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Abstract: The Kalman filter is an optimal estimator with numerous applications in technology,
especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering
algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast
to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference
of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel
adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity
filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed
algorithm, a robust estimation method is employed to control the influence of outliers. In order to
verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS)
and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental
results have shown that the proposed algorithm has multiple advantages compared to the other
filtering algorithms.
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1. Introduction

Accurate Global Positioning System (GPS) measurement data can be used to control the Inertial
Navigation System (INS) accumulative errors. On the other hand, the INS can be used in cases
when the GPS fails. Thus, the integration of GPS and INS has been widely adopted in the field
of dynamic navigation and positioning. The Kalman filter is one of the most celebrated real-time
optimal estimators [1], and therefore it has become the basic data-fusion approach in navigation and
positioning [2,3]. Unfortunately, the Kalman filter performance depends on many factors, thus it
cannot meet the requirements of certain nonlinear systems and the performance is susceptible to
outliers. Hence, many improved filtering algorithms were proposed, for instance, the unscented
Kalman filter [4,5], the particle filter [6], the robust filter [7,8], the adaptive filter [9–12], and so
forth. The nonlinear problem can be handled by the unscented Kalman filter or the particle filter,
however, they both become unstable in a high-dimensional case. On the other hand, the cubature
Kalman filter is a recently developed nonlinear filtering algorithm [13]. Compared with the unscented
Kalman filter, the cubature Kalman filter shows better performance in stability; therefore, it has been
adopted in the GPS/inertial measurement unit (IMU) integrated navigation system [14]. Many forms
of robust filtering algorithms were proposed to control the influence of outliers, but the influence
of the model errors was neglected. The multiple-model-based adaptive estimation (MMAE) and
innovation-based adaptive estimation (IAE) represent the adaptive Kalman filtering approaches. In the
MMAE, there is a set of Kalman filters which work in parallel under different models, while in the IAE
the adaptation is applied directly to the statistical information. Moreover, the IAE is more applicable
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to the GPS/INS integrated navigation systems [9]. The DIA (detection, identification, and adaptation)
methods represent the recursive testing procedures, and they were proposed to eliminate the effects of
outliers [15]. In the DIA methods, firstly, the model errors are detected and identified, then deviations
of the state estimates caused by the model errors are eliminated, and finally, the adaptation in which
the model is recovered from the identified errors, is implemented. However, the identification is quite
difficult, especially when the measurements are not accurate [16].

Recently, the adaptively robust filtering has been proposed for dynamic navigation and
positioning [16,17]. The combination of adaptive filter and robust filter provides the required
adaptivity and robustness, and the adaptive–robust filter has a better ability to mitigate the influences
of dynamic model deviations and outlying measurements [16,18,19]. Nevertheless, the number
of the measurements should be equal to or greater than the state vector dimension. Hence, the
adaptively robust filtering can be applied in a limited number of cases [20]. It should be noticed
that the aforementioned filtering algorithms do not consider the interference. The minimization
of estimation error was used to develop the H-infinity filter without the information on statistical
properties [21,22]. The H-infinity filter can be used to address the uncertainties in the measurement
noise [20,23]. Hassibi has shown that the least mean squares (LMS)-based adaptive filtering algorithm
represents the H-infinity optimal, and that the H-infinity algorithm is applicable in the uncertain
environments [24]. However, the median-based filters might be highly robust, but not efficient [20].
Moreover, the H-infinity filter fails in the presence of outliers [8]. The performance of the H-infinity
filter can be improved only if the effects of the outliers are controlled. The robust estimation method
provides a way to control the influence of outliers [25–27]. Hence, the robust estimation method can
be applied to improve the robustness and stability of the H-infinity filter. Accordingly, in order to
control the outliers influence, a new filtering scheme based on combination of the adaptive filter and
the H-infinity filter should be developed.

This paper focuses on a comprehensive filtering algorithm based on the combination of the
adaptive filter and the H-infinity filter. According to the model errors and interference, a novel
filtering algorithm intended for the GPS/INS integrated navigation is developed. The GPS/INS
integrated dynamic navigation was tested using the cubature Kalman filter. The experimental results
have shown that the proposed algorithm has better performance compared to the commonly used
filtering algorithms.

The paper is organized as follows. In Section 2, a basic principle of the adaptive filter and
the H-infinity filtering algorithms are introduced, and scaling factors are discussed. In Section 3,
the adaptive H-infinity filtering algorithm and the robust estimation method are presented. The
equations of dynamic model and measurement model intended for the GPS/INS integrated navigation
are listed in Section 4. In Section 5, the proposed algorithm is verified by experiments and the
experimental results are provided; in addition, a comparison to other filtering algorithms is performed
and the obtained results are discussed. Lastly, a brief conclusion is given in Section 6.

2. The Adaptive Kalman Filter and the H-Infinity Filter

2.1. The Adaptive Kalman Filter

Various filtering algorithms have been developed in order to mitigate the influence of model errors,
such as the adaptive Kalman filter. The adaptive algorithms intended for the GPS/INS integrated
navigation can be divided into multiple-model adaptive estimation, adaptive stochastic modeling, and
covariance scaling [28]. In the multiple-model adaptive estimation, a set of Kalman filters works in
parallel, under different models of the filter’s statistical information [9]. A single or multiple factor(s)
of the state covariance matrix can be used to improve the stability and convergence performance,
thus, it is important to select a suitable scaling factor. In general, the scaling factor is determined
empirically, based on experience or innovation and residual information [23]. In reference [12],
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two adaptive factors were derived, and the filtering performance of the algorithm based on the optimal
adaptive factor was superior to the one based on the nonoptimal adaptive factors.

The dynamic model and measurement model are given by:{
xk = Φk,k−1xk−1 + wk
zk = Hkxk + vk

, (1)

where xk is the state vector, Φk,k−1 presents the state transition matrix, Hk is the measurement matrix,
zk denotes the measurement vector, and wk and vk are the system noise and measurement noise,
respectively. The predicted state vector and its covariance matrix are defined by:

xk/k−1 = Φk,k−1xk−1, (2)

Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk, (3)

where xk/k−1 is the predicted state vector, and Pk/k−1 and Qk denote the predicted covariance matrices
of xk/k−1 and wk, respectively.

According to the rule of the least squares estimation, the following can be written:

VT
k R−1

k Vk + VT
xk/k−1

P−1
k/k−1Vxk/k−1 = min, (4)

where Vk and Vxk/k−1 denote the residual vectors of zk and xk/k−1, respectively.
The solution of the standard Kalman filter is obtained by:

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

, (5)

xk/k = xk/k−1 + Kk(zk − Hkxk/k−1), (6)

where Rk is the covariance matrix of the measurement noise. If the risk function is defined by:

VT
k R−1

k Vk + αkVT
xk/k−1

P−1
k/k−1Vxk/k−1 = min, (7)

then the solution of the adaptive Kalman filter is obtained by:

xk/k = (HT
k R−1

k Hk + αkP−1
k/k−1)

−1
(HT

k R−1
k zk + αkP−1

k/k−1xk/k−1), (8)

where αk denotes the adaptive factor. The equivalent expression of Equation (8) is in reference [27]:

xk/k = xk/k−1 +
1
αk

Pk/k−1HT
k (

1
αk

HkPk/k−1HT
k + Rk)(zk − Hkxk/k−1), (9)

Four types of the adaptive factors and error-learning statistics were summarized in reference [17].
The predicted residual statistic was adopted if no redundant information exists, and the adaptive
factor based on the three-segment function was [16,29]:

αk =


1

∣∣∆Vk
∣∣ ≤ c0

c0
|∆Vk| (

c1−|∆Vk|
c1−c0

)
2

c0 <
∣∣∆Vk

∣∣ ≤ c1

0
∣∣∆Vk

∣∣ > c1

, (10)

where ∆Vk denotes the learning statistic based on the predicted residual, ∆Vk =

(
VT

k Vk
tr(PVk

)

) 1
2
,

PVk
= HkPk/k−1HT

k + Rk, Vk denotes the innovation vector, further, 1.0 ≤ c0 ≤ 1.5, and 3.0 ≤ c1 ≤ 8.5.
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In Equation (9), αk 6= 0, therefore, when Equation (9) is used, the adaptive factor based on the
two-segment function [17], defined by Equation (11), should be adopted:

αk =

{
1

∣∣∆Vk
∣∣ ≤ c

c
|∆Vk|

∣∣∆Vk
∣∣ > c , (11)

where 1.0 ≤ c ≤ 2.5, and the optimal value of c is 1.0 [12,17].

2.2. Basic Principle of the H-Infinity Filter

The H-infinity filter is a special form of the Kalman filter, and the principle of the H-infinity filter
is based on the H-infinity optimal estimation that guarantees the smallest estimation energy error for
all possible disturbances of the fixed energy [30]. The cost function of a nonlinear filter is defined by:

J =

N
∑

k=1
‖xk − x̂k‖2

‖x0 − x̂0‖2
P−1

0
+

N
∑

k=1
(‖wk‖2

Q−1
k

+ ‖vk‖2
R−1

k
)

, (12)

where N is the number of filtering epochs, x0 is the initial value of the state vector x with the
covariance matrix P0, x̂0 and x̂k are the estimated state vectors of x0 and xk, respectively, and the
expression ‖x0 − x̂0‖2

P−1
0

denotes (x0 − x̂0)
TP−1

0 (x0 − x̂0). In general, the estimate, x̂k, which satisfies

x̂k = arg min‖J‖∞, should be found in order to minimizes J. Actually, an analytical solution for the
optimal H-infinity filter is difficult to achieve. Thus, a suboptimal recursion algorithm is developed by
setting a threshold value, γ, which satisfies the following Riccati inequality [31]:

P−1
k + HT

k Hk − γ2LT
k Lk > 0, (13)

where Pk is the covariance matrix of xk, Lk is the coefficient matrix of the constraint equation, and Lk
is generally defined by the unit matrix I. The recursion equations of the H-infinity filter are listed
below [31]:

xk/k−1 = Φk,k−1xk−1, (14)

Pk/k−1 = Φk,k−1Pk−1/k−1ΦT
k,k−1 + Qk, (15)

xk/k = xk/k−1 + Kk(zk − Hkxk/k−1), (16)

Kk = Pk/k−1HT
k (HkPk/k−1HT

k + Rk)
−1

, (17)

Pk/k = Pk/k−1 −Φk/k−1Pk/k−1[HT
k LT

k ]R
−1
e,k

[
Hk
Lk

]
Pk/k−1ΦT

k/k−1, (18)

R−1
e,k =

[
I 0
0 − γ2 I

]
+

[
Hk
Lk

]
Pk/k−1[HT

k LT
k ], (19)

The H-infinity filter minimizes the estimation error in the worst case, which makes it more robust
than the standard Kalman filter. In addition, the H-infinity filter becomes more robust when the
constraint parameter γ decreases. However, the value of γ should not be in the vicinity of zero,
because that might cause the divergence of the H-infinity filter [32]. In general, γ is fixed to certain
value, which is chosen by experience. In addition, the H-infinity filter represents a rigorous method for
the system with an unreliable model [30].
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3. A Novel Adaptive H-Infinity Filtering Algorithm

In the adaptive filtering algorithms, it is assumed that the measurements are reliable and that the
predicted residual can reflect the deviations of the model information. However, some of the adaptive
filtering algorithms cannot control the effects of the outliers. As mentioned before, the H-infinity filter
can overcome the uncertainties in the measurements, but the effects of the outliers cannot be controlled
just by the H-infinity filter, thus, some robust Kalman filtering algorithms were developed [7].

In this paper, an integrated adaptive H-infinity filtering algorithm is proposed. An adaptive factor
was constructed in order to control the influence of the dynamic model errors, and the H-infinity filter
was adopted to address the uncertain interference. The recursion equations of the adaptive H-infinity
filter can be expressed by:

xk/k−1 = Φk,k−1xk−1, (20)

Pk/k−1 = Φk,k−1Pk−1/k−1ΦT
k,k−1 + Qk, (21)

xk/k = xk/k−1 + Kk(zk − Hkxk/k−1), (22)

Kk =
1
αk

Pk/k−1HT
k (

1
αk

HkPk/k−1HT
k + Rk)

−1
, (23)

Pk/k =
1
αk

Pk/k−1 −
1
α2

k
Φk/k−1Pk/k−1[HT

k LT
k ]R
−1
e,k

[
Hk
Lk

]
Pk/k−1ΦT

k/k−1, (24)

R−1
e,k =

[
I 0
0 − γ2 I

]
+

1
αk

[
Hk
Lk

]
Pk/k−1[HT

k LT
k ], (25)

where Kk denotes the equivalent gain matrix of the H-infinity filter. Since, there were no redundant
measurements, the adaptive factor based on the two-segment function was adopted, and the predicted
residual was selected as the statistic value.

In the integrated adaptive H-infinity filtering algorithm, the robust estimation method was
employed to decrease the effects of outlying measurements. The selection of the equivalent weight and
equivalent covariance matrix should be considered in the robust estimation. In general, the components
of the predicted state vector are correlated, so the equivalent covariance matrix constructed by scaling
factor, λij, is applied. The scaling factor is defined by reference [33]:

λij =
√

λii

√
λjj, (26)

λii =


1

∣∣∣VXki

∣∣∣ ≤ c∣∣∣∣VXki

∣∣∣∣
c

∣∣∣VXki

∣∣∣ > c
, (27)

where
∣∣∣VXki

∣∣∣ denotes the component of the predicted residual vector, 1.0 ≤ c ≤ 1.5, and λjj can be

expressed the same as λii. Thus, the equivalent covariance matrix Rk is obtained by

Rk = λijRk, (28)

The entire process of the proposed filtering algorithm is shown in Figure 1.
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4. The GPS/INS Integrated Navigation

Recently, in the GPS/INS integrated navigation, three types of integration have been developed:
loosely coupled, tightly coupled, and deeply coupled [34]. In the loosely coupled integrated navigation,
a 15-dimension state vector is adopted, which includes the deviations of position, velocities, attitudes,
and the noises of gyroscope and accelerometer. Thus, the state vector x̂ is defined by:

x̂ = [δx, δy, δz, δvx, δvy, δvz, δφe, δφn, δφu, δgx, δgy, δgz, δax, δay, δaz], (29)

Since, the GPS/INS integrated navigation system represents a nonlinear system, the cubature
Kalman filter is applied to address the nonlinear problem. For a discrete nonlinear system, it can be
written as follows: {

xk = f (xk−1) + wk
zk = h(xk) + vk

, (30)

where f (·) and h(·) denote the known nonlinear functions. The cubature points are generated by:

ξ =

√
m
2
[1]i, i = 1, . . . , m, (31)

where m denotes the number of the cubature points and m = 2n, n denotes the dimension of the state

vector, and [1] denotes the point

(
1
0

)
in this paper. Then, the equations of the cubature Kalman

filter are given by reference [14]:
(a) Time update 

Sk−1/k−1 = SVD(Pk−1/k−1)

Xk−1,k−1 = Sk−1/k−1ξ + xk−1/k−1
X∗k/k−1 = f (Xk−1,k−1)

, (32)


xk/k−1 = 1

m

m
∑

i=1
X∗i,k/k−1

Pk/k−1 = 1
m

m
∑

i=1
X∗i,k/k−1X∗Ti,k/k−1 − xk/k−1xT

k/k−1 + Qk

, (33)
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(b) Measurement update

sk/k−1 = SVD(Pk/k−1)

Xk/k−1 = sk/k−1ξ + xk/k−1
Yk/k−1 = h(Xi,k/k−1)

yk/k−1 = 1
m

m
∑

i=1
Yi,k/k−1

Pzz,k/k−1 = 1
m

m
∑

i=1
Yi,k/k−1YT

i,k/k−1 − yk/k−1yT
k/k−1 + Rk

Pxz,k/k−1 = 1
m

m
∑

i=1
Xi,k/k−1YT

i,k/k−1 − xk/k−1yT
k/k−1

, (34)

then the final measurement update equations are obtained by:
xk/k = xk/k−1 + Kk(zk − zk/k−1)

Kk = Pxz,k/k−1P−1
zz,k/k−1

Pk/k = Pk/k−1 − KkPzz,k/k−1KT
k

, (35)

where S denotes the square root of the covariance matrix P, Xk−1,k−1 denotes the cubature points of
the states vector, X∗k/k−1 denotes the propagated cubature points, “SVD” denotes the singular value
decomposition of a matrix; and Zk/k−1 denotes the propagated cubature points of the measurement
vector. Accordingly, the adaptive H-infinity filtering algorithm intended for the GPS/INS integrated
navigation system is summarized as follows:

(a) Time update

xk/k−1 =
1
m

m

∑
i=1

X∗i,k/k−1, (36)

Pk/k−1 =
1
m

m

∑
i=1

X∗i,k/k−1X∗Ti,k/k−1 − xk/k−1xT
k/k−1 + Qk, (37)

(b) Measurement update
xk/k = xk/k−1 + Kk(zk − zk/k−1), (38)

Kk = Pxz,k/k−1P−1
zz,k/k−1, (39)

Pk/k =
1
αk

Pk/k−1 − [Pxz,k
1
αk

Pk/k−1]

[
Pzz,k − Rk + I PT

xz,k
Pxz,k

1
αk

Pk/k−1 − γ2 I

]−1
 PT

xz,k(
1
αk

Pk/k−1

)T

, (40)

In addition, Rk should be replaced with the equivalent covariance matrix Rk in order to make the
algorithm more robust.

In the loosely coupled integrated navigation, the differences in position and velocity, Zρ, between
GPS and INS are considered as the external measurements, namely:

Zρ(t) = ρGPS − ρINS, (41)

where ρGPS, namely, xGPS, yGPS, zGPS, vXGPS, vYGPS, and vZGPS, presents the output information of the
GPS in the WGS-84 coordinate system, while the output information of the INS is ρINS, namely, xINS,
yINS, zINS, vXINS, vYINS, and vZINS. Then, the measurement equation is as follows:

Zk =

[
rGPS − rINS

vGPS − vINS

]
(42)

where Zk represents the measurement vector of the integrated system, and rGPS, rINS and vGPS, vINS

are position and velocity output information of GPS and INS, respectively. Compared to the loosely
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coupled, the tightly coupled integration has better performance in terms of precision. However,
the loosely coupled navigation can be implemented easily, and the computation process is more
concise [35].

5. Test Cases and Data Analysis

5.1. Test Case 1

In this case, the GPS and INS data were obtained by a small aerial vehicle equipped with inertial
sensors of automotive-grade quality and a GPS receiver [36]. Four schemes were implemented to
examine the performance of the proposed filtering algorithm:

Scheme 1: Kalman Filter (KF);
Scheme 2: Adaptive Kalman Filter (AKF) (two-segment function was adopted and c = 1.0);
Scheme 3: H-infinity Filter (HF);
Scheme 4: Adaptive H-infinity Filter (AHF) (two-segment function was adopted and c = 1.0, and

the robust estimation method was adopted with the double-factors and c′ = 1.5, where c′ denotes the
criterion of the double-factors equivalent covariance matrix);

Position errors of all mentioned schemes are demonstrated in the following:
As it can be seen in previous figures, there is little difference between Figures 2 and 3, which

indicates that there are limited effects of the model errors. Due to the minimization of the worst-case
estimation error, the H-infinity filter performs slightly better than the adaptive Kalman filter, which
can be seen from Figure 4 and Table 1. Nonetheless, Figure 5 indicates that a noticeable improvement
was obtained by the adaptive H-infinity filtering algorithm in terms of dynamic model errors and the
uncertain interferences.
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The Root Mean Squares Errors (RMSEs) of the schemes are presented in Table 1.

5.2. Test Case 2

In this experiment, data were collected by a vehicle equipped with a GPS/INS integrated
navigation system, which was composed of two GPS receivers and an inertial measurement unit
(IMU). One of the GPS receivers was set as a reference station, and another receiver as well as the IMU
were mounted on the vehicle. GPS data were calculated by the double difference pseudorange with
variances of 0.25 m2 and 0.0025 m2/s2, respectively. The sampling frequencies of GPS and IMU were
1 Hz and 100 Hz, respectively. The precise results achieved by the double difference carrier phase were
regarded as references. Afterwards, four schemes were performed in the integrated navigation system:

Scheme 1: Kalman Filter (KF);
Scheme 2: Adaptive Kalman Filter (AKF) (two-segment function was adopted and c = 1.0);
Scheme 3: H-infinity Filter (HF);
Scheme 4: Adaptive H-infinity Filter (AHF) (two-segment function was adopted and c = 1.0, and

the robust estimation method was adopted with the double-factors where c′ = 1.5).

5.2.1. Experiments without Outliers

Position errors of used schemes are demonstrated in the following:
Due to the vehicle’s movement over the bumps, disturbances can be found in both Figures 6

and 7, which indicates that the robustness of the KF and AKF algorithms should be improved. Because
of decrease of the dynamic model errors, the AKF algorithm shows a slightly better performance
than the KF algorithm. Apparently, the uncertain interference is controlled, thus, the HF and AHF
algorithms (Figures 8 and 9) perform much better than the first two algorithms. The robustness of
the AHF algorithm is improved by the robust estimation method, therefore, the error amplitude is
reduced. The RMSE of each scheme is given in Table 2.
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Figure 8. Position errors of the HF algorithm.



Sensors 2016, 16, 2127 12 of 16

Sensors 2016, 16, 2127  12 of 16 

 

 
Figure 7. Position errors of the AKF algorithm. 

 
Figure 8. Position errors of the HF algorithm. 

 
Figure 9. Position errors of the AHF algorithm. 

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

1

X
 /m

0 100 200 300 400 500 600 700 800
-2

-1

0

1

2

Y
 /m

0 100 200 300 400 500 600 700 800
-1

0

1

2

t /s

Z 
/m

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

X
 /m

0 100 200 300 400 500 600 700 800
-2

-1

0

1

2

Y
 /m

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

t /s

Z 
/m

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

X
 /m

0 100 200 300 400 500 600 700 800
-1

-0.5

0

0.5

1

Y
 /m

0 100 200 300 400 500 600 700 800
-0.5

0

0.5

t /s

Z 
/m

Figure 9. Position errors of the AHF algorithm.

Table 2. RMSE values of the schemes (m).

Axis KF AKF HF AHF

X 0.129 0.105 0.096 0.078
Y 0.284 0.251 0.204 0.121
Z 0.188 0.160 0.128 0.094

As mentioned before, RMSEs of the AKF and HF algorithms, presented in Table 2, are both smaller
than RMSE of the KF algorithm. The integration of the AKF and HF algorithms into the AHF algorithm
provides better performance compared to the other algorithms.

5.2.2. Experiments with Outliers

In these experiments, we used data from the Section 5.2.1, but the single gross errors were added
artificially to the GPS measurement data at the 160th, 360th, 460th, and 560th epochs, respectively, and
the constantly changed outliers were added to all epochs between the 251th and 280th epochs. Then,
the previously used schemes were implemented again, and the obtained position errors of all schemes
are displayed in Figures 10–13.
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According to the presented results, it can be concluded that in the presence of outliers, filtering
results were mostly dependent on outliers. Moreover, Figures 10 and 11 show that the KF and AKF
filtering results have similar trends, while the latter figure manifests a reduced error. As it can be
seen in Figure 12, the filtering results of the HF algorithm are stable except in the epochs that contain
outliers. Furthermore, Figure 13 shows that the proposed filtering algorithm has better performance
than other algorithms, so the influence of single and constantly changed outliers is reduced using the
AHF algorithm. The RMSE values of all used scheme are presented in Table 3.

Table 3. RMSE values of the schemes (m).

Axis KF AKF HF AHF

X 0.446 0.282 0.232 0.083
Y 0.494 0.338 0.298 0.128
Z 0.413 0.266 0.222 0.099

Compared to the Kalman filter, the filtering precision of the AKF and HF algorithms is improved.
However, both AKF and HF algorithms are significantly affected by the outliers. On the other hand, the
AHF algorithm shows better fault tolerance and robustness compared to other schemes. The adaptive
H-infinity filter is more robust because of the robust estimation method, based on the control of
dynamic model errors and uncertain interference. In all presented cases, RMSEs of the AHF algorithm
are the smallest for all coordinates, which means that the positions calculated by the AHF algorithm
are in good agreement with the actual positions.

6. Conclusions

An integrated adaptive H-infinity filtering algorithm for mitigation of positioning errors caused
by dynamic model errors and uncertain interference is presented. The proposed filtering algorithm is
improved by a robust estimation method, wherein both single and constantly changed outliers are
considered. In addition, the proposed algorithm was verified by the GPS/INS integrated navigation.
The results have shown that the proposed algorithm has better performance than other algorithms.

The conclusions can be summarized as follows:

(1) The adaptive Kalman filtering algorithms were developed in order to reduce the positioning
errors, and the proper adaptive factors were selected. The H-infinity filtering algorithm performed
well in the GPS/INS integrated navigation system that contained the uncertainties. However, the
performance was greatly affected by the outliers.

(2) The integration of the adaptive Kalman filter, the H-infinity filter, and the robust estimation
method provided the AHF algorithm, which can address the deviations caused by dynamic model
errors and interference. Since the proposed algorithm was verified by real data, a wide application
of the proposed AHF algorithm in dynamic navigation and positioning can be expected.
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