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Abstract: We study the secure distributed detection problems under energy constraint for IoT-oriented
sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer
secure distributed detection scheme in light of its energy efficiency, good scalability and robustness
over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem
of how to optimize the key thresholds for the estimated channel gain, which are used to determine
the sensor’s reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of
local detection results in determining whether to stay dormant for a sensor. To solve these problems,
we first analyze the error probability and derive the optimal thresholds in the CAE scheme under
a specified energy constraint. These results build a convenient mathematic framework for our
further innovative design. Under this framework, we propose a hybrid secure distributed detection
scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according
to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile,
the security is guaranteed through randomly flipping the local decisions forwarded to the fusion
center based on the channel amplitude. We further optimize the key parameters of our hybrid
scheme, including two local decision thresholds and one channel comparison threshold. Performance
evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy
constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.

Keywords: Internet of Things; wireless sensor network; distributed detection; eavesdropping;
physical layer security; energy constraint; decision fusion

1. Introduction

With the rapid advances in low-cost wireless sensors, radio frequency identification (RFID),
Web technologies and wireless communications recently, connecting various smart objects to Internet
and realizing the communications of machine-to-human and machine-to-machine with the physical
world have been expected widely [1]. That is the concept of Internet of Things (IoT), which can provide
ubiquitous connectivity, information gathering and data transmitting capabilities in different fields,
such as health monitoring, emergencies, environment control, military and industries. The pervasive
sensing and control capabilities brought by IoT will change our daily life significantly [2–4].

In an era of IoT, there are billions of devices linked to the Internet. Cisco predicts that 50 billion
devices are going to be in use in 2020 [3]. Such a large number of devices deployed in the IoT lead
to many technical challenges including spectrum scarcity, energy consumption and security [4–6].
Aiming to the spectrum scarcity problem, some enhanced technologies with high spectrum efficiency
are advocated, for example, the cognitive Internet of Things (CIoT) who introduces the cognitive radio
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technology to the IoT network [5]. A decentralized inference network where the nodes transmit the
compressed observations to reduce the required bandwidth is another solution [7], and the distributed
detection technique utilized in sensor networks is a typical instance [8–11]. Since a huge number of
devices are included in IoT, the energy to be spent for communication and computation is extremely
large and improving energy efficiency becomes more important. Although the energy harvesting
techniques can use the external energy source and relieve devices from the constraints induced by
battery usage, energy as a scarce resource should always be utilized carefully. Thus, an energy
efficiency solution has a significant role in IoT [4,12]. With the developing of IoT network, devices
will become smarter and start to handle more tasks of human. Thus, the devices have to be more
reliable and trustable [1]. However, there are a variety of attacks over different protocol layers which
attempt to disrupt the network or intercept the information in the IoT, including denial of service
(DoS) attacks, spoofed routing information attacks at network layer, flooding attacks at transport
layer, resource exhaustion attacks at link layer, jamming and tampering attacks at physical layer and
many others [13]. Now security has turned into an important aspect for IoT deployments [14,15].
Among various attacks, eavesdropping attack is the most common form of attack on data privacy [2,13].
In order to realize secure transmission, traditional key-based enciphering techniques at network layer
have been entrusted. However, in IoT networks with low-complex devices, the key distribution for
symmetric cryptosystems and the highly complex computation of asymmetric cryptosystems can
be very challenging [16]. Therefore, the robust physical-layer security methods with little or no aid
of encryption key and with low computational complexity can be adopted in IoT [2,5,17], further,
they could be combined with other lightweight cryptographic protocols to fulfill different security
targets of IoT.

An IoT system would integrate various technologies and communications solutions, such as
identification and tracking techniques, wired and wireless sensor and actuator networks and enhanced
communication protocols [1,18–20]. Sensor networks, especially the wireless sensor networks (WSN),
will play a crucial role in the IoT. Ubiquitous sensing provided by WSN can offer the ability to measure,
infer and understand environmental indicators. Cooperating with RFID system, WSN can track the
status of things better and build a bridge between the physical and digital world [18,21]. With the
size and complication of WSN growing, the spectrum scarcity and energy consumption problems
become more serious [22]. Furthermore, the broadcasting nature of wireless communications from
sensors to the controllers or fusion centers makes WSN vulnerable to eavesdropping. The physical
layer security solutions with low complexity and low overhead are obviously more suitable for WSN,
since the sensors have some practical constraints including limited computing capabilities, limited
storage memories and severe energy constraints [2,10].

Due to the low bandwidth and power requirement at sensors and the robustness to the
environments’ rapid changes, distributed detection in WSN has been utilized in a wide range
of fields such as emergency response, environment monitoring, medical monitoring and military
surveillance [10,23]. For distributed detection, sensors are deployed over a certain area to sense the
physical phenomena with binary state in a decentralized fashion. Each sensor makes a binary decision
based on its local observation and then transmits the local decision to a fusion center (FC) over wireless
channels [23]. For the practical resource constraints and the serious security issues in front of WSN,
secure distributed detection schemes under energy constraints are necessary for the development of
an efficient IoT. Various secure strategies for distributed detection have been proposed under different
assumptions on the eavesdroppers and transmission channels [8–10,23–29]. However, these studies
focused on either the local detection at sensors or the information transmission from sensors to the FC.
Moreover, the vast majority of them did not involve an energy constraint. Therefore, an efficient hybrid
solution combining the local decision with the transmission under an energy constraint, along with a
mathematic framework of analyzing error performance and optimizing parameters for the developed
schemes are selected as the research contents of this paper. The contributions of this paper can be
summarized as follows.



Sensors 2016, 16, 2152 3 of 30

(1) In order to enhance the operability of the channel aware flipping method [10] in an energy
constrained WSN, a specific energy limit indicator represented by the sensors’ activity probability is
taken as the additional design constraint over the perfect secrecy. We call this modified scheme the
transmission channel based only (TCBO) secure detection under energy constraint. Then, the simplified
log-likelihood ratios (LLR) computed approximately under the low and high signal-to-noise ratio
(SNR) conditions are derived. Following that, we obtain asymptotic error probabilities of the ally fusion
center (AFC) at the worst and best noise situations with help of the central limit theorem (CLT). Next,
the optimization problems with the perfect secrecy and energy constraint are established to find three
comparison thresholds used in the randomly flipping operation. After simplifying the optimization
target functions, the optimal thresholds are discussed and achieved. The above framework for error
probability analysis and parameters optimization will also be taken as the mathematic approach in our
newly designed scheme to solve for the main parameters.

(2) Considering local detection performance also affects the decision fusion evidently, we combine
the local observation quality with the transmission channel information to design a more efficient
hybrid scheme. Here, the energy constraint is satisfied by censoring the sensor with a less informative
local LLR and transmission security is guaranteed through randomly flipping the local decisions based
on the estimated channel gains. This innovative scheme is called the joint local decision and wireless
transmission (JLDWT) scheme. Then, following the mathematic framework given by the first work,
two local detection thresholds and one flipping comparison threshold are optimized to minimize the
AFC’s error rates, besides, satisfy the perfect secrecy condition and the energy limitation.

(3) At last, through an overall simulation from diffident perspectives, the above two schemes are
evaluated in a practical wireless transmission environment. The simulation results demonstrate that
the new proposed hybrid scheme can improve the error performance of the AFC under a relatively
high SNR transmission environment with a more severe energy constraint, as well as, maintain the
perfect secrecy.

The rest of the paper is organized as follows: an overview of related work is discussed in Section 2.
Section 3 describes the system model. The TCBO and JLDWT schemes are presented in Sections 4 and 5,
respectively. The simulation results are discussed in Section 6. Section 7 concludes the paper.

2. Related Work

In this section, we summarize the related work about physical layer security suitable for the IoT.
The communication network consisting of controllers and actuators and the sensor network composed
of sensors and controllers are two main subsystems of an abstracted IoT network [2]. The physical
layer security solutions possibly available for both subsystems will be presented in the following text.

In the communication network of the IoT, the controllers are the signal transmitters, which could
be equipped with multiple antennas and an adequate energy supply. Then, some of the classical secure
schemes at physical layer proposed for the downlink in LTE-Advanced network may be usable [30–39].
When the main channel (the transmitter to legitimate receiver channel) and the eavesdropper channel
are perfectly known, the beamforming (precoding) techniques can be adopted to maximize the signal
quality difference between the destination and the eavesdropper by strengthening or weakening
signals in certain dimensions. For the scenario of multiple-input, single-output and multi-antenna
eavesdropper (MISOME) with a single legitimate receiver, the optimal beamforming vector is the
generalized eigenvector corresponding to the largest generalized eigenvalue of the receiver and the
eavesdropper channel covariance matrice [30]. While, under the multiple-input, multiple-output
and multi-antenna eavesdropper (MIMOME) scenario, the search for the optimal precoder with a
total power constraint has a non-convex form and the solution can be found numerically. If the
power covariance constraint is considered, a closed form solution based on the generalized eigenvalue
decomposition (GEVD) can be obtained [31]. As for the case of multiple receivers and eavesdroppers,
the achievable secrecy rates can be used to build optimization problems to find a secrecy beamformer
or precoder [32], further, a simpler but less effective design can be achieved using the channel inversion
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technique [33]. In addition, when the eavesdropper’s CSI is unknown, emitting artificial noise (AN)
is helpful to prevent the eavesdropper from getting a good channel. The AN is often added in
the null space of the main channel with single destination and eavesdropper [34]. While, for the
case with multiple receivers and eavesdroppers, the AN would be placed in the null space of the
effective channels of all receivers [35]. Since AN may reduce the transmission power of the useful data,
power allocation between data and AN should be examined to ensure good performance under secrecy
constraint [36]. Another novel strategy to degrade the eavesdropper’s channel quality is based on
noise aggregation [40,41], where two adjacent timeslots are bounded to transmit two packets and the
transmitter performs bitwise exclusive-or (XOR) operation on the even packet with previous odd one.
Because the legitimate receiver can detect the packets in odd slots correctly by an ARQ protocol while
eavesdropper may only have a noisy observation, the channel noise in odd slots is aggregated to even
slots [41]. Obviously, many of the above security schemes are difficult to be directly employed in an IoT
setting, because the accurate legitimate channel state information at the transmitter (CSIT) is difficult
to acquire for the channel training opportunities are limited and the high rate feedback channels
are lack in the IoT. Moreover, the eavesdropper CSIT is more difficult to yield since eavesdroppers
remain completely passive. As for the AN based methods are also not desirable due to their higher
energy expenditure [2].

In addition, a variety of physical layer security solutions have been proposed in literature for the
distributed detection in sensor networks. With the assumption that the eavesdropping fusion center
(EFC) can only distinguish busy-idle state of sensor’s transmission, an optimal sensor censoring scheme
with a perfect secrecy and energy constraint was given in [8]. But the processing capability of the EFC
was too limited. Another category of effective scheme is the probabilistic ciphering based one, where
the sensor’s observation is randomly mapped to a set of quantization levels according to an optimal
mapping probabilities matrix [9,24,25]. However, the security is assured by assuming the EFC being
completely ignorant about the mapping probabilities. Moreover, the crucial energy efficient issue was
not discussed. In [26,27], the optimal local quantizer was examined through minimizing the detection
cost at the AFC meanwhile satisfying the constraints to the EFC detection cost or error performance,
but the energy consumption problem was not concerned, either. In addition, all of the above solutions
were not evaluated over a practical wireless channel and the effect of the transmission channel on
their security was not discussed. Afterwards, a category of channel aware encryption method was
proposed to realize the perfect secrecy from the EFC, including the type-based multiple access scheme
proposed in [23] and the channel-based bit flipping scheme designed in [10], where not the accurate
channel coefficients were needed, but only the channel gains had to be estimated using the pilot signal
from the AFC. In channel aware encryption, the good energy efficiency could be realized through
introducing the dormant sensors. The inherent significant difference of the wireless channels for the
EFC and the AFC was explored to achieve the perfect secrecy of the sensor’s information transmission,
due to the channels from sensors to the EFC and the AFC are independent of each other. Especially,
the channel-based randomly flipping method is very suitable for the distributed detection due to its
low complexity, good scalability and less limitation on the EFC. However, the work in [10] did not give
an efficient solution to optimize three comparison thresholds. In addition, when the sleeping sensor
was chosen, the channel gain was taken as the only metric while the local decision quality was not
concerned although it may induce more important influence on the fusion performance. In addition,
AN based mechanisms that let a part of sensors or the AFC transmit the jamming signal to degrade the
SINR of the EFC were also introduced to the sensor network [28,29]. However, the performance of the
AFC would also be reduced when the jamming signal worsens the EFC channel [29] or the external
energy would be spent by the AFC to interfere the EFC [28]. Based on the above drawbacks of the
previous works, we propose the secure and energy efficient JLDWT scheme, which is a hybrid method
combing the local detection and the wireless transmission, after designing an analysis framework to
complete the performance analysis and thresholds optimization of TCBO scheme.
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3. System Model

In this section, the concerned IoT sensor network scenario is given. The local detection and the
transmission scheme of local decisions from the sensors to the fusion center are introduced.

3.1. IoT Sensor Network

Consider a sensor network in IoT system illustrated by Figure 1, which performs distributed
detection for a binary hypothesis test of θ0 against θ1. A number of sensors are distributed near
the physical system to detect a binary target state and transmit their local decision results to an
AFC through a wireless parallel access channel (PAC). Meanwhile, a passive EFC overhears the
communications between the sensors and AFC and also attempts to detect the state of θ. The channels
from sensors to the AFC and the EFC are called the main and eavesdropping channels, respectively.
Moreover, the concerned sensor network is energy-constrained for the power supplies of the sensors
are usually severely constrained. Obviously, the security and energy saving are the main challenges
faced by our senor network. Therefore, in each local decision reporting slot, some sensors will keep
dormant to meet the energy constraint and some sensors among the active ones will transmit the
bit-flipping version of local detection results to make the EFC confused.
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Figure 1. IoT sensor network with the ally fusion center and eavesdropping fusion center.

In Figure 1, the sensors with the indices in the sets of {i1, i2, ..., iKN}, {j1, j2, ..., jKF} and
{k1, k2, ..., kKD} are included in the non-flipping group, flipping group and the dormant group,
respectively. Thus, the total number of sensors in the network is K = KF + KD + KN . In addition,
the observation to the physical system of the k-th sensor is denoted by xk. The communication
channels from sensors to the AFC and the EFC are represented by hA

k and hE
k , respectively. And they

are assumed to be independent and identically distributed (i.i.d.) Rayleigh block fading channels.
Moreover, a transmission probability or an activation probability β, which is proportional to the
per-sensor energy consumption, is introduced to represent the energy constraint.
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3.2. Local Detection of Sensors

For the k-th sensor, the acquired observation corrupted by additive noise is modeled as:

θ0 : xk = wk
θ1 : xk = θ + wk

(1)

where wk is an i.i.d zero-mean Gaussian random variable with variance σ2, i.e., wk ∼ N (0, σ2). Thus the
SNR of local detection can be computed and denoted by snrL = θ2/σ2. Based on the observation,
the sensor makes a one-bit local decision bk ∈ {0, 1} to indicate the absence or presence of θ by using
the Bayesian detection criteria:

f ( θ1| xk)

f ( θ0| xk)

bk=1
> λU

<
bk=0

λL
(2)

where f ( θi| xk) is the posterior probability distribution function (PDF) of θi based on xk for i = 0, 1.
The main difference of Equation (2) from the traditional Bayesian detection is that two rather than one
local decision thresholds are set here. λU and λL , which meet 0 < λL ≤ λU < ∞, are the upper and
lower thresholds and assumed to be identical at all the sensors. If the ratio of the posterior probability
distribution lies inside the region of [λL, λU ], it means that the observation appears less informative
for discriminating between θ0 and θ1, so the corresponding decision result is more likely to be false.
As for such kind of sensors, it is better to keep them silent for energy efficiency. Of course, this is the
basic idea of the sensor censoring technique [8,42]. However, in this paper, we adopt it to realize the
energy saving for the secure transmission of sensors and the details are described in Section 5.

The prior probabilities of θ0 and θ1 are assumed to be q0 and q1, respectively. Then the Equation (2)
can be transformed into:

λk =
f ( xk| θ1)

f ( xk| θ0)

bk=1
> λU(q0/q1)

<
bk=0

λL(q0/q1)
(3)

where f ( xk| θi) is the conditional PDF of xk under the hypothesis θi, and λk is the likelihood ratio (LR).
From Equation (1), it can be obtained that

f ( xk| θ1) =
exp[−(xk−θ)2/2σ2]√

2πσ

f ( xk| θ0) =
exp[−(xk)

2/2σ2]√
2πσ

(4)

Furthermore, the log-likelihood ratio (LLR) can be written as

ΛL
k = log(λk) =

θ

σ2 xk −
θ2

2σ2 (5)

Combining Equations (4) and (5), it can be easily derived that the conditional PDFs of ΛL
k are

f (ΛL
k

∣∣ θ1) =
1√

2π·snrL
exp

(
− (ΛL

k−snrL/2)2

2·snrL

)

f (ΛL
k

∣∣ θ0) =
1√

2π·snrL
exp

(
− (ΛL

k +snrL/2)2

2·snrL

) (6)

Furthermore, we can obtain that the equation f (ΛL
k

∣∣ θ1)/ f (ΛL
k

∣∣ θ0) = exp(ΛL
k ) is satisfied and

this is the nesting property of the LR.
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There are four possible cases for local detection, namely correct decisions under two states,
missed detection and false alarm. Based on Equations (3) and (6), we can calculate the probabilities of
four cases and obtain

Pd =
∫ ∞

log(λU ·q0/q1)
f
(
ΛL

k |θ1
)

dΛL
k = Q

(
log(λU ·q0/q1)−snrL/2√

snrL

)
Pm =

∫ log(λL ·q0/q1)
−∞ f

(
ΛL

k |θ1
)

dΛL
k = 1−Q

(
log(λL ·q0/q1)−snrL/2√

snrL

)
Pf =

∫ +∞
log(λU ·q0/q1)

f
(
ΛL

k |θ0
)

dΛL
k = Q

(
log(λU ·q0/q1)+snrL/2√

snrL

)
P0d =

∫ log(λL ·q0/q1)
−∞ f

(
ΛL

k |θ0
)

dΛL
k = 1−Q

(
log(λL ·q0/q1)+snrL/2√

snrL

)
(7)

where P0d is the probability of correct detection under θ being non-existent and
Q(x) = 1/

√
2π
∫ ∞

x exp(−t2/2)dt. In addition, the error probability of local detection for
each sensor can be defined as PEL = q0Pf + q1Pm. If we set λU = λL = λ, this error probability can be
given by

PEL = q0Q
(

log(λ · q0/q1) + snrL/2√
snrL

)
+ q1

[
1−Q

(
log(λ · q0/q1)− snrL/2√

snrL

)]
(8)

Furthermore, the first-order derivation of PEL with respect to λ is

dPEL
dλ = l

λ·
√

2snrL
exp

(
− [log(λ·q0/q1)]

2+(snrL)
2/4

2snrL

)
·
(

q1√
π

exp[ log(λ·q0/q1)
2 ]− q0√

π
exp[− log(λ·q0/q1)

2 ]
)

(9)

Through letting
dPEL

dλ = 0, it can be obtained that the optimized λ∗ meeting 0 < λ < ∞ to
minimize PEL is λ∗ = 1.

3.3. Transmission of Local Decisions from Sensors to FC

After the local decisions are achieved, the sensors would deliver them to the AFC. In this paper,
a wireless PAC between the sensors and the AFC is considered and the transmission channels
from different sensors to the fusion center are orthogonal. However, the sensors’ transmissions
are overheard by the EFC, who also wishes to detect the target state. From the literature [2,7,9],
we have seen that the stochastic ciphering could be employed to protect the information of the sensors
from the EFC efficiently, since each sensor would flip its decision randomly and the EFC would be
confused when it was ignorant about the flipping probability (i.e., the encryption key). However,
the key exchange between the AFC and the sensor itself may be not secure from the EFC. In this case,
the channel-aware stochastic cipher [10], whose seeds are based on the randomness of the transmission
channels, are preferable. Because the channels to the AFC and the EFC from a sensor are independent,
it is impossible for the EFC to deterministically know the flipping action of a sensor based on the main
channel gain. Thus, the formation leaked to the EFC reduces, although the flipping probability is
completely known by the EFC. Therefore, the channel-based stochastic ciphering is still adopted by us
to realize the secure transmission of local decisions from sensors to the AFC.

In order to sense the channel information, the sensors would firstly receive the known pilot
signal from the AFC, as well as three thresholds for comparison. Then the estimated channel gain
would be compared with the thresholds to determine which action should be selected by a sensor.
The sensor may report an unaltered local decision, a “flipped” decision, or stay dormant to satisfy the
energy constraint.

Assume the main channel and the eavesdropping channel both follow the Rayleigh distribution
with unit power, i.e., f (h) = 2h exp(−h2) and h ∈ [0, ∞), which is usually considered in existing
studies [10,23,42]. Assume the pilot signal is so strong that the sensors can obtain the exact channel
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gains. Basing on the channel reciprocity, the sensors’ estimated channel gains can be used to indicate the
sensor-to-AFC channels. Moreover, they are unknown by the EFC due to the statistical independence
of the main channel and the eavesdropping channel. The thresholds broadcasted by the AFC are
{t1, t2, t3} with 0 ≤ t3 ≤ t2 ≤ t1 < ∞. Thus, the secure transmission strategy with energy limitation is
that, sensor k reports its original local decision if hA

k > t1, reports a bit-flipping decision if t3 ≤ hA
k ≤ t2

and stays silent for energy efficiency otherwise. From the security analysis given in [10], we can see

that the condition for perfect secrecy is λ1
def
=
∫ ∞

t1
f (hA

k )dhA
k =

∫ t2
t3

f (hA
k )dhA

k
def
= λ2. Obviously, to meet

the energy constraint of network, the inequality of λ1 + λ2 ≤ β should also be held. Moreover, the
case with a single “no-send” region is concerned in this paper. That is to say either t3 = 0 or t1 = t2,
which is illustrated in Figure 2.

A

k
h1t2t3 0t =

Flipping Non-flipping
No-send

Send

A

k
h1 2t t=3t

Flipping Non-flipping
No-send

Send

(a)

(b)

Figure 2. Single “No-send” region: (a) Case of t3 = 0; (b) Case of t1 = t2.

4. Transmission Channel Based Only Secure Detection under Energy Constraint

In [10], the authors designed a confidential and energy efficient distributed detection method,
called channel aware encryption, only from the view of the wireless transmission between sensors
and the fusion center. And the condition for perfect secrecy was derived. Moreover, the LLR based
decision fusion was studied, further, a simplified decision fusion rule in high SNR region was given.
However, the more detailed analysis about the error probability of decision fusion and the optimization
of thresholds were absent. In this section, we will analyze the error performance of the AFC based
on the approximated LLRs derived under low and high SNR conditions, respectively. Afterwards,
three thresholds will be optimized to minimize the probability of error at the AFC while ensuring the
perfect secrecy from the EFC and satisfying the energy constraint. It should be noted that a specified
energy constraint of β ≤ 1 is introduced by us. And the adjusted scheme is called the TCBO secure
detection under energy constraint in our paper.

4.1. Approximation of LLR and Error Probabilities of FC

For the secure scheme only basing on transmission channels, the confidentiality from the
eavesdropper and the energy saving are both provided by the reporting strategy of local decisions.
Thus, the thresholds used in the local detection are set as λL = λU = λ∗ to optimize the sensor’s
local performance. Then, we have Pm = 1− Pd and P0d = 1− Pf . In addition, the common binary
phase shift keying (BPSK) modulation is utilized by each sensor to deliver its one-bit decision. At the
fusion center, the LLR based fusion rule is used and the transmission channel information is unknown.
In addition, it is assumed that the fusion rules and the Prior information at the EFC are identical with
those at the AFC and this is a worst case from the view of security.

The received signals at the AFC and EFC from sensor k are denoted as yA
k and yE

k , respectively.
They can be described as

yA
k = hA

k xk + nA
k

yE
k = hE

k xk + nE
k

(10)
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where nA
k ∼ N (0, δ2

A) and nE
k ∼ N (0, δ2

E). Thus, the transmission channel SNR for the AFC and

EFC can be written as SNRA =
∣∣hA

k xk
∣∣2/δ2

A and SNRE =
∣∣hE

k xk
∣∣2/δ2

E, respectively. Following the
channel-aware flipping rule, we have xk = 2bk − 1 for hA

k > t1, xk = 2bk − 1 for t3 ≤ hA
k ≤ t2 and

xk = 0 for other hA
k . The LLR at the AFC can be expressed in terms of yA = [yA

1 , yA
2 , ..., yA

K ] as

ΛA =
1
K

log
f
(
yA|θ1

)
f (yA|θ0)

(a)
=

1
K

K

∑
k=1

log
f
(
yA

k |θ1
)

f
(
yA

k |θ0
) (11)

where (a) is due to the independence of different yA
k and f

(
yA

k |θi
)

denotes the likelihood function
of sensor k for the hypothesis θi. For the Bayesian setup, the optimal decision rule can be given by

ΛA
θ1
>
<
θ0

log(q0/q1).

By using the similar derivation method in Section IV of [10], it can be achieved

f
(
yA

k |θi
)

= P (bk = 1|θi)
[
Φ
(
t1, ∞, 1, yA

k , δ2
A
)
+ Φ

(
t3, t2,−1, yA

k , δ2
A
)]

+P (bk = 0|θi)
[
Φ
(
t1, ∞,−1, yA

k , δ2
A
)
+ Φ

(
t3, t2, 1, yA

k , δ2
A
)]

+
[
Φ
(
0, t3, 0, yA

k , δ2
A
)
+ Φ

(
t2, t1, 0, yA

k , δ2
A
)]

(12)

where

Φ
(
ta, tb, xk, yA

k , δ2
A
)

=
∫ tb

ta
f (yA

k |h
A
k , xk) f (hA

k )dhA
k

=
∫ tb

ta
1√

2πδA
exp

(
− (yA

k −hA
k xk)

2

2δ2
A

)
2hA

k exp(−hA
k

2
)dhA

k
(13)

Note that the LLR based on Equation (12) requires numerical integrations. It is greatly unfavorable
to the performance analysis of decision fusion and the optimization of comparison thresholds.
Therefore, the approximations of LLR under low SNR and high SNR scenarios would be examined.
Moreover, the error probabilities based on these approximations would be analyzed in follows.

4.1.1. Approximation of LLR and Error Performance under Low SNR

As the channel noise variance δ2
A → ∞, we can get

Φ
(
ta, tb, xk, yA

k , δ2
A
)
≈ N(yA

k , δ2
A){exp(−t2

a)− exp(−t2
b)

+
yA

k xk
δ2

A
[taexp(−t2

a)− tbexp(−t2
b) +

∫ tb
ta

exp(−h2)dh]}
(14)

where N(yA
k , δ2

A) = 1/(
√

2πδA) exp[−
(
yA

k
)2/(2δ2

A)]. The detailed derivation of Equation (14) is given
in the Appendix A. Applying Equation (14) to Equation (12), it can be obtained that

f
(
yA

k |θ1
)
= N(yA

k , δ2
A)·

{[Φ
(
t1, ∞,−1, yA

k , δ2
A
)
+ Φ

(
t3, t2, 1, yA

k , δ2
A
)
+ Φ

(
0, t3, 0, yA

k , δ2
A
)
+ Φ

(
t2, t1, 0, yA

k , δ2
A
)
]

+ Pd[Φ
(
t1, ∞, 1, yA

k , δ2
A
)
−Φ

(
t1, ∞,−1, yA

k , δ2
A
)
+ Φ

(
t3, t2,−1, yA

k , δ2
A
)
−Φ

(
t3, t2, 1, yA

k , δ2
A
)
]}

≈ N(yA
k , δ2

A){1 +
yA

k
δ2

A
[m (t1)− n (t3, t2)] (2Pd − 1)}

(15)

f
(

yA
k |θ0

)
= N(yA

k , δ2
A){1 +

yA
k

δ2
A
[m (t1)− n (t3, t2)] (2Pf − 1)} (16)
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where

m (t1) = t1 exp(−t2
1) +

∫ ∞
t1

exp(−h2)dh
n (t3, t2) = t3 exp(−t2

3)− t2 exp(−t2
2) +

∫ t2
t3

exp(−h2)dh
(17)

From Equations (15) and (16), we achieve

ΛA
k = log

f (yA
k |θ1)

f (yA
k |θ0)

= log[1 +
f (yA

k |θ1)− f (yA
k |θ0)

f (yA
k |θ0)

]

≈ log{1 +
2(Pd−Pf )

yA
k

δ2
A
[m(t1)−n(t3,t2)]

1+(2Pf−1)
yA

k
δ2
A
[m(t1)−n(t3,t2)]

}

(18)

Following the assumption of δ2
A → ∞ and the fact that log(1 + x) ≈ x with x closing to zero,

we can further reduce Equation (18) to

ΛA
k ≈ 2(Pd − Pf )

[m(t1)−n(t3,t2)]

δ2
A

yA
k

= Γ(λ∗, t3, t2, t1) · yA
k

(19)

From Equation (19), we can see that the calculation of LLR can be simplified significantly for large
noise variance. Note that the formulas from Equation (11) to Equation (19) are also available for the
EFC provided it has the same prior information as the AFC. The only variation is the different received
signal yE

k from yA
k .

Since yA
k is independent from each other, ΛA = 1

K

K
∑

k=1
ΛA

k can be taken as the average of K i.i.d.

random variables. Then, invoking the central limit theorem [9,23], we can deem that the statistic of ΛA

converges to a normal distribution for a large K. That is ΛA|θi ∼ N (µAk|θi,
γ2

Ak |θi
K ), where µAk|θi and

γ2
Ak|θi are the mean and variance of ΛA

k conditioned on θi, respectively. And they are directly related
with the mean and the variance of yA

k , which can be seen from Equation (19). Next, our target is to
calculate E

(
yA

k |θi
)

and Var
(
yA

k |θi
)
.

Utilizing Equation (15), we can write

E
(
yA

k |θ1
)
=
∫ +∞
−∞ yA

k f
(
yA

k |θ1
)

dyA
k

≈
∫ +∞
−∞ yA

k N(yA
k , δ2

A)dyA
k + [m(t1)−n(t3,t2)](2Pd−1)

δ2
A

∫ +∞
−∞

(
yA

k
)2N(yA

k , δ2
A)dyA

k

(a)
=[m (t1)− n (t3, t2)](2Pd − 1)

(20)

E
(

yA
k |θ0

)
= [m (t1)− n (t3, t2)](2Pf − 1) (21)

where (a) is due to
∫ +∞
−∞ yA

k N(yA
k , δ2

A)dyA
k = 0 and

∫ +∞
−∞

(
yA

k
)2N(yA

k , δ2
A)dyA

k = δ2
A, whose derivations

are described in Appendix B.
In order to obtain Var

(
yA

k |θi
)
, we firstly calculate

E
(
(yA

k )
2|θ1

)
=
∫ +∞
−∞

(
yA

k
)2 f

(
yA

k |θ1
)

dyA
k

≈
∫ +∞
−∞

(
yA

k
)2N(yA

k , δ2
A)dyA

k + (2Pd−1)
δ2

A
[m (t1)− n (t3, t2)]

∫ +∞
−∞

(
yA

k
)3N(yA

k , δ2
A)dyA

k

(a)
= δ2

A

(22)
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where (a) follows the fact of
∫ +∞
−∞

(
yA

k
)3N(yA

k , δ2
A)dyA

k = 0 verified also in Appendix B. Obviously,

E
(
(yA

k )
2|θ0

)
= δ2

A. Then Var
(
yA

k |θi
)

can be achieved through Var
(
yA

k |θi
)

= E
(
(yA

k )
2|θi

)
−

E2 (yA
k |θi

)
.

Combing Equations (19)∼(22), along with the Bayesian decision rule, we can yield the error
probability for the AFC as follows:

PA
e = q0P

(
ΛA ≥ log(q0/q1) |θ0

)
+ q1P

(
ΛA < log(q0/q1) |θ1

)
= q0Q

(
log(q0/q1)−Γ(λ∗ ,t3,t2,t1)E(yA

k |θ0)√
Γ2(λ∗ ,t3,t2,t1)[δ2

A−E2(yA
k |θ0)]/K

)

+ q1

[
1−Q

(
log(q0/q1)−Γ(λ∗ ,t3,t2,t1)E(yA

k |θ1)√
Γ2(λ∗ ,t3,t2,t1)[δ2

A−E2(yA
k |θ1)]/K

)] (23)

Clearly, the error probability for large δ2
A has been expressed as a function of some specific

parameters, namely λ∗, t3, t2, t1 and δ2
A. In Section 4.2, this asymptotic error probability would be taken

as the optimization objection for finding the optimal comparison thresholds.

4.1.2. Approximation of LLR and Error Performance under High SNR

Considering the high SNR scenario, i.e., δ2
A → 0, we derive a simplified LLR referring to the

idea of [10]. Assume the FC can estimate the instantaneous sensor-to-FC channel gain as ĥA
k =

∣∣yA
k

∣∣
since yA

k ≈ hA
k xk and |xk| = 1 except under the dormant case. Then, a simple hard decision rule

determining which one a received signal yA
k comes from among three groups can be realized. A hard

decision threshold th is selected to satisfy
∫ th

τ3
f
(
hA

k
)

dhA
k =

∫ ∞
th

f
(
hA

k
)

dhA
k . Thus, the following

conditional probability can reduce to

p (xk|bk) =


δxk ,(2bk−1) ĥA

k ≥ th

δ−xk ,(2bk−1) ĥA
k < th

(24)

where δx,b is the Kronecker delta function. Thus, the likelihood function f
(
yA

k |θi
)

can be calculated as

f
(
yA

k |θi
)

= ∑
bk

p (bk|θi)∑
xk

f
(

yA
k |xk, ĥA

k

)
p (xk|bk)

=


p (bk = 1|θi) f

(
yA

k |xk = 1, ĥA
k

)
+ p (bk = 0|θi) f

(
yA

k |xk = −1, ĥA
k

)
, ĥA

k ≥ th

p (bk = 1|θi) f
(

yA
k |xk = −1, ĥA

k

)
+ p (bk = 0|θi) f

(
yA

k |xk = 1, ĥA
k

)
, ĥA

k < th

(25)

Further derivation whose detail is provided in Appendix C gives that

ΛA
k =



0, yA
k = 0

log Pd
Pf

, ĥA
k ≥ th ∩ yA

k > 0

log 1−Pd
1−Pf

, ĥA
k ≥ th ∩ yA

k < 0

log 1−Pd
1−Pf

, ĥA
k < th ∩ yA

k > 0

log Pd
Pf

, ĥA
k < th ∩ yA

k < 0

(26)
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Replacing yA
k and ĥA

k with yE
k and ĥE

k in Equation (26), the simplified LLR under high SNR for the
EFC is got.

In order to yield the error probability, the mean and variance of ΛA
k are needed when the CLT is

still used. Because hA
k ≥ 0, we have yA

k > 0 is equivalent to xk = 1 and yA
k < 0 corresponds to xk = −1.

Further, with the assumption of hA
k ≈ ĥA

k , it can be derived

E
(
ΛA

k |θ1
)
= (λ1 + λ2) [Pd log Pd

Pf
+ (1− Pd) log 1−Pd

1−Pf
]

E
(
ΛA

k |θ0
)
= (λ1 + λ2) [Pf log Pd

Pf
+
(

1− Pf

)
log 1−Pd

1−Pf
]

(27)

E[
(
ΛA

k
)2|θ1] = (λ1 + λ2) [Pd(log Pd

Pf
)2 + (1− Pd) (log 1−Pd

1−Pf
)2]

E[
(
ΛA

k
)2|θ0] = (λ1 + λ2) [Pf (log Pd

Pf
)2 + (1− Pf )(log 1−Pd

1−Pf
)2]

(28)

The derivations of Equations (27) and (28) are referred to Appendix D. Moreover, applying
Equations (27) and (28) to calculate the error probability obtains

PA
e = q0Q

 log(q0/q1)−E(ΛA
k |θ0)√[

E[(ΛA
k )

2|θ0]−E2(ΛA
k |θ0)

]
/K



+ q1[1−Q

 log(q0/q1)−E(ΛA
k |θ1)√[

E[(ΛA
k )

2|θ1]−E2(ΛA
k |θ1)

]
/K

]

(29)

4.2. Optimization of Comparison Thresholds

In Section 4.1, the asymptotic error probabilities at the AFC for extremely low and high SNR
scenarios are obtained. They would be taken as the utility function for optimizing t3, t2 and t1

in this section. Our design target is to minimize the error probability of the AFC while satisfying the
constraints of perfect secrecy and energy limitation. This problem can be stated as follows:

P0 : min
t3,t2,t1

PA
e

subject to : λ1 = λ2

λ1 + λ2 ≤ β

(30)

where the first constraint is the perfect secrecy condition to make the EFC totally be confused [10].
The second inequality constraint is to guarantee the specified energy efficiency.

Observing the Equations (23) and (29), we find that the numerical integration is included in PA
e

and the variables to be optimized exist in the integral limits in a complicated form. These raise the
difficulty to solve the problem. The utility function should be simplified.

Fortunately, it can be seen that PA
e decreases with E(ΛA

k |θ1) and increases with E(ΛA
k |θ0) since

the impact of the variance of ΛA
k can be ignored compared with its mean for a large K. Therefore,

E(ΛA
k |θ1)− E(ΛA

k |θ0) can be used to replace the cost function in P0. The same idea was used in [9]
to find the optimal encryption matrix. Thus, the optimization problem under the case of low SNR
is given by

P1 : max
t3,t2,t1

Γ(λ∗, t3, t2, t1)
[
E
(
yA

k |θ1
)
− E

(
yA

k |θ0
)]

subject to : λ1 = λ2

λ1 + λ2 ≤ β

(31)

From Equations (19)∼(21), we achieve
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Γ(λ∗, t3, t2, t1)
[

E
(

yA
k |θ1

)
− E

(
yA

k |θ0

)]
=

4(Pd − Pf )
2

δ2
A

[m (t1)− n (t3, t2)]
2 (32)

Because the first item of the right side in Equation (32) is independent on the variables to be
optimized, the final object is to maximize |D(t3, t2, t1)| = |m (t1)− n (t3, t2)| while keep λ1 = λ2 and
λ1 + λ2 ≤ β. Moreover, according to the Rayleigh distribution function, we have

λ1 = exp
(
−t2

1

)
and λ2 = exp

(
−t2

3

)
− exp

(
−t2

2

)
(33)

Now, in order to determine three appropriate thresholds, we should discuss the relationship of the
target function D(t3, t2, t1) and the actual energy consumption indicator, i.e., α = λ1 + λ2. Taking the
D(t3, t2, t1) as a function of α, we can derive that

δD(α) =
dD(α)

dα
=

{
t1−t2

2 , t3 = 0
t1 − t3, t1 = t2

(34)

The detail of the calculation process for Equation (34) is shown in Appendix E.
From Equation (34), it can be easily seen that δD(α) ≥ 0 for both cases of t3 = 0 and t1 = t2 due to

the fact 0 ≤ t3 ≤ t2 ≤ t1 < ∞. This results in that D(t3, t2, t1) is strictly increasing with α. In particular,
we can get D(t3, t2, t1) = 0 for α = 0. Thus, there is D(t3, t2, t1) ≥ 0 at the whole range of α ∈ [0, 1]
and then the absolute calculation in the target function can be omitted. The above analysis contributes
to that the equality (i.e., λ1 + λ2 = β) should be selected in the second constraint to maximize the cost
function in Problem P1.

Moreover, we also find from Equation (34) that, with α → 1, there is δD(α) → 0 for t3 = 0,
while δD(α)→ t1 for t1 = t2 . This finding further tells us D(t3, t2, t1) will decrease faster for t1 = t2

than for t3 = 0 when α reduces from 1. Then, from the view of network robustness, choosing t3 = 0
is preferred and this result will also be confirmed by the simulations given in Section 6.

Summarizing the above analysis can directly obtain the optimized thresholds given by

t1 =
√

log(2/β), t2 =
√

log[2/(2− β)], t3 = 0 (35)

Now, let’s come to the case of high SNR. Referring to the analyzing methods for the low SNR,
the following optimization problem is established

P2 : max
t3,t2,t1

E
(
ΛA

k |θ1
)
− E

(
ΛA

k |θ0
)

subject to : λ1 = λ2

λ1 + λ2 ≤ β

(36)

Applying Equation (27) yields

E
(

ΛA
k |θ1

)
− E

(
ΛA

k |θ0

)
= (λ1 + λ2)

(
Pd − Pf

)
log

Pd

(
1− Pf

)
Pf (1− Pd)

(37)

Obviously, the cost function is strictly increasing with λ1 + λ2, since the local detection probability

is always larger than the false alarm probability in practice so the item
(

Pd − Pf

)
log

Pd(1−Pf )
Pf (1−Pd)

is larger

than zero. Thus, we should also choose λ1 + λ2 = β. However, which is better between t1 = t2 and
t3 = 0 could not be determined from Equation (37). Actually, they have the identical detection
performances for the extreme case of δ2

A = 0. This phenomenon will be demonstrated in our
simulations. Consequently, the thresholds given in Equation (35) should also be used under the
high SNR situation.
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5. Joint Local Decision and Wireless Transmission Based Secure Detection under
Energy Constraint

In TCBO secure detection scheme, in order to meet the energy constraint of network, the sensors
whose channel gains fall in the region between t1 and t2 (Consider the case of t3 = 0.) will keep
inactive. Of course, this gap between t1 and t2 can facilitate the AFC to tells the signals from flipping
group and non-flipping group to some extent. However, the decision quality of the sensor’s local
detection is not considered. That is to say the sensor with an error decision may be permitted to report
its detection result to the FC, while the one with a correct decision perhaps is forbidden. We think this
phenomenon maybe worsen the performance of decision fusion .

Therefore, we propose to select the dormant sensor basing on its local decision quality that can be
quantified by the local Log-Likelihood Ratio ΛL

k . Sensors with very small or very large LLR will send
data to the fusion center, while the others stay silent to save energy. Obviously, this is the core idea of
censoring sensor technique [8,11]. In particular, a perfectly secure distributed detection scheme with
censoring sensors was given in [8]. But a comparatively ideal assumption was set that the EFC had no
access to the data from sensors and only monitored the transmission activity of sensors. Moreover,
the strategy in [8] did not consider the effect of the wireless transmission between the sensors and
the fusion center on the reliability and security, so its applicability was limited. Basing on the above
considerations, a joint local decision and wireless transmission based scheme for secure distributed
detection with energy constraint is proposed in this section.

The JLDWT method is performed as follows: each sensor first calculates the local ΛL
k and compares

it with two local decision thresholds. If ΛL
k locates between log(λL · q0/q1) and log(λU · q0/q1), it will

stay inactive in current report timeslot for it appears less informative to make a correct decision about
the target state. Otherwise, the sensor will make a 1bit-decision regarding the state of the hypothesis
and then deliver it to the FC over a wireless PAC. While, in order to keep secret from the eavesdropping
FC, the active sensor still should encrypt its local decision by randomly flipping it before transmitting.
A single comparison threshold t0 is used here instead of tree thresholds in TCBO scheme. If the sensor
has the channel gain satisfying ∞ > hA

k ≥ t0, it is involved in the non-flipping group. Otherwise,
it is chosen to be in the flipping group. At the fusion center, the LLR based fusion rule is still used.
Three thresholds, namely log(λL · q0/q1), log(λU · q0/q1) and t0, along with the encryption scheme at
the sensors are assumed to be known by both the AFC and EFC.

5.1. Security Analysis

Now the condition of perfect secrecy in JLDWT scheme will be derived. Our analysis begins with
the conditional likelihood function of the k-th sensor calculated by the EFC, which is given by

f
(
yE

k |θi
)
= ∑

bk

∑
xk

∫ ∞
0 f

(
yE

k , hA
k , xk, bk|θi

)
dhA

k

= ∑
bk

∑
xk

∫ ∞
0 f

(
yE

k , hA
k , xk|bk, θi

)
p (bk|θi) dhA

k

= ∑
bk

p (bk|θi)∑
xk

∫ ∞
0 f

(
yE

k |h
A
k , xk, bk, θi

)
f
(
hA

k , xk|bk, θi
)

dhA
k

(a)
= ∑

bk

p (bk|θi)∑
xk

f
(
yE

k |xk
) ∫ ∞

0 f
(
hA

k
)

p (xk|bk) dhA
k

(b)
= p (bk = 1|θi)

[
f
(
yE

k |xk = 1
) ∫ +∞

t0
f
(
hA

k
)

dhA
k + f

(
yE

k |xk = −1
) ∫ t0

0 f
(
hA

k
)

dhA
k

]
+ p (bk = 0|θi)

[
f
(
yE

k |xk = −1
) ∫ +∞

t0
f
(
hA

k
)

dhA
k + f

(
yE

k |xk = 1
) ∫ t0

0 f
(
hA

k
)

dhA
k

]
+ p (bk = null|θi) f

(
yE

k |xk = 0
) ∫ +∞

0 f
(
hA

k
)

dhA
k

(38)

where (a) is valid as θi → bk → xk → yE
k forms a Markov chain and hA

k is uncorrelated with
yE

k , xk and θi. And (b) follows the fact that p (xk = 1|bk = 1) = 1 and p (xk = −1|bk = 0) = 1
for hA

k ≥ t0, while p (xk = −1|bk = 1) = 1 and p (xk = 1|bk = 0) = 1 for hA
k < t0. In addition,
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bk = null corresponds to the sensor’s dormant state and xk = 0 accordingly. Furthermore,

define λ
def
=
∫ ∞

t0
f (hA

k )dhA
k and we can easily yield

f
(
yE

k |θ1
)
= Pd

[
f
(
yE

k |xk = 1
)

λ + f
(
yE

k |xk = −1
)
(1− λ)

]
+ Pm

[
f
(
yE

k |xk = −1
)

λ + f
(
yE

k |xk = 1
)
(1− λ)

]
+ (1− Pd − Pm) f

(
yE

k |xk = 0
)

f
(
yE

k |θ0
)
= Pf

[
f
(
yE

k |xk = 1
)

λ + f
(
yE

k |xk = −1
)
(1− λ)

]
+ P0d

[
f
(
yE

k |xk = −1
)

λ + f
(
yE

k |xk = 1
)
(1− λ)

]
+
(

1− Pf − P0d

)
f
(
yE

k |xk = 0
) (39)

To achieve perfect secrecy, two likelihood function f
(
yE

k |θ1
)

and f
(
yE

k |θ0
)

should be identical [10].
Then we can establish the following group of equations based on Equation (39).

(1− Pd − Pm) =
(

1− Pf − P0d

)
Pdλ + Pm (1− λ) = Pf λ + P0d (1− λ)

Pmλ + Pd (1− λ) = P0dλ + Pf (1− λ)

(40)

Through simply computing, we obtain the perfect secrecy condition given by

λ = 1/2 and Pd + Pm = Pf + P0d (41)

The first condition in Equation (41) directly results in t0 =
√

log(2). And the second condition
means that the activation probability under the hypothesis θ1, indicated by β1 = Pd + Pm, equates to
the activation probability under θ0, denoted by β2 = Pf + P0d. Comparing this condition with the
perfect secrecy setting given in section II of [8], we find they are identical. Next, our task is to find
two suitable thresholds λU and λL used in local Bayesian detection Equation (2) to minimize the error
probability at the AFC, meanwhile, meet the perfect security and energy constraint of β1 = β2 ≤ β.

5.2. Optimization of Local Detection Thresholds

Referring to the derivation methods of Equations (12) and (38), we can obtain the conditional
likelihood functions at the AFC, which are expressed as

f
(
yA

k |θ1
)

= Pd
[
Φ
(
t0, ∞, 1, yA

k , δ2
A
)
+ Φ

(
0, t0,−1, yA

k , δ2
A
)]

+Pm
[
Φ
(
t0, ∞,−1, yA

k , δ2
A
)
+ Φ

(
0, t0, 1, yA

k , δ2
A
)]

+ (1− Pd − Pm)Φ
(
0, ∞, 0, yA

k , δ2
A
)

f
(
yA

k |θ0
)

= Pf
[
Φ
(
t0, ∞, 1, yA

k , δ2
A
)
+ Φ

(
0, t0,−1, yA

k , δ2
A
)]

+P0d
[
Φ
(
t0, ∞,−1, yA

k , δ2
A
)
+ Φ

(
0, t0, 1, yA

k , δ2
A
)]

+
(

1− Pf − P0d

)
Φ
(
0, ∞, 0, yA

k , δ2
A
)

(42)

where Φ
(
ta, tb, xk, yA

k , δ2
A
)

has the expression of Equation (13).

5.2.1. Optimization of Local Detection Thresholds under Low SNR

Following the deducing process in Section 4.1.1, we can obtain the calculation formula of the error
probability under low SNR for AFC, which can be written as

PA
e = q0Q

(
log(q0/q1)−Γ(λU ,λL ,t0)E(yA

k |θ0)√
Γ2(λU ,λL ,t0)[δ2

A−E2(yA
k |θ0)]/K

)

+ q1

[
1−Q

(
log(q0/q1)−Γ(λU ,λL ,t0)E(yA

k |θ1)√
Γ2(λU ,λL ,t0)[δ2

A−E2(yA
k |θ1)]/K

)] (43)

where
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Γ(λU , λL, t0) =
(Pd − Pf ) + (P0d − Pm)

δ2
A

[m(t0)− n(0, t0)] (44)

In Equation (44), Pd, Pm, P0d and Pd have the expressions given in Equation (7). Further, referring to
the optimization problem P1, we build

P3 : max
λU ,λL

Γ(λU , λL, t0)
[
E
(
yA

k |θ1
)
− E

(
yA

k |θ0
)]

subject to : β 1 = β2 ≤ β

(45)

where
E
(
yA

k |θ1
)
= (Pd − Pm)[m(t0)− n(0, t0)]

E
(
yA

k |θ0
)
= (Pf − P0d)[m(t0)− n(0, t0)]

(46)

Applying Equation (46) to Equation (45), it can be achieved the rewritten object function is
[(Pd − Pf ) + (P0d − Pm)]2· [m(t0)− n(0, t0)]

2/δ2
A. Due to [m(t0)− n(0, t0)]

2/δ2
A being independent on

the variables to be optimized, the final target function can reduce to

O(β1) = (Pd − Pf ) + (P0d − Pm) (47)

In addition, because the probability of correct detection is always larger than the incorrect one in
practice, we have O(β1) ≥ 0. Moreover, the condition β 1 = β2 contributes to (Pd − Pf ) = (P0d − Pm),
and then O(β1) = 2(Pd − Pf ).

First of all, we should find a good β 1 that meets the constraint in Equation (45) to maximize O(β1).
Combining Equations (7) and (47), we have

O(β1) = 2
∫ ∞

log[λU(β1)·q0/q1]
[ f
(

ΛL
k |θ1

)
− f

(
ΛL

k |θ0

)
]dΛL

k (48)

Let’s first focus on the following function:

D(λ)
Def
=
∫ ∞

log(λq0/q1)
[ f
(

ΛL
k |θ1

)
− f

(
ΛL

k |θ0

)
]dΛL

k (49)

Applying the condition (Pd− Pf ) = (P0d− Pm), we can get the result of D(λU) = D(λL), which is
derived in detail in Appendix F. Substituting Equation (6) into Equation (49), it can be obtained

D (λ) = 1√
2πsnrL

{
∫ +∞

log(λq0/q1)
exp[−

(
ΛL

k − snrL/2
)2/(2snrL)]dΛL

k

−
∫ +∞

log(λq0/q1)
exp[−

(
ΛL

k + snrL/2
)2/(2snrL)]dΛL

k }

= 1
2{erf([log(λ q0

q1
) + snrL/2]/

√
2snrL)− erf([log(λ q0

q1
)− snrL/2]/

√
2snrL)}

(50)

where the error function erf(x) = 2√
π

∫ x
0 exp(−η2)dη. Due to erf′(x) = 2√

π
exp(−x2), we further get

dD(λ)
dλ = 1

λ
√

2πsnrL
(exp{−[log(λq0/q1) + snrL/2]2/2snrL}

− exp{−[log(λq0/q1)− snrL/2]2/2snrL})
(51)

Through setting dD(λ)
dλ = 0, we can find three extreme points

λ = 0, λ = ∞ and λ = q1/q0 (52)
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Substituting them into Equation (50), we have

D (λ = 0) = 0, D (λ = ∞) = 0 and D (λ = q1/q0) = erf(
√

snrL
8

) (53)

Based on Equation (53), we can draw a notional curve of D (λ) as in Figure 3.
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Figure 3. Diagram of the function D (λ).

From Figure 3, we can see that there are two thresholds corresponding to one value of D (λ),
further, this D (λ) actually maps to a single β1. When β1 = 1, two thresholds overlap at a point of
λ = q1/q0 and D (λ) has the maximum value. While β1 decreases, we know that λU moves towards ∞
and λL approaches zero further. Thus, from Figure 3, we can see that the corresponding D (λ) reduces.
That is to say a larger β1 is preferred in order to get a higher D (λ).

Moreover, the reduced target function for P3 can be written as O(β1) = 2D (λU(β1)). Therefore,
β1 = β should be chosen to achieve the maximum O(β1), along with the optimal performance of
AFC, and the corresponding pair of thresholds are the optimal thresholds to be found. However,
the expressions in Equations (7) and (49) are so complex that a closed-form expression of λL(β) and
λU(β) couldn’t be obtained. In this situation, a pre-calculated table corresponding to each snrL could
be used to get the required λL(β) and λU(β), just as the processing method in our simulations.

5.2.2. Optimization of Local Detection Thresholds under High SNR

For the very high SNR scenario, the analysis methods in Section 4.1.2 are consulted. Firstly,
the simplified LLR similar as Equation (26) are obtained, which is given by

ΛA
k =



0, yA
k = 0

log Pd
Pf

, ĥA
k ≥ th ∩ yA

k > 0

log Pm
P0d

, ĥA
k ≥ th ∩ yA

k < 0

log Pm
P0d

, ĥA
k < th ∩ yA

k > 0

log Pd
Pf

, ĥA
k < th ∩ yA

k < 0

(54)
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where th is set as t0. Referring to the derivation of Equation (27), it is achieved that

E
(
ΛA

k |θ1
)
= Pd log Pd

Pf
+ Pm log Pm

P0d

E
(
ΛA

k |θ0
)
= Pf log Pd

Pf
+ P0d log Pm

P0d

(55)

Then the design problem is built as

P4 : max
λu ,λl

E
(
ΛA

k |θ1
)
− E

(
ΛA

k |θ0
)

subject to : β 1 = β2 ≤ β

(56)

Here, the object function can be written as O (λL, λU) =
(

Pd − Pf

)
log Pd

Pf
· log P0d

Pm
.

Because Pd − Pf = P0d − Pm, maximizing Pd − Pf could also make log Pd
Pf

and log P0d
Pm

largest. Therefore,
the object function in Equation (56) can be transformed into Pd − Pf , so Problem P4 is equivalent to
Problem P3 and they have the identical optimization results.

6. Simulation Results and Discussions

In this section, simulation results are presented to evaluate the TCBO and the proposed JLDWT
schemes in a sensor network of IoT. Their error probabilities are compared from various perfectives,
including with the changing of transmission channel SNR, energy constraint and local detection SNR.
The performance of a degraded form of the JLDWT scheme, where the random flipping is not included,
is also given to represent the performance of secure detection designed in [8] over a practical rather
than an idea wireless PAC.

6.1. Simulation Settings

A wireless sensor network with K sensors is modeled. The local detection SNR and the transmission
channel SNR to fusion center for different sensors are assumed to be identical, as well as, the transmission
channel SNR to the AFC and the EFC is also supposed to be equal. In addition, the LLR computation at
the EFC is same as the AFC except the received signals from the sensors. Detail simulation parameters
are listed in Table 1. Moreover, Tables 2 and 3 give the specific local decision thresholds corresponding
to different energy constraints under snrL = 0 dB and snrL = 5dB, respectively.

Table 1. Simulation Parameters in Wireless Sensor Network.

Parameters Assumption

Number of sensors 20
Prior probabilities of target states q0 = q1 = 0.5

Transmission channel model Rayleigh distribution with E[h2] = 1
Energy constraint β = 0.4 : 0.1 : 1

Local detection SNR snrL = 0, 5 dB
Transmission channel SNR SNRA = SNRE = −12 : 2 : 16 dB

Table 2. Two local decision thresholds λU and λL for snrL = 0 dB.

β 0.4 0.5 0.6 0.7 0.8 0.9 1

λU 2.585 2.145 1.810 1.545 1.330 1.155 1.000
λL 0.387 0.466 0.553 0.647 0.752 0.866 1.000



Sensors 2016, 16, 2152 19 of 30

Table 3. Two local decision thresholds λU and λL for snrL = 5 dB.

β 0.4 0.5 0.6 0.7 0.8 0.9 1

λU 8.320 5.595 3.875 2.730 1.945 1.395 1.000
λL 0.120 0.179 0.258 0.366 0.514 0.717 1.000

6.2. Simulation Results for TCBO Scheme

Let’s begin with the performance evaluation for the low SNR scenarios, where the SNR is not
larger than 0 dB. From Figure 4, we first notice that the error probabilities for various settings at the
EFC all locate around 0.5, which is our expected situation of perfect secrecy. Moreover, it is obvious
that the AFC performance for the case of t3 = 0 expresses better than the case of t1 = t2 and there is
a gain of about 4 dB obtained by the former one. This may be contributed by two aspects. On one
side, the dormant region (or a gap) locates between the flipping and non-flipping group for the case
of t3 = 0 and it is beneficial for the AFC to discriminate between the flipping and non-flipping case,
especially with serious noise. On the other side, the flipped decisions also disturb the fusion process
at the AFC. For t3 = 0, the power of received interference is lower since the flipping sensor has the
lower channel gain. Thus the interference would have less effect on the fusion decision of the AFC.
In addition, the error performances of using the approximated LLR (given in Equation (19)) are almost
identical with the ones of using the statistic channel (SC) based LLR (Here, numerical integrations
are needed.), particularly during the very low SNR region. This demonstrates the availability of the
approximated LLR under low SNR. The theoretic performance calculated by using Equation (23) for
t3 = 0 is also drawn in Figure 4. It can be seen that the simulation result fits the theoretic one well for
the SNR lower than −10 dB, and the gap between them becomes larger with the growing of SNR due
to the noise variance being farther from the assumption of δ2

A = ∞ included in Equation (23).
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Figure 4. Error probabilities at the AFC and EFC as functions of various SNR for β = 0.8 and
snrL = 5 dB over low SNR region.

Figure 5 shows the performance of TCBO scheme with the SC based LLR varying with β. It can be
seen that the error probabilities for t3 = 0 and t1 = t2 are identical with β = 1 and they would increase
with β reducing from 1. But the increasing of the former one is slower than the latter one, which
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is correspondent to the analysis about Equation (34) in Section 4.2. Moreover, carefully observing
the curves corresponding to t3 = 0, we find that the error probabilities even rise slowly when we
continue improving β and this phenomenon is more obvious for the moderate SNR, for example
SNR = 0 dB. It is because the reduced gap between the flipping and non-flipping group with a larger
β leads to the confusion of the AFC to judge between two groups. It is noted that the confusion is
created by the noise of channels. When the noise is very strong (or there is no such gap and the
case t1 = t2 follows this situation), the confusion always exits, so the more energy consumes and the
better performance gets, just as the analytical result under low SNR in Section 4.2. However, with the
noise reducing, the confusion disappears when the gap is large (Corresponding to a small β), while it
appears when the gap becomes small. Therefore, although the energy consumption increases with β

becoming large, the appeared confusion would worsen the performance. Of course, when the noise
reduces to zero, the confusion never appears and the error probability will strictly decrease with β.
This is the asymptotical analysis result under high SNR in Section 4.2 and also will be seen in the
following simulations.
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Figure 5. Error probabilities at the AFC and EFC as functions of various β for snrL = 5 dB over low
SNR region.

The performance curves of TCBO scheme for the high SNR scenarios, where the SNR is larger
than 0 dB, are shown in Figure 6. Obviously, the error probabilities for various simulation conditions
at the EFC are all about 0.5 and perfect secrecy is maintained. Moreover, the AFC performance for
the case of t3 = 0 is still better than the one for the case of t1 = t2, and the performance gap is
about 2 dB. However, we find that the performance loss induced by the approximation of LLR with
δ2

A → 0 (seen in Equation (26)) is obvious. And this loss for t3 = 0 will decrease with improving SNR,
since the noise variance is closer to zero. In fact, the performance loss for t1 = t2 will also reduce with
the growing of SNR. In particular, this loss will reduce to zero for the extreme case of δ2

A = 0 with
two kinds of threshold setting, which can be seen in Figure 7. Therefore, the approximated LLR given
in Equation (26) is still usable in terms of the reducing computation complexity, especially under high
SNR scenarios.
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Figure 6. Error probabilities at the AFC and EFC as functions of various SNR for β = 0.8 and
snrL = 5 dB over high SNR region.

From the other perspective, Figure 7 draws the error performance varying with β under the high
SNR case. It can be seen that the threshold setting of t3 = 0 demonstrates higher robustness than
t1 = t2 when the energy constraint is more severe. In addition, for the extreme case that the noise
disappears, the error probabilities for various settings converge to an identical value and they decrease
strictly as β increases. Because the confusion of the AFC for discriminating between the flipping and
non-flipping group does not exist when the noise is absent, the case of t3 = 0 would be equivalent to
the case of t1 = t2. Furthermore, the approximated LLR could obtain the similar performance as the
SC based LLR.
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Figure 7. Error probabilities at the AFC and EFC as functions of various β for snrL = 5 dB over high
SNR region.

6.3. Simulation Results for JLDWT Scheme

In this section, the performances of the TCBO and the proposed JLDWT schemes are compared
from various perspectives. Figure 8 gives the error probabilities of two schemes for low SNR case.
We can see that the JLDWT using the SC based LLR, the JLDWT using the approximated LLR and the
TCBO using the SC based LLR have almost identical performance. Because the strong channel noise
dominates in low SNR, the JLDWT’s advantage is not shown up. The simplified LLR for low SNR is



Sensors 2016, 16, 2152 22 of 30

very effective for maintaining the performance as well as reducing complexity of FC. Furthermore,
all these schemes could achieve the perfect secrecy.
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Figure 8. Error probabilities of TCBO and JLDWT schemes as functions of various SNR for β = 0.8 and
snrL = 0 dB over low SNR region.

For comparison, the degraded JLDWT method without random flipping is also evaluated.
Concretely, in the degraded JLDWT scheme, each sensor still executes the local detection based
on the Bayesian criteria with two local decision thresholds λU and λL keeping β1 = β2, while the
active sensor will deliver the local 1bit-decision in its original form to the FC no matter what the
estimated channel gain is. That is to say the difference of the degraded JLDWT from the JLDWT is that
the flipping process is not involved. As comparing it with the secure strategy given in [8], we can easily
see that λU and λL used by the degraded JLDWT are identical with the ones used by the scheme in [8],
because their optimization targets to find the optimal λU and λL are equivalent and the perfect secrecy
constraint conditions are same. Thus, the degraded JLDWT can be seen equivalent to the scheme of [8]
except that it is applied under a more realistic scenario considering the wireless transmission and
a looser constraint on the EFC ability relative to the case in [8]. From Figure 8, it can be seen that
the secrecy from the EFC is totally lost and the EFC has the same performance as the AFC when the
secure strategy in [8] is used. That is to say the strategy given in [8] is ineffective if the EFC has the
same process capability and the prior information as the AFC. Thus, random flipping is necessary to
assure the information confidentiality with the enhanced EFC. Certainly, this information security is
exchanged by certain performance loss of the AFC.

As for the case of high SNR, it can be seen from Figure 9 that the JLDWT scheme with the SC
based LLR outperforms the TCBO using the SC based LLR and the performance gain for the AFC
would increase with the transmission channel SNR going higher. That is to say preventing the worse
local decision from contributing to the data fusion would facilitate to improve the performance at the
FC when the disadvantage effect of transmission channel reduces. Moreover, similar as the result seen
in Figure 8, the AFC and the EFC have the identical error probabilities with the degraded JLDWT and
the information confidentiality is not guaranteed. In addition, the approximated LLR contributes to the
performance loss for both the JLDWT and the TCBO schemes, but the JLDWT scheme still outperforms
the TCBO one slightly.
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Figure 9. Error probabilities of TCBO and JLDWT schemes as functions of various SNR for β = 0.8
over high SNR region.

Figures 10 and 11 compare the error performance of TCBO and JLDWT schemes with the SC
based LLR under snrL = 0 dB and snrL = 5 dB, respectively. It can be seen that the gain of the JLDWT
scheme against the TCBO method increases with the growing of transmission channel SNR. That is
correspondent to the result seen in Figure 9. Furthermore, this gain at the high SNR, for example
SNR = 15 dB, becomes larger for a smaller β. That is the advantage induced by cancelling the
worse local detection results from the fusion data and it would dominant the final decision fusion
when the transmission channel becomes good. Furthermore, we also find the performance inflection
phenomenon over the curves of the JLDWT, which is similar as seen in Figure 5. While, it is induced
by the confusion of the sensor to judge between two hypothesis of θ0 and θ1, rather than the confusion
of the AFC for discriminating between the flipping and non-flipping group.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Beta

E
rr

o
r 

P
ro

b
a
b
ili

ty

 

 

JLDWT,SNR=0dB

JLDWT,SNR=5dB

JLDWT,SNR=15dB

TCBO,SNR=0dB

TCBO,SNR=5dB

TCBO,SNR=15dB

EFC

SNR= 0dB

SNR=5dB

SNR=15dB

Figure 10. Error probabilities of TCBO and JLDWT schemes with SC based LLR as functions of various
β for snrL = 0 dB.

Based on the above simulation results and discussions, we suggest that the TCBO scheme with
the approximated LLR is a good selection over the low transmission channel SNR region. While,
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under a good wireless transmission scenario with a severe energy constraint, the JLDWT scheme with
the SC based LLR is preferred in order to obtain the higher detection accuracy at the AFC. Moreover,
a moderate β around 0.7∼0.8 is more appropriate for a practical sensor network in terms of both the
energy consumption and the detection performance. In addition, it is to be noted that the TCBO and
JLDWT schemes both can be easily extended to a larger sensor network, although only the case of
K = 20 is studied in our simulations.
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Figure 11. Error probabilities of TCBO and JLDWT schemes with SC based LLR as functions of various
β for snrL = 5 dB.

7. Conclusions and Future Work

Distributed detection scheme with good security and energy efficiency plays an important role in
the implement of sensor network in IoT. In this paper, two secure decentralized detection schemes
under energy constraint are studied comprehensively. Firstly, a specific energy constraint is introduced
to the existing channel aware encryption scheme and we call it TCBO scheme. Next, the simplified LLRs
under the low and high SNR are derived, respectively. Based on the new LLRs, the asymptotic error
probabilities for the worst and best noise situations at the AFC are calculated. Then, three comparison
thresholds are optimized through minimizing the error probability while satisfying the perfect secrecy
and energy constraints. Secondly, combing the local detection and the wireless transmission of local
decision at the sensor, a hybrid scheme named JLDWT is proposed, where the energy efficiency is
provided by censoring the sensor with less informative local LLR and the confidentiality from the EFC
is guaranteed by the channel based random flipping. Then, the asymptotic error probabilities under
low and high SNR environment are also given. Furthermore, two local detection thresholds and one
flipping comparison threshold are optimized to minimize the error rates, as well as, assure the perfect
secrecy and the required energy efficiency. At last, we evaluate the detection performance of the TCBO
and the proposed JLDWT schemes through computer simulations. The simulation results demonstrate
that the perfect secrecy is assured by both schemes. The JLDWT scheme outperforms the TCBO one
under the better wireless transmission environment with a severe energy constraint.

The perfect secrecy is guaranteed at the cost of reducing the detection accuracy at the AFC in the
TCBO and JLDWT schemes. However, in some scenarios, a limited information leakage to the EFC
maybe is permitted, while the high detection performance at the AFC is more important. In future
work, the modified forms of the above two schemes will be designed to support the more flexible
constraint on the EFC’s performance. Moreover, except the eavesdropping attack, there are many
other attack modes faced by IoT networks in practice, such as the denial of services (DOS) attack,
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node outage attack, signal jamming attack and intentional attack. Among them, the intentional attack
could incur fatal threat on network by paralyzing a small fraction of nodes with highest degrees.
As to IoT networks, if some important nodes, such as the fusion center and the controller, suffer the
intentional attack, the whole IoT system may be disrupted. Therefore, the robust defense mechanism
against the intentional attack for IoT will be studied in our future work.
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Appendix A. Approximation of Φ
(
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A
)

under the Low Channel SNR

The derivation of the approximated formulation for Φ
(
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A
)

is given by
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where (a) is based on the fact that exp(x) ≈ 1 + x for small x and (b) is due to the assumption of
δ2

A → ∞.

Appendix B. Calculation of Three Integrations Used in Equations (20) and (22)

∫ +∞
−∞ yA

k N(yA
k , δ2

A)dyA
k = 1√

2πδA

∫ +∞
−∞ yA

k exp
(
− (yA

k )
2

2δ2
A

)
dyA

k

= − δA√
2π

∫ +∞
−∞ d

[
exp

(
− (yA

k )
2

2δ2
A

)]
= 0

(B1)

∫ +∞
−∞

(
yA

k
)2N(yA

k , δ2
A)dyA

k = 1√
2πδA

∫ +∞
−∞

(
yA

k
)2 exp

(
− (yA

k )
2

2δ2
A

)
dyA

k

= − δA√
2π

∫ +∞
−∞ yA

k d
[

exp
(
− (yA

k )
2

2δ2
A

)]
= δA√

2π
yA

k exp[− (yA
k )

2

2δ2
A

]

∣∣∣∣∣ +∞
−∞

+ δA√
2π

∫ +∞
−∞ exp

(
− (yA

k )
2

2δ2
A

)
dyA

k

= 0 + δ2
A√

2πδA

∫ +∞
−∞ exp

(
− (yA

k )
2

2δ2
A

)
dyA

k = δ2
A

(B2)



Sensors 2016, 16, 2152 26 of 30

∫ +∞
−∞

(
yA

k
)3N(yA

k , δ2
A)dyA

k = 1√
2πδA

∫ +∞
−∞

(
yA

k
)2yA

k exp
(
− (yA

k )
2

2δ2
A

)
dyA

k

= − δA√
2π

∫ +∞
−∞

(
yA

k
)2d

[
exp

(
− (yA

k )
2

2δ2
A

)]
= δA√

2π

(
yA

k
)2exp

(
− (yA

k )
2

2δ2
A

) ∣∣∣∣∣ −∞
+∞

+ 2δA√
2π

∫ +∞
−∞ yA

k exp
(
− (yA

k )
2

2δ2
A

)
dyA

k = 0

(B3)

Appendix C. Derivation of ΛA
k under High SNR

In Equation (25), substituting f
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Furthermore, with δ2
A → 0, we have exp
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k = 0. Substituting them into Equation (C1), we can rewrite it as the Equation (26).

Appendix D. Derivation of Equations (27) and (28)
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where (a) follows the condition that hA
k is uncorrelated with xk and θi, and (b) is due to Equation (24).

Similarly, it can be obtained that
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Appendix E. Calculation of the Derivative of D(t3, t2, t1) to α

Rewrite D(t3, t2, t1) as a function of α

D(α) = m (t1(α))− n (t3(α), t2(α)) (E1)

whose derivative is given by
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Specially, for the case t3 = 0, we obtain
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And because λ1 = λ2 has to be satisfied, the following equation is achieved
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Substituting Equation (E6) into Equation (E5) yields
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Otherwise, for the case t1 = t2 (i.e., t3 ≥ 0), we have
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Also due to λ1 = λ2, it can be achieved
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Further, δD(α) = t1 − t3 is given.

Appendix F. Proof of D(λU) = D(λL)

Beginning with (Pd − Pf ) = (P0d − Pm), we get
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From the total probability theory, we have

∫ +∞

−∞

[
f
(

ΛL
k |θ1

)
− f

(
ΛL

k |θ0

)]
dΛk = 0 (F2)

Then D(λU) can be rewritten as
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