultrasound image references scanned at different locations of the precision multi-purpose
phantom that are used in Experiments 1–3 (a–c), respectively.

For using I/Q interpolation methods, the MSEs from the P-IQ-D method are slightly higher
(poorer) than those from the C-IQ-D. The difference comes from the change of the order of the
high-pass filtering to remove the DC components from the position before beamforming to the
position after beamforming. Even though this change reduces the number of signals to be filtered,
i.e., from 32 signals to one signal, the quality of the beamformed signals is slightly poorer.

We also notice that the high MSEs (poor beamformed signal quality) occur at the scanlines that
have higher echo signals, e.g., the Scanline Numbers 60 to 70 from Experiment 2 in Figure 6b
corresponding to the high scatterer grey scale target in Figure 5b and the Scanline Numbers 35 to 50
from Experiment 3 in Figure 6c corresponding to the proximity of the pin targets in Figure 5c. This
should be caused by the fact that slight delaying of these high amplitude signals creates a large
change of the signal values.

The reconstructed images from the beamformed signals from different schemes of
Experiment 1 are shown in Figure 7. As mentioned in the previous section, the different schemes are
the different combinations of the following: the conventional (C) and the proposed (P) methods; the
nearest sample (N) and the I/Q interpolation (IQ) methods; and the double (D) and the single (S)
precision FP formats. Note that the image reconstructed using the reference beamformed signals of
Experiment 1 is shown in Figure 5a. In general, all images are very similar. Although the RF
beamformed signals from the I/Q interpolation method are closer to the reference, after passing these
beamformed signals to the envelope detection and log compression, this advantage could not be
visually noticeable on the reconstructed images. However, for other applications, such as
elastography [26], which needs the phase information of the RF signals, this advantage might be
revealed. The reconstructed images from Experiments 2 and 3 are shown in Figure 8. Only the results

Figure 5. Ultrasound image references scanned at different locations of the precision multi-purpose
phantom that are used in Experiments 1–3 (a–c), respectively.

For using I/Q interpolation methods, the MSEs from the P-IQ-D method are slightly higher
(poorer) than those from the C-IQ-D. The difference comes from the change of the order of the
high-pass filtering to remove the DC components from the position before beamforming to the position
after beamforming. Even though this change reduces the number of signals to be filtered, i.e., from 32
signals to one signal, the quality of the beamformed signals is slightly poorer.

We also notice that the high MSEs (poor beamformed signal quality) occur at the scanlines
that have higher echo signals, e.g., the Scanline Numbers 60 to 70 from Experiment 2 in Figure 6b
corresponding to the high scatterer grey scale target in Figure 5b and the Scanline Numbers 35 to
50 from Experiment 3 in Figure 6c corresponding to the proximity of the pin targets in Figure 5c.
This should be caused by the fact that slight delaying of these high amplitude signals creates a large
change of the signal values.

The reconstructed images from the beamformed signals from different schemes of Experiment 1
are shown in Figure 7. As mentioned in the previous section, the different schemes are the different
combinations of the following: the conventional (C) and the proposed (P) methods; the nearest sample
(N) and the I/Q interpolation (IQ) methods; and the double (D) and the single (S) precision FP formats.
Note that the image reconstructed using the reference beamformed signals of Experiment 1 is shown
in Figure 5a. In general, all images are very similar. Although the RF beamformed signals from
the I/Q interpolation method are closer to the reference, after passing these beamformed signals to
the envelope detection and log compression, this advantage could not be visually noticeable on the
reconstructed images. However, for other applications, such as elastography [26], which needs the
phase information of the RF signals, this advantage might be revealed. The reconstructed images from
Experiments 2 and 3 are shown in Figure 8. Only the results from the double precision floating point
format are shown here. These images and the reference images in Figure 5b,c are very similar.

Sensors 2016, 16, 1986 10 of 17

Sensors 2016, 16, 1986 10 of 17

from the double precision floating point format are shown here. These images and the reference
images in Figure 5b,c are very similar.

(a)

(b)

(c)

Figure 6. MSEs of all scanlines between the reference beamformed signals and the signals
beamformed using four different schemes, conventional (C)-nearest sample (N)-double precision
floating format (D), C- in-phase/quadrature (IQ)-D, proposed (P) method-N-D and P-IQ-D. The
figures are from Experiments 1 to 3 (a–c), respectively.

The MSEs and their standard deviations between the reference ultrasound images in Figure 5
and the images in Figures 7 and 8 are shown in Figure 9. Only the results using FP64 are shown. As
can be seen, the MSEs from all experiments are less than 2.8, and the standard deviations are less than
8.1. The pixel value of these images are in dB ranging from 0 to −80 dB. This confirms that the errors
between the reference ultrasound images and the images from different reconstruction schemes are
very similar.

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

Scanline Number

M
S

E

C-N-D
C-IQ-D
P-N-D
P-IQ-D

10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Scanline Number

M
S

E

C-N-D
C-IQ-D
P-N-D
P-IQ-D

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

Scanline Number

M
S

E

C-N-D
C-IQ-D
P-N-D
P-IQ-D

Figure 6. MSEs of all scanlines between the reference beamformed signals and the signals beamformed
using four different schemes, conventional (C)-nearest sample (N)-double precision floating format
(D), C- in-phase/quadrature (IQ)-D, proposed (P) method-N-D and P-IQ-D. The figures are from
Experiments 1 to 3 (a–c), respectively.

The MSEs and their standard deviations between the reference ultrasound images in Figure 5 and
the images in Figures 7 and 8 are shown in Figure 9. Only the results using FP64 are shown. As can
be seen, the MSEs from all experiments are less than 2.8, and the standard deviations are less than
8.1. The pixel value of these images are in dB ranging from 0 to −80 dB. This confirms that the errors
between the reference ultrasound images and the images from different reconstruction schemes are
very similar.

Sensors 2016, 16, 1986 11 of 17

Sensors 2016, 16, 1986 11 of 17

Figure 7. Comparison of the ultrasound images (from Experiment 1) reconstructed using eight
different schemes, C-N-D, C-IQ-D, P-N-D, P-IQ-D, C-N-single (S) , C-IQ-S, P-N-S and P-IQ-S, from
the left to the right and from the top to bottom, respectively.

Figure 8. Comparison of the ultrasound images from Experiments 2 (top row) and 3 (bottom row)
reconstructed usingfour4 different schemes, C-N-D, C-IQ-D, P-N-D and P-IQ-D, from the left to the
right, respectively.

Figure 7. Comparison of the ultrasound images (from Experiment 1) reconstructed using eight different
schemes, C-N-D, C-IQ-D, P-N-D, P-IQ-D, C-N-single (S) , C-IQ-S, P-N-S and P-IQ-S, from the left to the
right and from the top to bottom, respectively.

Sensors 2016, 16, 1986 11 of 17

Figure 7. Comparison of the ultrasound images (from Experiment 1) reconstructed using eight
different schemes, C-N-D, C-IQ-D, P-N-D, P-IQ-D, C-N-single (S) , C-IQ-S, P-N-S and P-IQ-S, from
the left to the right and from the top to bottom, respectively.

Figure 8. Comparison of the ultrasound images from Experiments 2 (top row) and 3 (bottom row)
reconstructed usingfour4 different schemes, C-N-D, C-IQ-D, P-N-D and P-IQ-D, from the left to the
right, respectively.

Figure 8. Comparison of the ultrasound images from Experiments 2 (top row) and 3 (bottom row)
reconstructed usingfour4 different schemes, C-N-D, C-IQ-D, P-N-D and P-IQ-D, from the left to the
right, respectively.

Sensors 2016, 16, 1986 12 of 17
Sensors 2016, 16, 1986 12 of 17

Figure 9. The bar graph of the MSEs between the reference ultrasound images and the reconstructed
images using four different combinations of schemes: the conventional and proposed methods; and
the nearest sample and the I/Q interpolation method. The upper error bars show one standard
deviation of the squared errors. Note that the range of the ultrasound images is from 0 to −80 dB.

The time for uploading the digitized echo data to the GPU is around 8.31 ms (for
42.5 MBytes = 8192 samples × 32 receive signals × 81 scanlines × 2 bytes of short int). The time for
downloading the results from the GPU is around 1.14 and 0.61 ms, respectively, for the FP64 format
(5.3 MBytes = 8192 samples × 81 scanlines × 8 bytes of double) and for the FP32 format
(2.65 MBytes = 8192 samples × 81 scanlines × 4 bytes of float). These times are averaged from the
recorded times of all tested schemes.

The processing times for each block in Figure 2 using different schemes of the ultrasound image
reconstruction are plotted in Figure 10. The details are also shown in Table 1. This figure
demonstrates many aspects as follows:

1. The purposed method, which switches the DC cancellation and the beamforming, as well as
combines the DC cancellation with the envelope detection and log compression, greatly
improves the computational time compared to the conventional method. As can be seen, the DC
cancellation processing time has almost disappeared from the plot.

2. Beamforming using the I/Q interpolation method is slower than that using the nearest sample
method. Using the CPU, the gaps are quite large, around 15-times slower. However, using the
GPU, the gaps are no more than two-times slower. For the nearest sample method, the best
performance in computational time ranges from 31.09 to 31.13 ms using the proposed method
and the GPU and any of the 32-bit or 64-bit program platforms or the FP32 or the FP64 formats.
For the I/Q interpolation, the best performance is at 45.75 ms using the purposed method, the
GPU, the 64-bit platform and the FP32 format.

3. Using the GPU greatly reduces the processing time. As expected, the GPU parallel computes the
tasks using threads, and our tasks can be pleasingly separated into independent threads. Using
the GPU needs extra time to upload and download the data between the host and the device,
which is quite fast around 8.31 ms for uploading and 1.14 or 0.61 ms for downloading FP64 or
FP32 data, respectively. Moreover, these memory transfers between host and device can be
performed concurrently with other GPU processes [27].

4. Using a 64-bit computer platform program instead of 32-bit improves the computational time
impressively and significantly for the schemes using the CPU with the I/Q interpolation method.
For other schemes, the results are slightly better. This could be the fact that our testing CPU is
an Intel CORE i7, which is a 64-bit CPU [28], which matches with the 64-bit compiled program.
Moreover, the I/Q interpolation method requires many arithmetic calculations, compared to the
nearest sample counterpart. This makes the advantage be more pronounced in the I/Q
interpolation method than the nearest sample method. For the GPU, changing from 32-bit to
64-bit gives slight improvement since most of the calculations are performed on the GPU that
has its own instructions independent of the computer platform compilation.

Figure 9. The bar graph of the MSEs between the reference ultrasound images and the reconstructed
images using four different combinations of schemes: the conventional and proposed methods; and the
nearest sample and the I/Q interpolation method. The upper error bars show one standard deviation
of the squared errors. Note that the range of the ultrasound images is from 0 to −80 dB.

The time for uploading the digitized echo data to the GPU is around 8.31 ms (for
42.5 MBytes = 8192 samples × 32 receive signals × 81 scanlines × 2 bytes of short int). The time
for downloading the results from the GPU is around 1.14 and 0.61 ms, respectively, for the FP64
format (5.3 MBytes = 8192 samples × 81 scanlines × 8 bytes of double) and for the FP32 format
(2.65 MBytes = 8192 samples × 81 scanlines × 4 bytes of float). These times are averaged from the
recorded times of all tested schemes.

The processing times for each block in Figure 2 using different schemes of the ultrasound image
reconstruction are plotted in Figure 10. The details are also shown in Table 1. This figure demonstrates
many aspects as follows:

1. The purposed method, which switches the DC cancellation and the beamforming, as well as
combines the DC cancellation with the envelope detection and log compression, greatly improves
the computational time compared to the conventional method. As can be seen, the DC cancellation
processing time has almost disappeared from the plot.

2. Beamforming using the I/Q interpolation method is slower than that using the nearest sample
method. Using the CPU, the gaps are quite large, around 15-times slower. However, using the
GPU, the gaps are no more than two-times slower. For the nearest sample method, the best
performance in computational time ranges from 31.09 to 31.13 ms using the proposed method and
the GPU and any of the 32-bit or 64-bit program platforms or the FP32 or the FP64 formats. For the
I/Q interpolation, the best performance is at 45.75 ms using the purposed method, the GPU,
the 64-bit platform and the FP32 format.

3. Using the GPU greatly reduces the processing time. As expected, the GPU parallel computes
the tasks using threads, and our tasks can be pleasingly separated into independent threads.
Using the GPU needs extra time to upload and download the data between the host and the
device, which is quite fast around 8.31 ms for uploading and 1.14 or 0.61 ms for downloading
FP64 or FP32 data, respectively. Moreover, these memory transfers between host and device can
be performed concurrently with other GPU processes [27].

4. Using a 64-bit computer platform program instead of 32-bit improves the computational time
impressively and significantly for the schemes using the CPU with the I/Q interpolation method.
For other schemes, the results are slightly better. This could be the fact that our testing CPU is
an Intel CORE i7, which is a 64-bit CPU [28], which matches with the 64-bit compiled program.
Moreover, the I/Q interpolation method requires many arithmetic calculations, compared to
the nearest sample counterpart. This makes the advantage be more pronounced in the I/Q
interpolation method than the nearest sample method. For the GPU, changing from 32-bit to
64-bit gives slight improvement since most of the calculations are performed on the GPU that has
its own instructions independent of the computer platform compilation.

5. Using the FP32 format instead of the FP64 provides advantages on the GPU, but slightly and
only for some processes and schemes on the CPU. It is certain that using the FP32 format saves

Sensors 2016, 16, 1986 13 of 17

memory space and the time to copy the memory between the host computer and the device
GPU. Other factors are based on the hardware that intrinsically supports the FP64 computation.
For the GPU, the tested Geforce GTX765M supports both FP64 and FP32 computation. However,
the number of FP32 units is higher than that of FP64 units. Based on the Kepler (GK106)
microarchitecture, the unit ratio of the FP64/FP32 is 1/24 [29]. For this reason, using the FP32
format reduces the computational time. For the CPU, the tested programs are not customized for
the Intel CORE i7, which provides instruction sets for the single instruction, multiple data (SIMD)
parallel computing, i.e., using multiple processing elements to perform the same operation on
multiple data points simultaneously and also known as the streaming SIMD extensions (SSE).
These instruction sets provide abilities to perform an instruction on two FP64s or four FP32s
simultaneously. The tested program applies only the standard FP units (FPU) that support both
FP32 and FP64 data. The data loaded from the memory into the FPU are automatically converted
into a double extended-precision FP format on 80-bit registers [30]. The results after operations
are converted back into a shorter FP format and transferred back into the memory. For this reason,
using the FP32 does not improve the computational time.

6. The best performance for total image reconstruction time is at 33.23 ms for using the GPU,
the proposed method, the nearest sample method, the 64-bit platform and the FP32 format,
excluding the uploading/downloading data. If the CPU is only the option, the best performance
is at around 56.06 ms using the proposed method, the nearest sample method, the 64-bit platform
and the FP32 format. These could provide the frame rate at 30.1 and 17.8 frames/s for the GPU
and the CPU, respectively. If the I/Q interpolation is needed, the best performance is at 47.89 ms
using the proposed method, the GPU, the 64-bit platform and the FP32 format. This gives the
frame rate around 20.9 frames/s. Note that for our GPU programs, the shared memory is not
used yet. All raw data, delay tables and other intermediate variables are all defined in the global
memory. It is faster to access the shared memory than the global memory. A better algorithm
that utilizes the shared memory is still needed. However, the size of the shared memory is
limited (48 kBytes), and the memory management to avoid bank conflict, i.e., accessing many
data from the same memory bank and making the access to be done in serial instead of parallel,
is challenging.

Sensors 2016, 16, 1986 13 of 17

5. Using the FP32 format instead of the FP64 provides advantages on the GPU, but slightly and
only for some processes and schemes on the CPU. It is certain that using the FP32 format saves
memory space and the time to copy the memory between the host computer and the device GPU.
Other factors are based on the hardware that intrinsically supports the FP64 computation. For
the GPU, the tested Geforce GTX765M supports both FP64 and FP32 computation. However, the
number of FP32 units is higher than that of FP64 units. Based on the Kepler (GK106)
microarchitecture, the unit ratio of the FP64/FP32 is 1/24 [29]. For this reason, using the FP32
format reduces the computational time. For the CPU, the tested programs are not customized
for the Intel CORE i7, which provides instruction sets for the single instruction, multiple data
(SIMD) parallel computing, i.e., using multiple processing elements to perform the same
operation on multiple data points simultaneously and also known as the streaming SIMD
extensions (SSE). These instruction sets provide abilities to perform an instruction on two FP64s
or four FP32s simultaneously. The tested program applies only the standard FP units (FPU) that
support both FP32 and FP64 data. The data loaded from the memory into the FPU are
automatically converted into a double extended-precision FP format on 80-bit registers [30]. The
results after operations are converted back into a shorter FP format and transferred back into the
memory. For this reason, using the FP32 does not improve the computational time.

6. The best performance for total image reconstruction time is at 33.23 ms for using the GPU, the
proposed method, the nearest sample method, the 64-bit platform and the FP32 format,
excluding the uploading/downloading data. If the CPU is only the option, the best performance
is at around 56.06 ms using the proposed method, the nearest sample method, the 64-bit platform
and the FP32 format. These could provide the frame rate at 30.1 and 17.8 frames/s for the GPU
and the CPU, respectively. If the I/Q interpolation is needed, the best performance is at 47.89 ms
using the proposed method, the GPU, the 64-bit platform and the FP32 format. This gives the
frame rate around 20.9 frames/s. Note that for our GPU programs, the shared memory is not
used yet. All raw data, delay tables and other intermediate variables are all defined in the global
memory. It is faster to access the shared memory than the global memory. A better algorithm
that utilizes the shared memory is still needed. However, the size of the shared memory is
limited (48 kBytes), and the memory management to avoid bank conflict, i.e., accessing many
data from the same memory bank and making the access to be done in serial instead of parallel,
is challenging.

Figure 10. The mean of the computational time for ultrasound image reconstruction using different
combinations of the following: the conventional and the purposed methods, the beamforming using
the nearest sample and that using I/Q interpolation methods, the 32-bit and the 64-bit computer
platforms and the double (D) and the single (S) precision FP formats. Notes: BF = beamforming,
DC = DC cancellation, ED = envelope detection and LC = log compression.

Figure 10. The mean of the computational time for ultrasound image reconstruction using different
combinations of the following: the conventional and the purposed methods, the beamforming using
the nearest sample and that using I/Q interpolation methods, the 32-bit and the 64-bit computer
platforms and the double (D) and the single (S) precision FP formats. Notes: BF = beamforming,
DC = DC cancellation, ED = envelope detection and LC = log compression.

Sensors 2016, 16, 1986 14 of 17

Table 1. The mean and the standard deviation of the computational time (ms) for ultrasound image reconstruction using different schemes calculated over
500 repetitions.

Ultrasound Processes

BF Nearest BF IQ

CPU GPU CPU GPU

32 64 32 64 32 64 32 64

d s d s d s d s d s d s d s d s

Conventional Method

BF
mean 50.69 38.86 48.92 39.38 32.12 31.08 32.14 31.05 805.95 896.12 364.28 340.86 91.17 46.41 94.80 47.56

sd 6.71 7.87 5.28 7.83 0.034 0.030 0.031 0.029 8.39 8.74 9.31 6.77 0.036 0.039 0.034 0.037

DC
mean 246.82 294.80 203.93 255.41 29.35 16.28 30.26 16.58 246.91 293.72 203.96 255.36 29.14 16.20 29.90 16.46

sd 6.82 5.54 3.75 7.44 0.036 0.034 0.023 0.028 6.45 6.50 3.68 7.50 0.028 0.022 0.041 0.024

ED
mean 15.66 11.82 15.74 11.24 3.85 1.20 3.90 1.21 15.66 11.88 15.71 10.95 3.84 1.19 3.90 1.21

sd 1.29 6.73 1.30 7.03 0.036 0.049 0.025 0.017 0.47 6.69 1.31 7.18 0.031 0.020 0.027 0.016

LC
mean 8.12 8.46 7.45 4.98 0.98 0.14 0.99 0.14 8.24 8.30 7.78 5.88 0.98 0.14 0.99 0.14

sd 7.82 7.79 7.80 7.28 0.001 0.005 0.001 0.003 7.78 7.77 7.82 7.59 0.001 0.003 0.001 0.004

Total 321.29 353.94 276.03 311.01 66.29 48.69 67.30 48.99 1076.76 1210.01 591.72 613.04 125.13 63.94 129.59 65.37

Proposed Method

BF
mean 40.13 40.19 42.37 42.17 31.13 31.13 31.09 31.09 817.52 905.38 393.62 340.01 91.98 46.87 96.12 45.75

sd 7.76 7.75 7.10 7.19 0.056 0.056 0.044 0.048 8.52 7.63 6.33 7.17 0.038 0.101 0.037 0.070

Combine DC +
ED + LC

mean 19.56 16.22 18.51 13.90 5.77 2.12 5.72 2.14 20.21 16.48 18.73 13.53 5.69 2.12 5.76 2.14
sd 6.80 3.04 6.09 4.91 0.036 0.021 0.027 0.014 7.06 3.51 6.27 5.35 0.033 0.020 0.025 0.017

Total 59.69 56.41 60.88 56.06 36.89 33.25 36.80 33.23 837.73 921.85 412.35 353.54 97.67 48.98 101.88 47.89

Sensors 2016, 16, 1986 15 of 17

4. Conclusions

It has been shown that the I/Q interpolated beamforming provides a higher quality of the
RF scanlines than the nearest sample beamforming for all scanlines of all tested images. However,
its calculation is more complex and takes more time to be computed, e.g., 6.3–16.3 times and 1.4–2.8
times using the CPU and the GPU, respectively, in our experiments. Moreover, this higher quality
of the RF scanlines does not reflect the visual qualities of the B-mode images. It might benefit other
applications that need RF scanline phase information, such as elastography. In addition, we have also
demonstrated that the GPU certainly improves the computational speed for ultrasound beamforming
and image reconstruction. Its overheads of the data transfers between the host computer and the
device GPU are short and can be pipelined, thus unaffecting the imaging frame rate throughput.
For our graphics card having 768 CUDA cores, the frame rate using the nearest sample method could
be 30.1 frames/s, which is more than the requirement of 25 frames/s for real-time imaging. However,
the frame rate using I/Q interpolation could be only 20.9 frames/s and not enough to be a real-time
application. To solve this problem, a higher performance GPU is needed, e.g., a GPU with higher
numbers of CUDA cores, such as 1536 or 3072 cores, which are already available in modern graphics
cards. Rather than increase the CUDA cores, reducing the beamform dynamic focusing points [12] or
applying pseudo-dynamic beamforming [13] could be an economic solution.

Acknowledgments: This research was supported in part by a Thailand Toray Science Foundation (TTSF) research
grant and a Thailand Research Fund (TRF) grant for new researchers provided to Techavipoo and by support from
the Thailand Advanced Institute of Science and Technology-Tokyo Institute of Technology-Kasetsart University
(TAIST-Tokyo Tech-KU) provided to Mr. Boonleelakul.

Author Contributions: U.T., P.T. and N.S. conceived the idea; U.T., W.B. and D.W. designed and performed the
experiments; U.T., D.W., W.B., R.K. and T.S. analyzed the data; U.T., D.W. and W.B. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hansen, H.H.; Richards, M.S.; Doyley, M.M.; Korte, C.L. Noninvasive vascular displacement estimation for
relative elastic modulus reconstruction in transversal imaging planes. Sensors 2013, 13, 3341–3357. [CrossRef]
[PubMed]

2. Ilunga-Mbuyamba, E.; Avina-Cervantes, J.G.; Lindner, D.; Cruz-Aceves, I.; Arlt, F.; Chalopin, C. Vascular
Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data. Sensors 2016, 16, 497.
[CrossRef] [PubMed]

3. Li, M.; Hayward, G. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and
adaptive processing. Sensors 2012, 12, 42–54. [CrossRef] [PubMed]

4. Guarneri, G.A.; Pipa, D.R.; Junior, F.N.; de Arruda, L.V.; Zibetti, M.V. A sparse reconstruction algorithm for
ultrasonic images in nondestructive testing. Sensors 2015, 15, 9324–9343. [CrossRef] [PubMed]

5. Gutiérrez-Fernández, C.; Jiménez, A.; Martín-Arguedas, C.J.; Urena, J.; Hernández, A. A novel encoded
excitation scheme in a phased array for the improving data acquisition rate. Sensors 2014, 14, 549–563.
[CrossRef] [PubMed]

6. Li, J.; Chen, X.; Wang, Y.; Li, W.; Yu, D. Eigenspace-Based Generalized Sidelobe Canceler Beamforming
Applied to Medical Ultrasound Imaging. Sensors 2016, 16, 1192. [CrossRef] [PubMed]

7. O’Donnell, M.; Engeler, W.E.; Pedicone, J.T.; Itani, A.M.; Noujaim, S.E.; Dunki-Jacobs, R.J.; Leue, W.M.;
Chalek, C.L.; Smith, L.S.; Piel, J.E.; et al. Real-time phased array imaging using digital beam forming and
autonomous channel control. Proc. IEEE Ultrason. Symp. 1990, 1499–1502. [CrossRef]

8. Freeman, S.R.; Quick, M.K.; Morin, M.A.; Anderson, R.C.; Desilets, C.S.; Linnenbrink, T.E.; O’Donnell, M.
Delta-sigma oversampled ultrasound beamformer with dynamic delays. IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 1999, 46, 320–332. [CrossRef] [PubMed]

9. Techavipoo, U.; Boonyanant, P.; Samphanyuth, S.; Intarapanich, A.; Sununtachaikul, U.; Thajchayapong, P.
Generalized subsample delays using sample shift and CORDIC for ultrasound beamforming. In Proceedings
of the Biomedical Engineering International Conference (BMEiCON), Kyoto, Japan, 27–28 August 2010;
pp. 88–91.

http://dx.doi.org/10.3390/s130303341
http://www.ncbi.nlm.nih.gov/pubmed/23478602
http://dx.doi.org/10.3390/s16040497
http://www.ncbi.nlm.nih.gov/pubmed/27070610
http://dx.doi.org/10.3390/s120100042
http://www.ncbi.nlm.nih.gov/pubmed/22368457
http://dx.doi.org/10.3390/s150409324
http://www.ncbi.nlm.nih.gov/pubmed/25905700
http://dx.doi.org/10.3390/s140100549
http://www.ncbi.nlm.nih.gov/pubmed/24385031
http://dx.doi.org/10.3390/s16081192
http://www.ncbi.nlm.nih.gov/pubmed/27483272
http://dx.doi.org/10.1109/ULTSYM.1990.171616
http://dx.doi.org/10.1109/58.753020
http://www.ncbi.nlm.nih.gov/pubmed/18238428

Sensors 2016, 16, 1986 16 of 17

10. Kim, G.D.; Yoon, C.; Kye, S.B.; Lee, Y.; Kang, J.; Yoo, Y.; Song, T.K. A single FPGA-based portable ultrasound
imaging system for point-of-care applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59,
1386–1394.

11. Schneider, F.K.; Agarwal, A.; Yoo, Y.M.; Fukuoka, T.; Kim, Y. A fully programmable computing architecture
for medical ultrasound machines. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 538–540. [CrossRef] [PubMed]

12. Siritan, T.; Techavipoo, U.; Worasawate, D.; Keinprasit, R.; Pinunsottikul, P.; Sugino, N.; Thajchayapong, P.
Beamforming complexity reduction methods for low-cost FPGA-based implementation. In Proceedings of
the 6th Biomedical Engineering International Conference (BMEiCON), Krabi, Thailand, 23–25 October 2013;
pp. 1–4.

13. Siritan, T.; Techavipoo, U.; Worasawate, D.; Keinprasit, R.; Pinunsottikul, P.; Sugino, N.; Thajchayapong, P.
Enhanced pseudo-dynamic receive beamforming using focusing delay error compensation. In Proceedings of
the 7th Biomedical Engineering International Conference (BMEiCON), Fukuoka, Japan, 26–28 November 2014;
pp. 1–4.

14. Techavipoo, U.; Pinunsottikul, P.; Keinprasit, R.; Thajchayapong, P. Simplified Pseudo-Dynamic Receive
Beamforming For FPGA Implementation. In Proceedings of the 8th Biomedical Engineering International
Conference (BMEiCON), Pattaya, Thailand, 25–27 November 2015; pp. 1–4.

15. Owens, J.D.; Houston, M.; Luebke, D.; Green, S.; Stone, J.E.; Phillips, J.C. GPU computing. Proc. IEEE 2008,
96, 879–899. [CrossRef]

16. Yiu, B.Y.S.; Tsang, I.K.H.; Yu, A.C.H. GPU-based beam-former: Fast realization of plane wave compounding
and synthetic aperture imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1698–1705. [CrossRef]
[PubMed]

17. Martín-Arguedas, C.J.; Romero-Laorden, D.; Martinez-Graullera, O.; Pérez-López, M.; Gomez-Ullate, L. An
ultrasonic imaging system based on a new SAFT approach and a GPU beamformer. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 2012, 59, 1402–1412. [CrossRef] [PubMed]

18. Romero, D.; Martinez-Graullera, O.; Martin, C.J.; Higuti, R.T.; Octavio, A. Using GPUs for beamforming
acceleration on SAFT imaging. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Roma,
Italy, 20–23 September 2009; pp. 1334–1337.

19. Bae, S.; Kang, J.; Yoo, J.; Yoo, Y.; Chang, J.H.; Song, T. Real-time realization of adaptive dynamic quadrature
demodulation on a gpu-based ultrasound imaging system. In Proceedings of the 2012 IEEE International
Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 1651–1654.

20. Boonleelakul, W.; Techavipoo, U.; Worasawate, D.; Keinprasit, R.; Sunpetchniyom, T.; Sugino, N.;
Thajchayapong, P. Ultrasound Beamforming and Image Reconstruction using CPU and GPU. In Proceedings
of the International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, Chiang Mai, Thailand, 28 June–1 July 2016.

21. Techavipoo, U.; Keinprasit, R.; Pinunsottikul, P.; Jewajinda, Y.; Punyasai, C.; Thajchayapong, P.; Siritan, T.;
Worasawate, D. An ultrasound imaging system prototype for raw data acquisition. In Proceedings of the
Biomedical Engineering International Conference (BMEiCON), Ubon Ratchathani, Thailand, 5–7 December 2012;
pp. 1–4.

22. Marple, S.L. Computing the Discrete-Time Analytic Signal via FFT. IEEE Trans. Signal Process. 1999, 47,
2600–2603. [CrossRef]

23. Frigo, M.; Johnson, S.G. FFTW 3.3.5. Available online: http://www.fftw.org (accessed on 23 August 2016).
24. Smith, J.O., III. FFT Versus Direct Convolution. Available online: https://www.dsprelated.com/freebooks/

sasp (accessed on 23 August 2016).
25. Savioja, L.; Välimäki, V.; Smith, J.O. Audio signal processing using graphics processing units. J. Audio

Eng. Soc. 2011, 59, 3–19.
26. Ophir, J.; Cepedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the

elasticity of biological tissues. Ultrason. Imaging 1991, 13, 111–134. [CrossRef] [PubMed]
27. Wilt, N. Streams and Events. In The CUDA Handbook a Comprehensive Guide to GPU Programming; Addison-Wesley:

Crawfordsville, IN, USA, 2013; pp. 173–204.
28. Turley, J. Introduction to Intel Architecture. Intel Corp., Santa Clara, CA, USA. White Paper 2014.

Available online: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/
ia-introduction-basics-paper.pdf (accessed on 23 August 2016).

http://dx.doi.org/10.1109/TITB.2009.2025653
http://www.ncbi.nlm.nih.gov/pubmed/19546045
http://dx.doi.org/10.1109/JPROC.2008.917757
http://dx.doi.org/10.1109/TUFFC.2011.1999
http://www.ncbi.nlm.nih.gov/pubmed/21859591
http://dx.doi.org/10.1109/TUFFC.2012.2341
http://www.ncbi.nlm.nih.gov/pubmed/22828836
http://dx.doi.org/10.1109/78.782222
http://www.fftw.org
https://www.dsprelated.com/freebooks/sasp
https://www.dsprelated.com/freebooks/sasp
http://dx.doi.org/10.1177/016173469101300201
http://www.ncbi.nlm.nih.gov/pubmed/1858217
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf

Sensors 2016, 16, 1986 17 of 17

29. Smith, R. The NVIDIA GeForce GTX 660 Review: GK106 Fills Out the Kepler Family. Available online:
http://www.anandtech.com/show/6276/nvidia-geforce-gtx-660-review-gk106-rounds-out-the-kepler-
family (accessed on 8 September 2016).

30. Intel Corp. Chapter 8: Programming with the x87 FPU. Available online: http://download.intel.com/
design/processor/ manuals/253665.pdf (accessed on 8 September 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.anandtech.com/show/6276/nvidia-geforce-gtx-660-review-gk106-rounds-out-the-kepler-family
http://www.anandtech.com/show/6276/nvidia-geforce-gtx-660-review-gk106-rounds-out-the-kepler-family
http://download.intel.com/design/processor/
http://download.intel.com/design/processor/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Ultrasound Imaging System
	Experimental Data
	Image Reconstruction Algorithms
	DC Cancellation
	Beamforming
	Envelope Detection
	Log Compression
	Combining of DC Cancellation, Envelope Detection and Log Compression

	Beamformed Signal Comparison
	CPU and GPU Programming

	Results and Discussion
	Conclusions

