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Abstract: Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique,
this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process
gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous
rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU)
is proposed in this paper, in which the extended observation equations are used for the Kalman
filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy.
Theoretical and numerical comparisons between the proposed algorithm and the traditional ones
are presented. The experimental results show that the new continuous rotation alignment algorithm
using the extended observation equations in the Kalman filter is more efficient than the traditional
two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1◦/h,
a north-finding accuracy of 0.1◦ (1σ) is achieved by the new continuous rotation alignment algorithm,
compared with 0.6◦ (1σ) north-finding accuracy for the two-position alignment and 1◦ (1σ) for the
fixed-position alignment.

Keywords: cost effective north-finding; stochastic modeling; Coriolis vibration gyroscopes;
continuous rotation IMU alignment

1. Introduction

Cost effective north-finding technology is widely required for many applications. North-finding
is sometimes based on Digital Magnetic Compasses (DMCs) [1]. However, DMCs is easily degraded
by magnetic interference. Although Dynamically Tuned Gyros and Ring Laser Gyroscopes are suitable
for precise north-finding, they are generally bulky and expensive [2,3]. In contrast, Coriolis vibration
gyroscopes (e.g., a kind of cost effective medium precision Hemispherical Resonator Gyroscopes
(HRGs) [4,5]) are generally compact and low-cost and suitable for a cost effective north-finding system.
However, the drift errors of these gyroscopes are big problems, which limit the north-finding accuracy.

To improve the accuracy of the north-finding system using cost effective gyroscopes, several
methods have been designed. Lee [6] proposed a multi-position alignment algorithm to increase the
azimuth accuracy. For the same purpose, Yu [7] used analytic optimization of Strapdown Inertial
Navigation System (SINS) multi-position alignment. Renkoski [8] and Sun [9] improved the accuracy
of North-finding system through continuous rotation.

This paper focuses on Inertial Measurement Unit (IMU)-based north-finding systems using a
Kalman filter for applications such as dynamic orientation and dead reckoning. Stochastic modeling
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for a Coriolis vibration gyroscope is obtained using the Allan variance technique. It is shown that
the Rate Random Walk (RRW) and Markov noises are the main errors which limit the north-finding
accuracy. A new continuous rotation IMU alignment algorithm is therefore proposed using extended
observation equations in the Kalman filter to solve this problem. Experimental results as well as
theoretical analysis are also presented.

This paper is organized as follows: Section 2 analyses the random error model of a Coriolis
vibration gyroscope using the Allan variance technique. The north-finding errors due to the main
parts of the gyro drift error are presented. Section 3 presents three different IMU based north-finding
algorithms or three different error compensation approaches: two-position alignment, continuous
rotation alignment, and a new continuous rotation alignment algorithm with extended observation
equations for a Kalman filter. Section 4 presents theoretical and simulation analyses of the performances
of the methods mentioned above. Section 5 reports north-finding experimental results and comparisons.
The Allan variance analysis results for the equivalent east gyro are presented for the interpretation
of effectiveness of the gyro drift error compensation approaches. Section 6 concludes the paper.
The appendices show detailed theoretical proofs.

2. Error Model for a Coriolis Vibration Gyroscope

IMU errors can be classified into two types: deterministic errors and random errors. Major
deterministic error sources including constant bias, scale factor errors and misalignment can be
removed by calibration and compensation [10]. The random constant bias (turn to turn bias) and
random noises are the main error sources in the North-finding system. Therefore, we focus on the
stochastic modeling for a Coriolis vibration gyroscope.

2.1. Error Model Based on Allan Variance Analysis

Traditionally, random constant bias, ARW (Angle Random Walk), RRW and Markov process are
used to develop stochastic error model for gyros. The error model of a gyroscope can be expressed as
follows [11,12]:

ε = εb + εm + wa + εr (1)

where ε is the stochastic drift error of the gyroscope measurements, εb is the random constant bias with
the variance of σ2

b , εm is the Markov process, wa is the ARW, εr is the RRW.
The random bias can be described as an unpredictable random quantity with a constant value,

that is:
.
εb = 0 (2)

wa ∈ N(0, σ2
a ) (3)

where σ2
a is the variance of wa.

The Markov noise is the low-frequency component in the error sources. Usually, the noise is
modeled as a First order Gauss-Markov process [11]:

.
εm = − 1

τ
εm + wm, wm ∈ N(0, σ2

m) (4)

where τ is the process time constant, wm is the zero-mean Gaussian white noise, σ2
m is the variance

of wm:
.
εr = wr, wr ∈ N(0, σ2

r ) (5)

where σ2
r is the variance of wr.

In Equation (1), the characteristics of the stochastic errors are usually estimated by an optimal
estimation algorithm, such as a Kalman filter [13]. The parameters of the stochastic error model are
necessary for a Kalman filter algorithm. Hence, there is a need to determine the parameters of the
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error model using Allan variance analysis. The sampling data of a HRG in 3 h is present in Figure 1a.
The Allan variance results of the HRG are presented in Figure 1b. The sampling frequency is 10 Hz.
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Figure 1. (a) Measurements of a HRG in 10Hz; (b). Allan variance of the HRG.

The parameters of the error models for the Coriolis vibration gyroscopes in an IMU based
north-finding system are given in Table 1.

Table 1. Parameters of the error models for the Coriolis vibration gyroscopes (a kind of cost effective
HRG in this paper).

Bias Instability σb 0.1◦/h
ARW σa 0.01◦/

√
h

RRW σr 0.3◦/h3/2

Markov time constant τ 60 s
Markov process driving noise σm 0.02◦/h/

√
s

Consider the error models in Figure 1, the major parts of the gyroscope errors are ARW, Markov
process, bias instability and RRW, which indicates that the error model in Equation (1) is sufficient to
characterize the gyroscope. The parameters of the models show that the primary error source for the
gyroscope are Markov noise and RRW.

2.2. Propagation of Gyroscope Errors in a North-Finding System

The drift error of the equivalent east gyroscope εE in an IMU based north-finding system
propagates to the azimuth misalignment φD, which can be expressed as follows [14]:

φD =
εE

Ω cos L
(6)

where Ω is the earth rotation rate, L is the local latitude.
Similar to Equation (1), εE can be expressed as follows:

εE = εbE + waE + εrE + εmE (7)

where the random constant bias εbE, the ARW waE, the RRW εrE and the Markov process εmE
correspond to εb, wa, εr and εm in Equation (1).
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The RMS (Root Mean Square) of azimuth misalignment σφDb , σφDa , σφDr and σφDm due to εbE, waE,
εrE and εmE can be expressed as [15,16]:

σφDb =
σbE

Ω cos L
(8)

σφDa =
σaE√

tnΩ cos L
(9)

σφDr =
σrE
√

tn√
3Ω cos L

(10)

σφDm =

√
1
2 τ2σ2

mE(2t− τe−
2t
τ + 4τe−

t
τ − 3τ) + PεmE(0)τ(1− 2e−

1
τ t + e−

2
τ t)

tnΩ cos L
(11)

where tn is the alignment time. σ2
bE, σ2

aE, σ2
rE and σ2

mE are the variances corresponding to εbE, waE, wrE
and wmE in the error model of the equivalent east gyroscope. PεmE(0) is the variance of the initial value
of Markov process. The proofs of Equations (8)–(11) are shown in Appendix A.

It should be explained that the initial value of RRW noise can be regarded as part of a constant
bias. Thus the RRW starts from zero.

Assuming the alignment time tn is 10 min, the local latitude is 28.22◦ N, the RMS values of the
azimuth misalignment can be obtained from Equations (8)–(11). The azimuth misalignment due to the
equivalent east gyroscope errors are shown in Table 2.

Table 2. The azimuth misalignment due to the equivalent east gyroscope errors in 10 min at 28.22◦ N.

Gyroscope Errors RMS of Azimuth Misalignment

Bias Instability σbE 0.1◦/h σφDb = 0.43◦

ARW σaE 0.01◦/
√

h σφDa = 0.10◦

RRW σrE 0.3◦/h3/2 σφDr = 0.31◦

Markov process τ 60 s
σφDm = 0.20◦

Markov process σmE 0.02◦/h/
√

s

Although the azimuth misalignment are most affected by the bias instability, the random constant
bias can be easily eliminated through north-finding algorithms (such as two-position alignment [6]
and continuous rotation alignment [9]). And compared with RRW and Markov noise, the azimuth
misalignment due to ARW is slim. RRW and Markov process are the main error source in a
north-finding system.

3. Error Compensation Approach for IMU Based North-Finding System

3.1. System Error Model for IMU Based North-Finding

A local level NED (North-East-Down) frame is used as the navigation frame. The common SINS
error equations in the navigation frame can be expressed as follows [14]:

.
φ

n
= −(ωn

en + ωn
ie)×φn − Cn

b δωb
ib (12)

δ
.
vn

= fn ×φn − (ωn
en + 2ωn

ie)× δvn + Cn
b δfb (13)

where φn is the attitude error, φn =
[

φN φE φD

]T
, N, E and D represent north, east and down

in navigation frame respectively; δvn is the velocity error, δvn =
[

δvN δvE δvD

]T
. φn can be

estimated by the observation of δvn in an alignment process. fn is the measurement of specific force in
frame n, Cn

b is the coordinate transformation matrix from the IMU frame b to the navigation frame n,
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ωn
en is the turn rate of the navigation frame to the earth frame in the frame n, ωn

ie is the turn rate of the
earth frame to the inertial frame in the frame n, δωb

ib is the error of the gyroscope measurements, δfb is
the error of the specific force measurements.

In the North finding scenario discussed here, since the IMU is stationary on the Earth:

ωn
en = 0 (14)

The SINS error model for alignment or IMU based north-finding can be written as:

.
x(t) =

[
F1 F2

08×5 Γ

]
.
x(t) +

 G1 05×3

08×5
05×3

I3×3

w(t) (15)

where:
x(t) =

[
δvN δvE φN φE φD ∇accx ∇accy

(εbx + εrx) (εby + εry) (εbz + εrz) εmx εmy εmz

]T (16)

∇accx and ∇accy are the bias error states of the accelerometers, εbx, εby and εbz are the random
constant bias error states of the gyroscopes, εrx, εry and εrz are the rate random walk of the gyroscopes,
εmx, εmy and εmz are the error states for the Markov process of the gyroscopes.

For the filter noise vector:

w(t) =
[

waccx waccy wax way waz wrx wry wrz wmx wmy wmz

]T
(17)

where waccx and waccy are the white noise of the accelerometer x and the accelerometer y, respectively.
That is:

waccx, waccy ∈ N(0, σ2
acc) (18)

where σ2
acc is the variance of the white noise waccx and waccy.

wax, way and waz are the angular random walk of the gyroscope x, the gyroscope y and the
gyroscope z, wmx, wmy and wmz are the driving noise in the Markov process of the gyroscope x, the
gyroscope y and the gyroscope z.

F1 =


0 −2Ω sin L 0 g 0

2Ω sin L 0 −g 0 0
0 0 0 −Ω sin L 0
0 0 Ω sin L 0 Ω cos L
0 0 0 −Ω cos L 0

 (19)

where g is the local gravity.
The matrix F2 is defined as follows:

F2 =

[
−Cn

b 2×2 02×3 02×3

03×2 −Cn
b −Cn

b

]
(20)

where Cn
b 2×2 is defined as:

Cn
b 2×2 =

[
1 0 0
0 1 0

]
Cn

b

[
1 0 0
0 1 0

]T

(21)
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The matrices G1 and Γ are defined as follows:

G1 =

[
Cn

b 2×2 02×3

03×2 −Cn
b

]
, Γ =

[
05×5 05×3

03×5 − 1
τ I3×3

]
(22)

where τ is the Markov time constant of the gyroscope.
As shown in the analysis above, based on the condition that the system is stationary on the earth,

the horizontal velocity errors are used as observation states. Thus, the observation model can be
written as:

z(t) =

[
ṽN
ṽE

]
= Hx(t) + υ(t) H =

[
I2×2 02×11

]
(23)

where υ(t) =
[

υvN υvE

]T
is the observation noise vector. ṽN and ṽE represent north and east

components of the estimated velocity, respectively.

3.2. Traditional Two-Position Gyrocompassing

Two-position alignment is demonstrated in Figure 2 [6].
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Figure 2. Schematic diagram of two-position alignment.

As shown in Figure 2, the axis xb and yb of the IMU frame lie on the turntable plane, the axis
zb coincides with the rotation axis. We define the b0 frame when xb coincides with the turntable
null indicator:

Cb
n = Cb

b0
Cb0

n (24)

where Cb0
n is the coordinate transformation matrix from the frame n to the frame b0.

Cb
b0

can be written as:

Cb
b0
(t) =



 1 0 0
0 1 0
0 0 1

 t < t1 −1 0 0
0 −1 0
0 0 1

 t > t2

(25)

where [t1, t2] is the short time period when the IMU changes the angular position through the
turntable rotation.

3.3. Continuous Rotation Gyrocompassing

As an alternative to the two-position alignment, continuous rotation is another efficient method
to reduce the alignment errors.
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In contrast to the two-position alignment, the coordinate transformation matrix Cn
b is varying as

Cb0
b changes by continuous rotation, that is:

Cb0
b =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 ω0T = 2π (26)

where ω0 is the rotation rate of the turntable. T is the rotation cycle.
Except for the coordinate transformation matrix Cn

b and Cb0
b , the error model and the

observation equation between the continuous rotation gyrocompassing are the same as that of the
two-position gyrocompassing.

3.4. A New Continuous Rotation North-Finding Method Based on an Extended Observation Model

Although the constant random biases of gyroscopes are mostly eliminated by the above
compensation approaches, the noise of the gyroscopes will also still affect the efficiency of the Kalman
filter. For Coriolis vibration gyroscopes, the noise level is high. It is difficult to estimate the drift errors
of the gyroscopes exactly. The accuracy of the North-finding system is limited. To solve the problem,
we present an extended observation model for the continuous rotation alignment.

After each 360◦ turn, the integration of the measurements of the gyroscopes can be written as:

∫ t+T
t ω̃b

ibdt =
∫ t+T

t ωb
ibdt+

∫ t+T
t

 (εbx + εrx) + εmx

(εby + εry) + εmy

(εbz + εrz) + εmz

dt ≈
∫ t+T

t

(
ωb

eb + Cb
b0

Cb0
n ωn

ie

)
dt + T

 (εbx + εrx) + εmx

(εby + εry) + εmy

(εbz + εrz) + εmz

 (27)

While the integration of the estimated measurements of the gyroscopes can be written as:∫ t+T
t ω̂b

ibdt =
∫ t+T

t

(
ωb

eb + ω̂b
ie

)
dt

=
∫ t+T

t ωb
ebdt +

∫ t+T
t C̃b

nω̂n
iedt

=
∫ t+T

t ωb
ebdt +

∫ t+T
t {Cb

b0
Cb0

n [I + φn×]ωn
ie + Cb

b0
Cb0

n δωn
ie}dt

=
∫ t+T

t

(
ωb

eb + Cb
b0

Cb0
n ωn

ie

)
dt +

∫ t+T
t

{
Cb

b0
Cb0

n [−ωn
ie×]φn + Cb

b0
Cb0

n δωn
ie

}
dt

(28)

ωn
ie =

 Ω cos L
0

−Ω sin L

 δωn
ie =

 −δLΩ sin L
0

−δLΩ cos L


Cb0

n =

 cos θ0 cos ϕ0 cos θ0 sin ϕ0 − sin θ0

− cos γ0 sin ϕ0 + sin γ0 sin θ0 cos ϕ0 cos θ0 cos ϕ0 + sin γ0 sin θ0 sin ϕ0 sin γ0 cos θ0

cos γ0 sin θ0 cos ϕ0 + sin γ0 sin ϕ0 − sin γ0 cos ϕ0 + cos γ0 sin θ0 sin ϕ0 cos γ0 cos θ0


(29)

where
∫ t+T

t ω̃b
ibdt represents the integration of the gyroscope measurements in a rotation cycle of the

turntable, ω̂b
ib represents the estimated measurements of the gyroscopes in the b-frame, ωn

ie represents
the earth rotation rate in the n-frame. ϕ0, θ0 and γ0 are the Euler angles of the b0-frame relative to the
n-frame. C̃b

n is the estimated coordinate transformation matrix with attitude errors.
Considering φN and φE are very small after coarse alignment:

φn =

 φN
φE
φD

 ≈
 0

0
φD

 (30)
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From Equations (29) and (30)

∫ t+T

t
Cb

b0
Cb0

n ωn
iedt = ΩT

 0
0

cos L(cos γ0 sin θ0 cos ϕ0 + sin γ0 sin ϕ0)− sin L cos γ0 cos θ0

 (31)

∫ t+T
t δω̂b

ibdt
=
∫ t+T

t {Cb
b0

Cb0
n [−ωn

ie×]φn + Cb
b0

Cb0
n δωn

ie}dt

= φDΩT cos L


0
0(

− sin γ0 cos ϕ0+

cos γ0 sin θ0 sin ϕ0

)
+ δLΩT


0
0(

− sin L(cos γ0 sin θ0 cos ϕ0 + sin γ0 sin ϕ0)−
cos L cos γ0 cos θ0

)


(32)

Under static conditions, we have:

∫ t+T

t
ωb

ebdt =

 0
0

2π

 (33)

Substituting Equations (28), (31)–(33) into Equation (27) gives:

T

 (εbx + εrx) + εmx

(εby + εry) + εmy

(εbz + εrz) + εmz

− φDΩT cos L


0
0(

− sin γ0 cos ϕ0+

cos γ0 sin θ0 sin ϕ0

)
− δLΩT


0
0 − sin L cos γ0 sin θ0 cos ϕ0

− sin L sin γ0 sin ϕ0

− cos L cos γ0 cos θ0




=
∫ t+T

t ω̃b
ibdt−

∫ t+T
t ω̂b

ibdt

=
∫ t+T

t ω̃b
ibdt−ΩT

 0
0

(cos γ0 sin θ0 cos ϕ̂0 + sin γ0 sin ϕ̂0) cos L̂− cos γ0 cos θ0 sin L̂

−
 0

0
2π


(34)

When there is latitude error and heading error, the estimated measurements of the gyroscopes are
inaccurate. After each 360◦ turn of the turntable, the equivalent east gyroscope error caused by these
errors can be calculated as follows:

δωn
ibE =

1
T

[
0 1 0

]∫ t+T

t
Cn

b0
Cb0

b δω̂b
ibdt (35)

The equivalent east gyroscope error caused by heading error and latitude error is shown in
Equations (36) and (37) respectively:

δωn
ibE,φD

= (− sin γ0 cos ϕ0 + cos γ0 sin θ0 sin ϕ0)
2φDΩ cos L (36)

δωn
ibE,δL = (sin γ0 cos ϕ0 − cos γ0 sin θ0 sin ϕ0)[cos γ0 sin θ0 cos ϕ0 tan L

+ sin γ0 sin ϕ0 tan L + cos γ0 cos θ0]δLΩ cos L
(37)

where δωn
ibE,φD

is the equivalent east gyroscope error caused by heading error, δωn
ibE,δL is the equivalent

east gyroscope error caused by latitude error δL.
Assuming that:

γ0 = θ0 = 5◦ (38)

Equations (36) and (37) can be written as:

δωn
ibE,φD

≈ 0.01φDΩ cos L, δωn
ibE,δL ≈ 0.1δLΩ cos L (39)
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In general, the initial heading error is less than 5◦ (φD(0) < 5◦) and the latitude error is less than
0.1◦ (δL < 0.1◦). Considering Equation (39), the equivalent azimuth error caused by initial heading
error and latitude error can be ignored when tilt is smaller than 5◦.

The additional observation can be obtained using the integration measurements of the gyroscopes
in each 360◦ turn of the turntable.

The observation model can be written as:

z(t) = Hx(t) + υ(t) (40)

z(t) =



[
ṽN
ṽE

]
when 2(k− 1)π < ω0t < 2kπ ṽN
ṽE∫ t+T

t ω̃b
ibdt−

∫ t+T
t ω̂b

ibdt

 when ω0t = 2kπ

k = 1, 2, 3, . . .

(41)

H =


[

I2×2 02×3 02×8

]
when 2(k− 1)π < ω0t < 2kπ[

I2×2 02×3 02×2 02×3 02×3

03×2 D 03×2 TI3×3 TI3×3

]
when ω0t = 2kπ

k = 1, 2, 3, . . .

D =

 0 0 0
0 0 0
0 0 (− sin γ0 cos ϕ0 + cos γ0 sin θ0 sin ϕ0)ΩT cos L


(42)

υ(t) =


[

υvN υvE

]T
when 2(k− 1)π < ω0t < 2kπ[

υvN υvE υωx υωy υωz

]T
when ω0t = 2kπ

k = 1, 2, 3, . . .

(43)

where υωx , υωy and υωz are the observation noise corresponding to
∫ t+T

t ω̃b
ibdt−

∫ t+T
t ω̂b

ibdt.

4. Comparisons of the Kalman Filter Convergence Rapidity and North-Finding Accuracy

Comparisons of the Kalman filter convergence rapidity and the north-finding accuracy between
the proposed algorithms and the traditional alignment methods can be made with the covariance
matrix for the estimated states in the Kalman filter.

For the piecewise constant time varying system the covariance matrix of the estimated states P
can be obtained by calculating the discrete Riccati matrix equation [7]:

P−1(k) = [ΦT(k, k− 1)P(k− 1)Φ(k, k− 1) + GTQG]
−1

+ HT R−1H k = 1, 2, 3 . . . , n
(44)

which is based on the continuous system error model and observation equations (Equations (15)–(43))
as follows:

Φ(k, k− 1) ≈ eA(tk−1)Ts ≈ I + A(tk−1)Ts

G(k, k− 1) ≈ B(tk−1)

Q = qTs

q = E
{

wT(t)w(t)
}

R = E
{

υT(t)υ(t)
}

(45)

where Ts = 0.04 s is the sampling time.
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In this study, an initial covariance matrix P1(0), spectral density matrix Q of system noise and
measurement noise covariance matrix R are given as follows:

P1(0) = diag{(0.1 m/s)2, (0.1 m/s)2, (1◦)2, (1◦)2, (1◦)2,
(10−4g)2, (10−4g)2, (0.2◦/h)2, (0.2◦/h)2, (0.2◦/h)2, (0.2◦/h)2, (0.2◦/h)2, (0.2◦/h)2}
Q = diag{(2× 10−5 m/s)2, (2× 10−5 m/s)2, (0.12′′ )2, (0.12′′ )2, (0.12′′ )2,
(0.0001◦/h)2, (0.0001◦/h)2, (0.0001◦/h)2, (0.004◦/h)2, (0.004◦/h)2, (0.004◦/h)2}
R = diag{(0.01 m/s)2, (0.01 m/s)2}

(46)

When using the continuous rotation method based on the extended observation model,
measurement noise covariance matrix R is expressed as follows:

R =

{
diag{(0.01 m/s)2, (0.01 m/s)2} when 2(k− 1)π < ω0t < 2kπ

diag{(0.01 m/s)2, (0.01 m/s)2, (4′′ )2, (4′′ )2, (4′′ )2} when ω0t = 2kπ

k = 1, 2, 3, . . .
(47)

The rotation rate of the turntable is ω0 = 10◦/s. The number of iterations performed for
calculating P using Equation (44) is 15,000 which is equivalent to 600 s. For two-position alignment,
the IMU changes position at 300 s. Since the heading error φD is the most crucial error state in the
north-finding system, we focus on the RMS value of φD.

Figure 3 shows the RMS values of the heading error in the north-finding process. Obviously, the
new continuous rotation alignment with the extended observation is more efficient than the existing
north-finding algorithms.
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Figure 3. Kalman filter convergence rapidity and accuracy comparison of the four north-
finding approaches.

In order to analyze the gyroscope error compensation effect of the new continuous rotation
alignment approach, we use Allan variance technique to compare the compensated data with the
uncompensated data of the equivalent east gyroscope, which determines the north-finding accuracy in
a north-finding system.

The uncompensated equivalent east gyroscope data, denoted as ω̃n
ibE is the measurement of the

equivalent east gyroscope in the n frame, when the turntable is not rotating, that is:

ω̃n
ibE = [ 0 1 0 ]Cn

b0
Cb0

b ω̃b
ib Cb0

b = I (48)

The compensated equivalent east gyroscope data, denoted as ω̂n
ibE is the measurement of the

equivalent east gyroscope in the n frame, when the turntable is rotating. The compensated data is
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obtained after the Kalman filter has converged. The drift error of the gyroscope has been estimated
and compensated by the Kalman filter. That is:

ω̂n
ibE = [ 0 1 0 ]Cn

b0
Cb0

b

ω̃b
ib −

 ε̂bx + ε̂rx

ε̂by + ε̂ry

ε̂bz + ε̂rz

−
 ε̂mx

ε̂my

ε̂mz


 (49)

The sampling data are collected over 3 h as shown in Figure 2, and the sampling frequency is
10 Hz. As shown in Figure 4, after compensation, the bias instability of the equivalent east gyroscope is
almost eliminated, but the ARW remains as before. It should be noticed that RRW is almost eliminated
through the continuous rotation modulation.
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The experiment demonstrated that the RRW and Markov noise could be compensated by
continuous rotation alignment, but ARW remained unchanged. The theoretical proofs are shown in
Appendix B.

5. Experimental Results

The experimental platform is shown in Figure 5.
Considering the installation error, it is difficult to determine the absolute north. The previous

north-finding experimental result was used as a reference to evaluate the performance of the
approaches. The assumed azimuth was the mean value of 15 experimental results in two weeks
north-finding tests. In this study, the experimental north-finding system stayed on a fixed azimuth.
For each north-finding algorithm, the north-finding process was repeated five times.Sensors 2016, 16, 2113 12 of 19 
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Since the errors of the gyroscopes and accelerometers are unobservable in the fixed-position
alignment, which may cause the divergence of the Kalman filter in the practice. We used 5-state
Kalman filter for the fixed-position alignment. From Equations (15)–(23), the model can be expressed
as follows:

x(t) = [δvN , δvE, φN , φE, φD]
T

.
x(t) = F1(t)x(t) + G(t)w(t)

w(t) =
[

waccx waccy wax way waz

]T

z(t) = H1x(t) + υ(t) H1 =
[

I2×2 02×3

] (50)

The coarse alignment method using the gravity in the initial frame as a reference was employed
in the experiments [17].

As shown in Figure 6a–d, the azimuth errors converged with time, the experimental results are
coincident with the simulation analysis as shown in Figure 3 in which the new continuous rotation
alignment with extended observation is the most efficient algorithm for a Coriolis vibration gyroscope
based north-finding system.

Sensors 2016, 16, 2113 12 of 19 

 

 
Figure 5. The experimental platform. 

Since the errors of the gyroscopes and accelerometers are unobservable in the fixed-position 
alignment, which may cause the divergence of the Kalman filter in the practice. We used 5-state 
Kalman filter for the fixed-position alignment. From Equations (15)–(23), the model can be expressed 
as follows: 

 

 

1

1 1 2 2 2 3

( ) , , , ,
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) 0

    

 



 

   
  



T

N E N E D

T

accx accy ax ay az

t v v

t F t t G t t

t w w w w w

t H t t H I

x
x x w

w

z x υ

 (50) 

The coarse alignment method using the gravity in the initial frame as a reference was employed 
in the experiments [17]. 

As shown in Figure 6a–d, the azimuth errors converged with time, the experimental results are 
coincident with the simulation analysis as shown in Figure 3 in which the new continuous rotation 
alignment with extended observation is the most efficient algorithm for a Coriolis vibration 
gyroscope based north-finding system. 

 
(a) (b)

 
(c) (d)

Figure 6. (a) The accuracy of the heading angle using the fixed-position alignment; (b) The accuracy 
of the heading angle using the two-position alignment; (c) The accuracy of the heading angle using 
the continuous rotation method; (d) The accuracy of the heading angle using the continuous rotation 
based on the extended observation model. 

0 100 200 300 400 500 600
338

338.5

339

339.5

340

340.5

341

341.5

Time(s)

A
zi

m
u

th
(d

e
g

re
e

)

 

 

Assumed azimuth
Estimation of the azimuth

0 100 200 300 400 500 600
339

339.2

339.4

339.6

339.8

340

340.2

340.4

Time(s)

A
zi

m
ut

h
(d

e
g)

 

 

Assumed azimuth
Estimation of the azimuth

0 100 200 300 400 500 600
338

338.5

339

339.5

340

340.5

341

341.5

Time(s)

A
zi

m
u

th
(d

e
g

re
e

)

 

 

Assumed azimuth
Estimation of the azimuth

0 100 200 300 400 500 600
338

338.5

339

339.5

340

340.5

341

341.5

Time(s)

a
zi

m
u

th
(d

e
g

re
e

)

 

 

Assumed azimuth
Estimation of the azimuth

Figure 6. (a) The accuracy of the heading angle using the fixed-position alignment; (b) The accuracy
of the heading angle using the two-position alignment; (c) The accuracy of the heading angle using
the continuous rotation method; (d) The accuracy of the heading angle using the continuous rotation
based on the extended observation model.

In order to further compare the performances of the north-finding methods, we changed the
azimuth of the north-finding system to 6 different directions as shown in Equation (51):

ϕ1 = −20.337◦, ϕk = ϕ1 + (k− 1)60◦ k = 2, . . . 6 (51)

For each azimuth, the north-finding process was repeated for 5 times with the 4 different
north-finding algorithms. Then, the RMS of heading errors for each of these algorithms was calculated.
As shown in Figure 7, the new approach (continuous rotation alignment with the extended observation
model) is the best one, the north-finding accuracy is 0.1◦ (1σ).
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6. Conclusions

As analyzed in this paper, it is the gyroscope random drift errors that make it a challenge for a
cost effective gyroscope based north-finding systems to be achieved. Since it is the equivalent east
gyroscope that determines the north-finding accuracy, Allan variance analysis of the equivalent east
gyroscope before and after error compensation provides an efficient technique for the evaluation of
the gyroscope error estimation.

Comparisons of the Kalman filter convergence rapidity and north-finding accuracy have been
made to evaluate the north-finding algorithms. Compared with the other traditional approaches,
the new continuous rotation alignment approach based on the extended observation model can
improve the north-finding accuracy and convergence rapidity effectively. The experiments have shown
that a heading accuracy of 0.1◦ (1σ) can be achieved in 10 min at 28.22◦ north latitude using a HRG
IMU with gyro bias instability of 0.1◦/h, compared with 0.6◦ (1σ) north-finding accuracy for the
two-position alignment and 1◦ (1σ) for the fixed-position alignment.

In fact, ARW, RRW and Markov noise are the main error source of many gyroscopes (e.g., fiber
optic gyroscopes [18]). The new continuous rotation IMU alignment algorithm is not only applicable
to the Coriolis vibration gyros (a kind of cost effective HRGs in this paper), but is also suitable for
many other gyroscopes with similar stochastic error models.
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Appendix A

Appendix A.1. Proof of Equation (9) (Propagation of the ARW in a North-Finding System) [15,16]

The equivalent east gyroscope integration error δθaE caused by the ARW can be expressed
as follows:

δ
.
θaE = waE, waE ∈ N(0, σ2

aE) (A1)
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PaE is the variance of δθaE which can be expressed as follows:

.
PaE = qaE = σ2

aE
PaE(t) = σ2

aEt
(A2)

where qaE is the variance of waE. t is the integration time. Suppose tn is the alignment time,
PaE(tn) = σ2

aEtn, the RMS of azimuth misalignment σφDa due to ARW can be calculated as follows:

σφDa =

√
PaE(tn)

tnΩ cos L
=

σaE
√

tn

tnΩ cos L
=

σaE√
tnΩ cos L

(A3)

This completes the proof.

Appendix A.2. Proof of Equation (10) (Propagation of the RRW in a North-Finding System) [15,16]

The equivalent east gyroscope integration error δθrE caused by the RRW can be written in matrix
form as: [

δ
.
θrE
.
εrE

]
= Ar

[
δθrE
εrE

]
+

[
0

wrE

]
wrE ∈ N(0, σ2

rE)

(A4)

The state transition matrix Ar and the system noise matrix qr can be written as:

Ar =

[
0 1
0 0

]
qr = E{

[
0

wrE

][
0

wrE

]T

} =
[

0 0
0 σ2

rE

]
(A5)

The state covariance matrix Pr can be obtained by calculating the Riccati matrix equation:

.
Pr = ArPr + PrAr

T + qr (A6)

Pr(t) =

[
1
3 σ2

r t3 1
2 σ2

r t2

1
2 σ2

r t2 σ2
r t

]
(A7)

PrE(t) = 1
3 σ2

r t3 (A8)

where PrE is the variance of δθrE. Thus, The RMS of azimuth misalignment σφDr due to the RRW can
be calculated as follows:

σφDr =

√
PrE(tn)

tnΩ cos L
=

√
1
3 σ2

rEt3
n

tnΩ cos L
=

σrE
√

tn√
3Ω cos L

(A9)

This completes the proof.

Appendix A.3. Proof of Equation (11) (Propagation of the Markov Process in a North-Finding System)

The equivalent east gyroscope integration error δθmE caused by the Markov process can be
expressed in matrix form as follows:[

δ
.
θmE
.
εmE

]
= Am

[
δθmE
εmE

]
+

[
0

wmE

]
wmE ∈ N(0, σ2

mE)

(A10)
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The state transition matrix Am and the system noise matrix qm can be written as:

Am =

[
0 1
0 − 1

τ

]
qm = E{

[
0

wmE

][
0

wmE

]T

} =
[

0 0
0 σ2

mE

]
(A11)

The state covariance matrix Pm can be obtained by calculating the Riccati matrix equation:

.
Pm = AmPm + PmAm

T + qm (A12)

Pm(t) =

[
P11(t) P12(t)
P21(t) P22(t)

]

=


1
2 τ2σ2

m(2t− τe−
2t
τ + 4τe−

t
τ − 3τ)

+Pεm(0)τ(1− 2e−
1
τ t + e−

2
τ t)

1
2 τ2σ2

m(1− e−
t
τ )

2
+ Pεm(0)τ(e

− 1
τ t − e−

2
τ t)

1
2 τ2σ2

m(1− e−
t
τ )

2
+ Pεm(0)τ(e

− 1
τ t − e−

2
τ t) τ

2 σ2
m(1− e−

2
τ t) + Pεm(0)e

− 2
τ t


(A13)

PmE(t) = P11(t) =
1
2

τ2σ2
m(2t− τe−

2t
τ + 4τe−

t
τ − 3τ) + Pεm(0)τ(1− 2e−

1
τ t + e−

2
τ t) (A14)

PεmE(0) is the variance of the initial value of Markov process.
The RMS of azimuth misalignment σφDm due to the Markov process can be calculated as follows:

σφDm =

√
PmE(tn)

tnΩ cos L
=

√
1
2 τ2σ2

m(2t− τe−
2t
τ + 4τe−

t
τ − 3τ) + Pεm(0)τ(1− 2e−

1
τ t + e−

2
τ t)

tnΩ cos L
(A15)

This completes the proof.

Appendix B

Appendix B.1. Theoretical Proof of the Effects of the Continuous Rotation on the ARW [15]

When the turntable is rotating, the equivalent east gyroscope integration error δθaE caused by the
ARW can be expressed as follows:

δ
.
θaE = Ba

[
wax

way

]
(B1)

in which Ba =
[

sin ω0t cos ω0t
]
, wax ∈ N(0, σ2

aE), way ∈ N(0, σ2
aE)Suppose:

qa = E{
[

wax

way

][
wax

way

]T

} =
[

σ2
aE 0
0 σ2

aE

]
(B2)

The state covariance matrix Pa can be calculated as follows:

.
Pa = BaqaBa

T =
[

sin ω0t cos ω0t
]
q

[
sin ω0t
cos ω0t

]
= σ2

aE

Pa(t) = σ2
aEtn

(B3)

which is the same as the Equation (A3). Therefore, continuous rotation alignment has no effort on the
ARW of the gyroscope.

Appendix B.2. Theoretical Proof of the Effects of the Continuous Rotation on the RRW [15]

When the turntable is rotating, the equivalent east gyroscope integration error δθrE caused by the
RRW can be expressed as follows:



Sensors 2016, 16, 2113 16 of 18

 δ
.
θrE
.
εrx
.
εry

 =

 0 sin ω0t cos ω0t
0 0 0
0 0 0


 δθrE

εrx

εry

+

 0
wrx

wry


wrx ∈ N(0, σ2

rE), wry ∈ N(0, σ2
rE)

(B4)

The matrices Ar, Br and qr are:

Ar =

 0 sin ω0t cos ω0t
0 0 0
0 0 0

 Br = I2×2

qr = E{

 0
wrx

wry


 0

wrx

wry


T

} =

 0 0 0
0 σ2

rE 0
0 0 σ2

rE


(B5)

The state covariance matrix Pr can be calculated by Equation (A6), that is:

Pr =



2σ2
rE

ω2
0
(tn − sin ω0tn

ω0
)

σ2
rE

ω2
0
(sin ω0tn

−ω0t cos ω0tn)

σ2
rE

ω2
0
(ω0tn sin ω0tn

+ cos ω0tn − 1)
σ2

rE
ω2

0
(sin ω0tn

−ω0tn cos ω0tn)
σ2

rEtn 0

σ2
rE

ω2
0
(ω0tn sin ω0tn

+ cos ω0tn − 1)
0 σ2

rEtn


(B6)

PrE =
2σ2

rE
ω2

0
(tn −

sin ω0tn

ω0
) ≈

2σ2
rE

ω2
0

tn (B7)

Compared with Equations (A2) and (A8), Equation (B7) shows that continuous rotation transforms
the RRW into a much small equivalent ARW, which gives an explanation for Figure 5.

When the turntable is rotating, the RMS of azimuth misalignment σφDr due to the RRW can be
calculated as follows:

σφDr =

√
2σ2

rE
ω2

0
(tn − sin ω0tn

ω0
)

tnΩ cos L
=

σrE

√
2(tn − sin ω0tn

ω0
)

ω0tnΩ cos L
(B8)

Assuming the alignment time tn is 10 min, the rotation rate of the turntable is 10◦/s, the variance
of the RRW is 0.02◦/h3/2, the RMS values σφDr of the azimuth misalignment due to the RRW can be
obtained based on Equations (A9) and (B8).

When the turntable is not rotating:

σφDr =
σrE
√

tn√
3Ω cos L

= 0.020(◦) (B9)

When the turntable is rotating:

σφDr =
σrE

√
2(tn − sin ω0tn

ω0
)

ω0tnΩ cos L
= 4.8× 10−4(◦) (B10)

Thus, the RRW of the gyroscope can be eliminated by continuous rotation alignment.
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Appendix B.3. Theoretical Proof of the Effects of the Continuous Rotation on the Markov Noise

When the turntable is rotating, the equivalent east gyroscope integration error δθmE caused by the
Markov noise can be expressed as follows: δ

.
θmE
.
εmx
.
εmy

 =

 0 sin ω0t cos ω0t
0 − 1

τ 0
0 0 − 1

τ


 δθmE

εmx

εmy

+

 0
wmx

wmy


wmx ∈ N(0, σ2

m), wmy ∈ N(0, σ2
m)

(B11)

The matrix Am, Bm and qm is:

Am =

 0 sin ω0t cos ω0t
0 − 1

τ 0
0 0 − 1

τ

 Bm = I3×3 qm = E{

 0
wmx

wmy


 0

wmx

wmy


T

} =

 0 0 0
0 σ2

mE 0
0 0 σ2

mE

 (B12)

The state covariance matrix Pm can be calculated by Equation (A3), that is:

Pm =



τ2σ2
m

2(1+τ2ω0
2)

2 (−τe−
2t
τ − 3τ + 2t + τ3ω0

2(1− e−
2t
τ )

+2τ2ω0
2t + 4τ cos ω0te−

t
τ − 4τ2ω0 sin ω0te−

t
τ )

+
τ2PεmE (0)

(1+τ2ω0
2)

2 (1 + e−
2t
τ + τ2ω0

2(1 + e−
2t
τ )

−2e−
t
τ cos ω0t− 2τ2ω0

2e−
t
τ cos ω0t)

∗ ∗

− τ2σ2
m

2(1+τ2ω0
2)
(−τω0e−

2t
τ cos ω0t + τω0 cos ω0t

−e−
2t
τ sin ω0t− sin ω0t)− τPεmE (0)

1+a2ω0
2 (−τω0e−

t
a

+e−
2t
a sin ω0t + τω0e−

2t
a cos ω0t)

τ
2 σ2

m(1− e−
2
τ t)

+PεmE(0)e
− 2

τ t ∗

τ2σ2
m

2(1+τ2ω0
2)
(−2e−

t
τ + e−

2t
τ cos ω0t

+ cos ω0t− τω0e−
2t
τ sin ω0t + τω0 sin ω0t)

+
τPεmE (0)
1+τ2ω0

2 (e−
t
τ − e−

2t
τ cos ω0t + τω0e−

2t
τ sin ω0t)

0
τ
2 σ2

m(1− e−
2
τ t)

+PεmE(0)e
− 2

τ t



(B13)

PmE = τ2σ2
m

2(1+τ2ω0
2)

2 [−τe−
2t
τ − 3τ + 2t + τ3ω0

2(1− e−
2t
τ ) + 2τ2ω0

2t + 4τ cos ω0te−
t
τ − 4τ2ω0 sin ω0te−

t
τ ]

+
τ2PεmE (0)

(1+τ2ω0
2)

2 [1 + e−
2t
τ + τ2ω0

2(1 + e−
2t
τ )− 2e−

t
τ cos ω0t− 2τ2ω0

2e−
t
τ cos ω0t]

≈ τ2σ2
m

2(1+τ2ω0
2)

2 [−τe−
2t
τ − 3τ + 2t + τ3ω0

2(1− e−
2t
τ ) + 2τ2ω0

2t] +
τ2PεmE (0)

(1+τ2ω0
2)

2 [1 + e−
2t
τ + τ2ω0

2(1 + e−
2t
τ )]

(B14)

When the turntable is rotating, the RMS of azimuth misalignment σφDm due to the RRW can be
calculated as follows:

σφDm =

√
PmE(tn)

tnΩ cos L

=
τ

√
1
2 σ2

m(−τe−
2t
τ −3τ+2t+τ3ω0

2(1−e−
2t
τ )+2τ2ω0

2t)+PεmE (0)(1+e−
2t
τ +τ2ω0

2(1+e−
2t
τ ))

tnΩ cos L(1+τ2ω0
2)

(B15)

Similar to the theoretical proof of the RRW, assuming the alignment time tn is 10 min, the rotation
rate of the turntable is 10◦/s, the Markov time constant is 60 s, the variance of the Markov driving
noise is 0.02◦/h/

√
s, the RMS values σφDm of the azimuth misalignment due to the Markov noise can

be obtained based on Equations (A15) and (B15).
When the turntable is not rotating:

σφDm =

√
1
2 τ2σ2

m(2t− τe−
2t
τ + 4τe−

t
τ − 3τ) + PεmE(0)τ(1− 2e−

1
τ t + e−

2
τ t)

tnΩ cos L
= 0.21(◦) (B16)
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When the turntable is rotating:

σφDm =
τ

√
1
2 σ2

m(−τe−
2t
τ −3τ+2t+τ3ω0

2(1−e−
2t
τ )+2τ2ω0

2t)+PεmE (0)(1+e−
2t
τ +τ2ω0

2(1+e−
2t
τ ))

tnΩ cos L(1+τ2ω0
2)

= 0.02(◦)
(B17)

Thus, the Markov noise of the gyroscope can be eliminated by continuous rotation alignment.
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