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Abstract: The popularity of using wearable inertial sensors for physical activity classification has
dramatically increased in the last decade due to their versatility, low form factor, and low power
requirements. Consequently, various systems have been developed to automatically classify daily life
activities. However, the scope and implementation of such systems is limited to laboratory-based
investigations. Furthermore, these systems are not directly comparable, due to the large diversity
in their design (e.g., number of sensors, placement of sensors, data collection environments, data
processing techniques, features set, classifiers, cross-validation methods). Hence, the aim of this
study is to propose a fair and unbiased benchmark for the field-based validation of three existing
systems, highlighting the gap between laboratory and real-life conditions. For this purpose,
three representative state-of-the-art systems are chosen and implemented to classify the physical
activities of twenty older subjects (76.4 £ 5.6 years). The performance in classifying four basic
activities of daily life (sitting, standing, walking, and lying) is analyzed in controlled and free
living conditions. To observe the performance of laboratory-based systems in field-based conditions,
we trained the activity classification systems using data recorded in a laboratory environment and
tested them in real-life conditions in the field. The findings show that the performance of all systems
trained with data in the laboratory setting highly deteriorates when tested in real-life conditions, thus
highlighting the need to train and test the classification systems in the real-life setting. Moreover,
we tested the sensitivity of chosen systems to window size (from 1 s to 10 s) suggesting that overall
accuracy decreases with increasing window size. Finally, to evaluate the impact of the number of
sensors on the performance, chosen systems are modified considering only the sensing unit worn at
the lower back. The results, similarly to the multi-sensor setup, indicate substantial degradation of the
performance when laboratory-trained systems are tested in the real-life setting. This degradation is
higher than in the multi-sensor setup. Still, the performance provided by the single-sensor approach,
when trained and tested with real data, can be acceptable (with an accuracy above 80%).

Keywords: inertial sensors; physical activity classification; overall accuracy; real life conditions;
older subjects
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1. Introduction

Physical activity (PA) is fundamental for functionality of the human body and it is one of the
strong predictors of healthy ageing and wellbeing. Low physical activity in the elderly population
is strongly associated with many fall related injuries, age-related loss of muscle, mobility disorders,
and loss of independence in daily life. A study conducted by the World Health Organization (WHO)
in the 28 member states of European Union (EU), proposed that promotion of physical activity and
prevention of falls are among the five priority interventions to promote healthy ageing [1]. The statistics
shows that the proportion of falls per year is 30% among the population over 65 which increases to
50% in the population above 80 [1]. Better knowledge about activities of daily life (ADL) is needed
in order to design interventions to prevent inactivity and improve health and function during the
ageing process.

Recent technological advances in the IMU (inertial measurement unit) sensors have encouraged
researchers and scientists to incorporate these in personal health systems. This is mainly due to
their low cost, low power consumption, small size, wearability, and reliable data transfer capabilities.
A typical IMU device is composed of a tri-axial accelerometer and gyroscope capable of measuring
linear acceleration and angular velocity. There is an increasing number of physical activity classification
(PAC) systems to classify the ADL by utilizing these sensors [2-16]. The overall performance of these
PAC systems presented in the literature can depend on many factors, illustrated in Figure 1.

(i). Dataset: Nature of the datasets differs in terms of the population studied, how and where the
ADLs are performed and the type of ADLs included in the dataset. Majority of the existing PAC
systems developed in the literature have used datasets collected in a laboratory setting or in a
controlled environment with predefined sets of activities [13,14,17,18].

(ii). Number of sensors: Varies from a single sensor setup [3] to multiple sensors setup [2,4,5].

(iii). Placement of sensors: Varies, covering different body locations in order to record the upper and
lower body movements. The common sensor placements are L5, hip, thigh, waist, foot, ankle,
chest, and wrist [4,5,14,17-19].

(iv). Features set: Existing PAC systems are composed of numerous time and frequency domain
features, statistical features and bio-mechanical features [8,20].

(v). Window size: Window size and overlapping intervals used for the feature computation vary and
they may affect the performance of machine learning algorithms and classifiers. The window
sizes largely differs across the PAC systems proposed in the literature: 2 s [4], 2.5 s [11], 5 s [5],
5125 [3], 6.7 s [2], and 10 s [9]. The overlapping interval used in most of the PAC systems is
50% of the window size [20].

(vi). Classifier: In most of the PAC systems, a single classifier is used to differentiate between all
the different ADLs in the dataset. A common choice for such classifiers may include a decision
tree classifier [2], support vector machine (SVM), artificial neural network (ANN) [13], and
K-nearest neighbors (KNN) [4]. However, some systems have attempted to integrate the base
level classifiers either by plurality voting [3] or by defining a hierarchical classification process
which uses different classifiers for each subset of ADL [6,10,15].

The choice of each single aspect discussed above is crucial in the development of a robust
PAC system since all of these factors contribute directly to overall performance. Due to the
large diversity in the design process, the existing PAC systems are not directly comparable which
hinders the development of new techniques informed by the strengths and the gaps in these
systems. Another issue is that most of the existing PAC systems used younger subjects for
data collection [3-6,9,10,13,14,17,21,22] and few systems collected data on older subjects [11,23-26].
Furthermore, most PAC systems are developed in a controlled environment, which is quite different
from real-life conditions [27]. A group of researchers [28] recently proposed a set of recommendations
about the standardization of validation procedures for PAC systems in older people, which emphasizes
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the need to develop and validate the systems using a semi-structured protocol where ADLs are
performed in real-life conditions, in addition to the validation performed in the laboratory setting.

Dataset No. of Sensors
Features Set J—2 Overall G Sensor’s
Performance Placement
Window Size Classifier

Figure 1. Factors that contribute to the overall performance of the PAC system.

In the past, some researchers [10,29,30] have tried to compare the performance of their proposed
PAC systems with existing systems. However, in our opinion, they failed to provide a fair comparison,
since they did not consider that the factors reported in Figure 1 were just not comparable. Therefore,
the present study aims to propose a fair and unbiased benchmark for the field-based validation of
existing state of the art (SOA) systems for PAC of older subjects highlighting the gap between the
laboratory and real-life conditions. The specific aims of this study are as follows:

(1) To compare the performance of existing PAC systems in a common dataset of activities of older
subjects in an unbiased way (i.e., with the same subjects, sensors, sampling frequency, window
size and cross-validation procedure), and to investigate the effect of varying window size on
system’s performance.

(2) To validate and compare the performance of the PAC systems in real-life scenarios compared to
an in-lab setting in order to check if these systems are transferrable to real life settings.

(3) To evaluate the impact of the number of sensors on the performance in the analyses in (1) and
(2) using a reductionist approach (i.e., analyzing only the sensing unit worn at the lower back
instead of the multi-sensor setup). The lower back location is chosen since it is a very common
case that shows no major drawbacks for the monitoring of the activities of older subjects.

For the presented aims, we selected three representative SOA systems for PAC [2,9,10] motivated
by the following reasons: (i) diversity in the number of sensors used; ranging from four sensing
units by Leutheuser et al. [10] up to six sensing units by Cleland et al. [9]; (ii) use of different time
intervals for windowing (ranging from 5 s [10] to 10 s [9]); (iii) different classification techniques i.e.,
decision tree classifier by Bao et al. [2], SVM by Cleland et al. [9], and hierarchical classification by
Leutheuser et al. [10].

Four ADLs (sitting, standing, walking, and lying) are studied in this work in order to provide a
fair comparison. These ADLs are chosen as they are the most common in this kind of studies and due
to these four activities being present in all of the selected systems.

The rest of the article is structured as follows: Section 2 presents the methodology of the study
and the description of the dataset used; in Section 3, results with a comprehensive discussion on the
findings are presented; in this section comparative analysis of the three systems is also presented;
Section 4, concludes the study.

2. Materials and Methods

2.1. Data Collection in Real-Life Scenarios

The data collection was performed at the Department of Neuroscience, Faculty of Medicine,
at the Norwegian University of Science and Technology (NTNU) Norway, by the research group on
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Geriatrics, Movement, and Stroke, as part of the ADAPT project (A Personalized Fall Risk Assessment
System for promoting independent living). The data collection protocol was composed of two sessions;
semi-structured supervised protocol (in-lab) and a free-living unsupervised protocol (out-of-lab).
Twenty older subjects (76.4 £ 5.6 years) participated in the study. For both data protocol sessions,
video recording was used as a gold standard. Various inertial sensing units were placed on different
body locations and a subset of these sensors was used in our analysis: chest, lower back (L5), wrist,
waist, thigh, and foot. The details of the sensors used and their respective placements are presented in
Table 1. The wrist sensor was down sampled to 100 Hz to keep the same sampling frequency for all
sensors. All mentioned sensors were part of in-lab and out-of-lab protocols except the sensor on the
feet which was excluded from out-of-lab data recording for usability issues. Each subject performed
a variety of ADLs in both sessions with the ADLs analyzed in our study being sitting, standing,
walking, and lying. The in-lab session was performed in a smart home environment where subjects
were supervised and instructed to perform ADLs. Video recording was performed using the ceiling
mounted cameras at 25 fps. The in-lab session was followed by an out-of-lab session on the same day
where subjects performed their daily routine activities in an unsupervised way. They were instructed
to perform as much ADLs as possible and to incorporate certain tasks into their daily routine. A GoPro
camera unit with frame rate of 29 fps (fixed to the chest pointing downward towards the feet) was
used to video record the gold-standard information of the ADLs performed in free living protocol.
Video annotation of the camera units used in the in-lab and out-of-lab protocol was performed by the
recruited raters. Raters were instructed on the marking procedures and activity definitions. For both
sessions, video annotation agreement was around 90%. The original sampling frequency (25 Hz) of
the annotations was up-sampled to 100 Hz [31]. A detailed description of the ADAPT dataset and
the video annotation process is presented in the study protocol by Bourke et al. [31]. Due to technical
issues with the wrist sensor, 16 subjects were used for analysis purposes as authenticity of sensed data
was compromised in rest of the cases due to missing data at the time of recording. Therefore, four
subjects were excluded from the analysis as all selected PAC systems make use of the wrist sensor data.

A summary of the ADLs from 16 subjects analyzed from the in-lab and the out-of-lab protocol
is presented in Tables 2 and 3, respectively. Statistical analysis is performed and various parameters
are computed: occurrences (how many times a single ADL occurred in all subjects), mean (average
duration of each ADL in seconds), STD (standard deviation of each ADL in seconds), min (minimum
duration of each ADL in seconds), max (maximum duration of each ADL in seconds), and range
(difference between min and max in seconds).

Table 1. Description of the sensors used for data collection.

Sensor Type Location Sampling Frequency Measured Signals
uSense Thigh 100 Hz 3D Accelerometer, 3D Gyroscope
uSense L5 100 Hz 3D Accelerometer, 3D Gyroscope

ActiGraph Waist 100 Hz 3D Accelerometer
uSense Chest 100 Hz 3D Accelerometer, 3D Gyroscope
Shimmer Wrist 200 Hz 3D Accelerometer, 3D Gyroscope
uSense Feet * 100 Hz 3D Accelerometer, 3D Gyroscope

* Sensor on the feet were not included in out-of-lab data collection.

Table 2. In-lab ADLs.

ADL Total (h) Occurrences  Mean * STD*  Min* Max*  Range *

sitting 1.67 708 8.50 18.90 0.03 267.36 267.33
standing 2.67 1319 7.28 16.40 0.03 296.97 296.94
walking 0.90 613 5.29 2.79 0.96 20.07 19.11

lying 0.28 187 5.47 9.87 0.13 113.23 113.10

* The values are in seconds.
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Table 3. Out-out-lab ADLs.

ADL Total (h) Occurrences  Mean * STD* Min * Max*  Range *

sitting 13.45 497 97.44 200.74 0.04 2075.64  2075.60
standing 6.52 4304 5.45 12.27 0.03 388.52 388.49
walking 4.10 2617 5.64 8.75 0.28 139.56 139.28
lying 0.36 12 106.69 154.02 3.48 583.84 580.36

* The values are in seconds.

2.2. Implementation of the SOA Systems for PACs Using Their Original Framework

The set of sensors used in our work for the in-lab (Syy) and out-of-lab (SoyT) analysis performed
on the ADAPT dataset is shown in Table 4.

Table 4. Sensors used from ADAPT dataset to perform the performance on three PAC systems.

Author SiN Sour
Cleland et al. [9] Chest, L5, Wrist, Waist, Thigh, Foot Chest, L5, Wrist, Waist, Thigh
Bao et al. [2] L5, Wrist, Thigh, Foot L5, Wrist, Thigh
Leutheuser et al. Wrist, L5, Chest, Foot Wrist, L5, Chest

Sin—Sensors used in our data analysis from In-lab protocol of ADAPT dataset; and Soyr—Sensors used in our
data analysis from out-of- lab protocol of ADAPT dataset.

The brief description of the three PAC systems, selected for the comparative analysis is presented
in Table 5. It is much evident from Table 5 that all PAC systems possess different solutions for a number
of sensors, sensor locations, set of features, classifiers, and time window used for feature computation.

To investigate the sensitivity of the classification accuracy to window size (first specific objective),
all systems are trained and tested in the in-lab data with a window size ranging from w =1 s to
w =10 s in steps of 1 s. The sensor set Sy (Table 4) is used with leave-one-subject-out cross-validation.

Analysis of the out-of-lab data is performed by training and testing all systems with the real-life
data. The window size of 5 s is used with the sensor set Soyt (Table 4) and leave-one-subject-out
cross-validation is performed. The window size of 5 s is chosen, since it is closer to the window size
used by two out of three PAC systems (Table 5).

To address the second specific objective, each PAC system is trained with the in-lab data and
tested on the out-of-lab data. To overcome any bias in the training process, the in-lab data of all subjects
except one is included in the training stage. The left-out subject is tested in free living conditions
(i.e., with the out-of-lab data). In this way, all participants are tested in free living condition using this
leave-one-subject-out strategy. The sensor set SoyT is used with the window size of 5 s.

The overlap is set to 50% of the window size for all the analysis. Furthermore, a majority voting
scheme is implemented to assign the window labels i.e., if a window of 5 s (500 samples) contains
400 samples of sitting and 100 samples of standing then the assigned label to this window would
be sitting.

All of the PAC systems are implemented in MATLAB (Release 2014b, The MathWorks, Inc., Natick,
MA, USA) and respective classifiers are implemented using the libraries of Weka data mining software
(University of Waikato, Version 3.6.12 [32]). The analysis is performed on a Dell laptop (Model # M3800,
Intel® Core™ i7-4712HQ, CPU @2.30Gz, 16GB RAM, 64-bit operating system). For all systems,
overall accuracy, accuracy by class and sensitivity by class of all activities is computed in the in-lab
training/out-lab testing scenario. The overall accuracy term will be used interchangeably as accuracy
or performance in the upcoming sections. The formulas used for the computation of performance
metrics are reported in Appendix A and the respective classification methods implemented for each
PAC system are described in Appendix B.
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Table 5. Overview of the three SOA systems for PACs implemented in this study for performance analysis.

Fs Experiment Setting sl Accuracy
Author W) So (Population) Features Activities Reported
Mean, standard deviation, Walkine. iogeing on a
510 Chest, lower Laboratory setting skewness, kurtosis, energy trea dm?llll szo?t;in & Ivin
Cleland et al. [9] ’ back, wrist, hip, (8 young adults) and correlation of axes L .g, yms, . 97.26% SVM
(10s) : standing, walking up stairs,
thigh, foot (26.25 + 2.86 years) (separately and average . .
walking down stairs
over 3 axes)
Walking, sitting, standing,
eating or drinking, watching tv,
Semi-naturalistic Mean, energy, frequency reading, running, bicycling,
Bao et al. [2] 76.25  Hip, wrist,arm, conditions domain entropy, correlation  stretching, strength-training, 84% using
’ (6.7s)  thigh, ankle (20 subjects) age between the acceleration scrubbing, vacuuming, folding  Decision tree
group not reported signals laundry, lying, brushing,
climbing stairs, riding elevator,
riding escalator
Minimum, maximum, Sitting, lying, standing,
. . Laboratory setting mean and variance, washing dishes, vacuuming, 89.6%
204.8  Wrist, hip, . . : . . .
Leutheuser et al. [10] 55) chest. ankle (23 young adults) spectral centroid, sweeping, walking, running, hierarchical
’ (27 £ 7 years) bandwidth, energy, stairs climbing, bicycling, classifier

gravitational component

rope jumping

Fs—Sampling Frequency in Hz, W = Window Size, So—Original set of sensors used by the authors to develop PAC system, Activities—Set of Activities used by authors to develop

their PAC system.

6 of 15
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2.3. Implementation of the SOA Systems for PAC Using a Reductionist Framework

The performance of all systems is also computed in the reductionist framework implemented
using only the sensor data collected at waist-level in L5 (third specific objective). The steps in the
analysis are the same as described in Section 2.2.

3. Results and Discussion

3.1. Performance Comparison of the PAC Systems in the In-Lab Setting Using Their Original Framework and
Sensitivity Analysis to the Window Size

Overall accuracy computed for the sensitivity analysis of the in-lab data to different window
sizes (w =1 s to 10 s) is presented in Figure 2. The system by Cleland et al. [9] is the one which
performs better in our framework, with an overall accuracy ranging from 98.4% for w = 1 s to 94.6%
for w = 10 s. It, hence, shows a degradation by 3.8% when increasing the window size. Our result for
in-lab data compares well with the original paper that, for w = 10 s, reported an overall accuracy of
97.3%. The second-best performance we obtained is with the system proposed by Bao et al. [3]. It also
shows a decreasing trend in the overall accuracy from 97.3% (for w = 1 s) to 94.4% (for w = 10 s) with a
difference of 2.9%. The original system was implemented with w = 6.7 s and had an overall accuracy of
84%,; our closest term of comparison is the window with w = 7 s, which produces an accuracy of 95.4%.
The accuracy of the system by Leutheuser et al. [10] is fairly below the previous ones. In the system
by Leutheuser et al. [10] we obtain an overall accuracy which, unlike previous systems, increases by
2.3%, from 83.7% (w =1 s) to 86.0% (w = 10 s). Results obtained in our framework (overall accuracy
of 86.4%) fits well with the original one at w = 5 s (overall mean classification rate of 89.6%). A possible
reason for the increase in the performance (although the performance is the worst of the three) for
increasing window sizes of the system by Leutheuser et al. is the difference in the classifier design.
Their work is the only one that uses a hierarchical classification approach.

100 ¢ T T T T T T T T

>
Q |
e
5 |
Q
856;/6/&’#/* 1
B0 = o -
| | —8— Cleland
| | —%—Bao
| | —©&— Leutheuser :
75 . - . - L - L - L . 1 - 4 - 1 - 4 - J
1 2 3 4 5 6 7 8 9 10

Window size in seconds

Figure 2. Sensitivity analysis of overall accuracy of in-lab data when window size is increased from
w =15 tow =10 s using sensor set Sy (Table 4). The symbol (*) specifies the window size used in
the original PAC system by the authors.

The systems by Bao et al. [2] and Cleland et al. [9] achieved very high accuracies, at the cost of
using a large number of sensors, which is a practical issue in real-life conditions. The system developed
by Bao et al. uses four sensors and the system proposed by Cleland et al. uses six sensors, which



Sensors 2016, 16, 2105 8 of 15

raise feasibility and computational complexity issues for these systems which could make them less
practical in real life conditions.

The probable cause in the overall lower performance of the system by Leutheuser et al. could
be the fact that in their original implementation six subsets of ADLs were considered (1: HOUSE
(vacuuming, sweeping); 2: REST (sitting, standing, and lying); 3: WALK (walking, running, ascending
stairs, descending stairs); 4: bicycling; 5: rope jumping; 6: washing dishes). Instead, in our
analysis, only two sub-systems are used i.e., REST (sitting, standing, lying) and WALK (walking).
The subdivision of ADLs which characterizes this hierarchical classification can be a limitation in
implementing the original work when choosing only a subset of activities, as in our case. It could also
be an issue if a hierarchical classification approach is implemented on a set of activities which is not
the same as the original PAC system.

Our findings regarding the decrease in performance are in line with the recent work by
Fida et al. [21] who analyzed the effect of varying window size from w =1 s to 3 s and suggests
that 1 s to 2 s window size gives a better tradeoff when analyzing static and dynamic activities. On the
contrary, more recently Shoaib et al. [22] proposed a system for complex human activity recognition by
varying window sizes from 1 s to 30 s and found that increasing window size improves the recognition
rate of complex activities. However, our analysis is novel due to the demographics of the studied
population. Our work indeed investigates the activities of older adults, whose ADLs may differ from
those analyzed by Fida et al. and Shoaib et al. on the younger subjects.

3.2. Performance of the PAC Systems in Real-Life Scenarios

3.2.1. In-Lab vs. Out-of-Lab

The results of out-of-lab analysis show a decreased accuracy with respect to the in-lab across all
systems. Figure 3 (first and last point on time axis), shows the overall accuracy of the three systems
in the in-lab and out-of-lab with w = 5 s, chosen as a representative window size. A slight decrease
of 1% (96.4%-95.4%) in the work by Cleland et al. and 1.3% (94.7%-93.4%) in the work by Bao et al.,
is observed. However, such degradation is larger in the work by Leutheuser et al. with a decline
of 6.2% (83.7%—-77.5%). The best performance of 95.4% is obtained (when trained and tested on the
real life data) by the system of Cleland et al. which is quite encouraging, but at the cost of using five
sensors and a large features set, which may not be feasible in real-life conditions.

100

Accuracy

731 [ —=— cieland A W I S 1
| —%— Bao
|... .| —&— Leutheuser :
70 :
in-lab in-lab-train/out-lab-test out-of-lab

Figure 3. Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab testing scenario for all
PAC system using sensor set Soyt (Table 4).



Sensors 2016, 16, 2105 9of 15

3.2.2. In-Lab Training/Out-Lab Testing

We then evaluated the performance of in-lab trained systems in the real-life setting. In the in-lab
training /out-lab testing scenario, the performance of all the SOA systems decreased between 4-6%
when compared to the in-lab results (Figure 3). The respective confusion matrix for each SOA system
for PAC is shown in Table 6, where sensor set Soyrt (Table 4) is used for implementation of all systems.
Each sample of the confusion matrix corresponds to a 5s window. Moreover, the accuracies by class and
the sensitivities by class for all PAC systems in the in-lab training/out-lab testing scenario are listed in
the Table 7. The decreases in accuracy are: from 96.4% to 92.3% (4.1%) in the work by Cleland et al.,
from 94.7% to 90.6% (4.1%) in the work by Bao et al., and from 83.7% to 77.7% (6.0%) in the work by
Leutheuser et al.

The degradation of performance in all the systems in this scenario reflects the lack of field-based
validity as highlighted more recently by Lindemann et al. [28]. The reason of this degradation is due
the fact that:

(i)  Most of the existing PAC systems are developed using a standardized protocol which does not
include the ADLs performed under real-life conditions.

(i) The order and way of performing these activities in a more natural and quite different
environment to the one performed in a laboratory environment.

Table 6. Confusion matrix for the systems; (a) Bao et al.; (b) Cleland et al.; and (c) Leutheuser et al.;
in the in-lab training/out-lab testing scenario.

(a) Bao et al.

Predicted Class
stand walk sit lie <—classified as
9214 571 4 0 stand
Actual Class 2329 4000 2 9 walk
24 16 19,260 197 sit
233 0 2 278 lie
(b) Cleland et al.
Predicted Class
stand walk sit lie <—classified as
9712 73 4 0 stand
Actual Class 2474 3857 9 0 walk
1 1 19,492 3 sit
0 0 234 279 lie
(c) Leutheuser et al.
Predicted Class
stand walk sit lie <—classified as
7423 350 1572 16 stand
Actual Class 395 5397 94 0 walk
5289 107 13,950 0 sit
0 0 15 480 lie

Table 7. Accuracy and sensitivity by class for all SOA systems for PAC in the in-lab training/out-lab
testing scenario.

Authors Accuracy Accuracy by Class Sensitivity by Class
Stand Walk  Sit Lie Stand Walk Sit Lie
Bao et al. 90.6 91.3 919 993 988 941 63.1 98.8 542
Cleland et al. 92.3 92.9 929 993 993 992 60.8 100.0 54.4

Leutheuser et al. 77.7 78.3 97.3 79.8 999 79.3 91.7 72.1 97.0
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Therefore, these PAC systems are unable to recognize unstructured and unplanned activities in
real-life conditions, which emphasizes the urge of developing in-field, validated, PAC systems, as we
did when considering the out-of-lab scenario.

Our findings are in-line with the work by Ganea et al. [26], where performance deteriorated when
the laboratory-trained system was tested in real life. Our analysis generalizes the fact of performance
deterioration over several activities in real life conditions by analyzing sitting, standing, walking, and
lying instead of only postural transitions, as analyzed by Ganea et al.

3.3. Computational Complexity in the Real-Life Setting

Computational complexity of testing out-of-lab data (when trained on in-lab) is also analyzed
by measuring the time required for the feature extraction and for classification (Table 8). The feature
computation time is the time required to compute the features of all 16 subjects from out-of-lab
data using the sensor set Soyt (Table 4). The testing out-of-lab time, is the total time to test all the
out-of-lab data for 16 subjects. Mean and standard deviation of 10 runs (in order to account for
computer performance variability) are reported in Table 8. The total window instances obtained
(after the feature extraction of the out-of-lab data) for all systems are 36,139 except the system by
Leutheuser et al. [10], for which the samples are 35,088 because of the software dependencies. The time
consumption analysis of the features computation shows that the time required to compute the
features has a direct relationship with the number of sensors. All three systems use multiple sensors
and took longer time for feature computation. Moreover, the number of features, and the nature of the
features, also plays an important role in computational complexity of the system. For instance, in the
work by Leutheuser et al. [10], activity-specific features and hierarchical structure increased the time
consumption for the validation. The complexity of the classifier, along with the number of sensors
increased the computational time in the systems by Leutheuser et al., and Cleland et al. On the other
hand the time taken by Bao et al. is much shorter since it utilizes a simpler classifier approach (decision
tree classifier). The computational analysis suggests that in order to make the PAC system operational
in real time, optimum number of sensors, proper feature selection to eliminate redundant features,
and the choice of simpler and more robust classifier, is very critical. Most of the existing systems
do not highlight these factors, especially the selection of features, and of a reduced set of sensors.
These factors are crucial for the practical implementation of these systems out of the laboratory.

Table 8. Computational complexity in the in-lab training/out-lab testing scenario.

Author Feature Computation Mean & Std (s)  Testing Out-of-Lab Mean = Std (s)
Bao et al. 337.07 £3.10 25.27 +0.95
Cleland et al. 458.79 £+ 6.57 738.21 £1.09
Leutheuser et al. 77241 +11.99 957.83 + 18.38

3.4. Performance Comparison of the PAC Systems in the In-Lab Setting Using a Reductionist Approach and
Sensitivity Analysis to the Window Size

The overall performance of the PAC systems using a reductionist approach obtained from the
in-lab sensitivity analysis to window size is depicted in Figure 4. In-lab sensitivity analysis using a
single sensor at L5 location (Figure 4) follow a decay in performance with the increase in window
size (similar to that presented in Section 3.1) for the systems by Bao et al. [2] and Cleland et al. [9].
The deterioration in accuracy from w = 1 s to w = 10 s was 5.3% by Bao et al. and 4.8% by Cleland et al.
However, an improvement of 1.7% in accuracy is observed in the work by Leutheuser et al. [10]. In this
case, the use of activity specific classification systems instead of using the generalized systems for
ADLs seem to be the probable cause.
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Figure 4. Sensitivity analysis of overall accuracy of in-lab data when window size is increased from
w =15 tow =10 s using reductionist approach. The symbol (#) specifies the window size used in the
original PAC system by the authors.

3.5. Performance of the PAC Systems in Real-Life Scenarios Using a Reductionist Approach

3.5.1. In-Lab vs. Out-of-Lab

The analysis using the reductionist approach (Figure 5) shows that accuracy of all systems is
decreased except for Cleland et al. in the out-of-lab when compared to in-lab. The decrease is: 2.7% in
the work by Bao et al., 6.4% in the work by Leutheuser et al. The slight increase of 1% is observed in
the work by Cleland et al. The best performance of 80.9% is achieved by the work of Cleland et al.
(similar to Section 3.2.1) when trained and tested on the real-life data which show the potential of using
a single sensor in real life conditions. This performance can be enhanced by developing PAC system
which incorporates more discriminative features (e.g., biomechanical features) and robust classifier.

95
—+&— Cleland

—¥— Bao
*| —&— Leutheuser

90 -

85K

Accuracy
o
o

75

70

in-lab in-lab-train/out-lab-test out-of-lab

Figure 5. Performance analysis of in-lab, out-of-lab, and in-lab training/out-lab testing scenario for all
PAC systems using a reductionist approach.
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3.5.2. In-Lab Training/Out-Lab Testing

The in-lab training/out-lab testing analysis on the single sensing unit also followed the
deterioration in overall accuracy and the differences are a bit larger (between 6%—-8%) than in the
multi-sensor setting (Section 3.2.2) as described by Figure 5. The reduction in the accuracies are:
79.8% to 73.3% (6.5%) by Cleland et al. [9], 84.4% to 77.8% (6.6%) by Leutheuser et al. [10], and
78.0% to 70.3% (7.7%) by Bao et al. [2].

The performance of all systems, both in the original framework and in the reductionist approach
degrades for the in-lab testing/out-lab training scenario (when compared to in-lab analysis). Therefore,
it is very important to develop a PAC system in the real-life data before releasing it for real life
applications, as we did in the out-of-lab analysis. Most of existing system lack this perspective so their
performance cannot be generalized for the real life conditions.

4. Conclusions

A benchmark study is presented which investigates the performance of various SOA systems
for PAC in the in-lab and out-of-lab environment. The sensitivity analysis to window size shows
that the increase in window size generally degrades the performance. The in-lab training/out-lab
testing analysis concludes that the systems developed in controlled settings are not capable of
performing well in real-life conditions where the ADLs are performed in a more natural way. Therefore,
the newly-developed systems should be trained and tested on the dataset collected in the real-life
conditions. The reductionist approach also obtained similar results for all analyses (in-lab sensitivity
analysis to window size, out-of-lab analysis, in-lab training/out-lab testing) but the degradation is
much larger than the multi-sensor setup. Furthermore, investigation of the computational complexity is
conducted for the feature extraction stage and the classifier testing stage of out-of-lab data. The findings,
as we expected, show that the systems with more complex classifier approaches and large numbers of
sensors increases the computational complexity of the system.

The number of analyzed subjects (16) is a limitation to overcome in future studies by adding
more subjects. However, the analyzed database is one of the largest databases available to date [31],
especially considering that the activities were manually annotated with a very high frequency (25 Hz,
25 annotations per second) and this process required significant resources. Another limitation of this
study is that it only investigates basic ADLs while real life conditions contain many other activities.

The reductionist approach we developed which, derived from existing systems, is an important
first step to study the effect of reducing the number of sensors in order to find an optimal trade-off
between usability and performance (the use of multiple sensors on various body locations can be
impractical in real-life).

Our future aim is to develop a physical activity classification system in real life conditions with
optimal number of sensors (by exploring various sensor locations), improved feature set (using various
feature selection approaches), and robust classification methods to perform comparably to, or better
than, existing systems.
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Appendix A. Computation of Accuracy and Sensitivity by Class in the In-Lab Training/Out-Lab
Testing Scenario of All SOA for PAC

This section provides the details about the computation of the performance metrics used in this
study. The expressions to calculate overall accuracy, accuracy by class, and sensitivity by class are
described below:

TP+ TN
A - 1 Al
ceuracy = TpEN 1 EP+ TN 1V (A1)
TPc+ TNc
A= Tpe v FNe + FPe - TNe <1 (A2)
TPc

whereas, TP= True Positive, TN = True Negative, FN = False Negative, FP = False Positive.

Ac is the accuracy by class, and Sc is the sensitivity by class. Subscript “c” is used with TP, TN,
etc., to represent the metrics by class, for instance, if we are interested in calculating the accuracy and
sensitivity of walking activity from the in-lab training/out-lab testing scenario of Bao et al. (Table A1).

Table A1. Confusion matrix of the PAC system by Bao et al. in in-lab training/out-lab testing scenario.

Stand Walk Sit Lie <+—Classified as
9214 571 4 0 stand
2329 4000 2 9 walk

24 16 19,260 197 sit
233 0 2 278 lie

TPc = 4000, FNc = 2340 (2329 + 2 + 9 = 2340), FPc = 587 (571 + 16 + 0 = 587);
TNc = 29,212 (9214 + 4 + 0 + 24 + 19,260 + 197 + 233 + 2 + 278 = 29212)

Therefore:
TP+ TN 9214 + 4000 + 19260 + 278
A = — 1 _ ' o
Y = TP YFN+FP+TN _ 36139 (sum of all instances) X 100 = 90.6%
TPc~+ TNc 4000 + 29212

Ac= = 1 =91.9%

©= TPc+ FNc+ FPc+ TNe ~ 4000+ 2340 + 587 + 29212 100 = 19%

TPc 4000

= TP+ FNc — 4000+ 2340 < 10 = 031

Appendix B. Detailed Description of the Training and Classification Process Used

This section provides the details about the classifiers used and the training process adapted.
The details about the classification procedure and cross-validation procedure are described in Table B1.

The cross-validation process is leave-one-subject-out for the in-lab windowing analysis (trained
and tested on in-lab data) and for the out-of-lab analysis (trained and tested on out-of-lab data).
The training and testing procedure was different in the in-lab-training/out-lab-testing analysis. In this
case, the model was trained using the in-lab data of all subjects, but one, which is being tested on the
out-of-lab data.
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Table B1. Classification procedure used for each PAC system.

Authors Classifier Used Cross-Validation Procedure

SVM Classifier (with universal Pearson VII

Cleland et al. function based kernel and complexity value = Leave-one-subject-out-cross-validation

Bao et al.

Leutheuseur et al.

of 100 using WEKA libraries)

Decision Tree Classifier (J48 with default
parameters using WEKA libraries)
Hierarchical Classification (KNN and SVM
using WEKA libraries)

Leave-one-subject-out-cross-validation

Leave-one-subject-out-cross-validation
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