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Abstract: Pb(II) can cause serious damaging effects to human health, and thus, the study of Pb2+

detection methods to sensitively and selectively monitor Pb(II) pollution has significant importance.
In this work, we have developed a label-free fluorescence sensing strategy based on a Pb(II) DNAzyme
cleavage and the ThT/G-quadruplex complex. In the presence of Pb(II), a G-rich tail was cut and
released from the substrate strand, which then would form a G-quadruplex structure by combination
with ThT dye. The fluorescence signal increase was then measured for sensitive Pb(II) quantification
with a limit of detection of 0.06 nM. Our sensor also demonstrated high selectivity against six different
metal ions, which is very important for the analysis of complex samples.
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1. Introduction

Many heavy metal ions such as lead, mercury, arsenic and chromium are highly toxic elements
which can cause a number of serious threats to human health and the environment [1–5]. Among all
the metal ions, Pb2+ is one of the four metals that have the most damaging effects on human health.
It can enter the human body through uptake of food, water and air, and cause serious health problems,
including disruption of the biosynthesis of haemoglobin and anaemia, kidney damage, brain damage,
diminished learning abilities of children and behavioral disruptions of children [4].

In order to protect human health from these threats, the study of sensitive, selective and low-cost
Pb2+ detection methods to monitor lead ion pollution in many fields, including environmental,
water, food safety, etc., has been of significant importance over the past decades. Recently, many
different strategies have been developed toward efficient Pb2+ analysis, including classical atomic
absorption spectrometry (AAS) [6–8], inductively coupled plasma mass spectrometry (ICP-MS) [9,10],
and inductively coupled plasma atomic emission spectrometry (ICP-AES) [11,12]. Unfortunately,
most of these methods require complicated sample pretreatment, multiple analysis steps or expensive
equipment, hindering their application in on-site or real-time analysis.

Metal-specific DNAzymes are a class of well-characterized DNAzymes that cleave an
oligonucleotide substrate containing one ribonucleotide at the cleavage site in the presence of a
particular metal ion [13–17]. As oligonucleotides, high stability DNAzymes can be conveniently
synthesized at low cost and DNAzyme-based sensors have demonstrated a series of advantages
such as fast analysis, nondestructive detection and the capability of providing in situ and real-time
information [18–20], and thus they have been widely recognized as promising candidates for the
development of metal ion sensors. Recently, the research on Pb2+ sensors based on Pb2+-specific
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DNAzymes has attracted plenty of research interest. For instance, Lu’s group [3] reported a
colorimetric Pb2+ biosensor based on the DNAzyme-directed assembly of gold nanoparticles.
Xiao et al. [21] developed an electrochemical Pb2+ sensor via an electrode-bound DNAzyme assembly
and achieved part-per-billion (nanomolar) sensitivity. Cropek’s group [22] reported a microchip-based
lead sensor with a lead-specific DNAzyme and fluorescent tags which translated the cleavage events to
measurable, optical signals proportional to Pb2+ concentration. However, most of the fluorescent Pb2+

biosensors need a covalently labeled fluorophore/quencher on the DNAzyme strand, often leading
to complicated synthetic routes, high cost, low synthetic yield and even serious interference with
DNAzyme cleavage [23,24]. Most recently, some groups have reported their inspiring progress in the
development of label-free Pb2+ biosensors, yet the limit of detection (LOD) still remains a challenge for
us [25–28].

Thioflavin T (ThT) is a commercial fluorescent dye, which is capable of binding to the
G-quadruplex structure, generating an increased fluorescence signal, and it has been successfully
utilized in several highly sensitive and label-free fluorescent biosensors [29–32]. In this work, we
designed a novel DNAzyme analysis system by tailing a G-rich sequence onto the substrate strand.
In the presence of Pb2+, DNAzyme cleaved the substrate strand and released the G-rich part which
subsequently combined with ThT and formed a G-quadruplex structure for an obviously enhanced
fluorescent signal. Our strategy achieved excellent selectivity of Pb2+ over six different metal ions, and
the limit of detection (LOD) of Pb2+ was 0.06 nM and the linear range was from 10 nM to 10 µM Pb2+.

2. Materials and Methods

2.1. Materials

Pb2+-specific DNAzyme (Pb-DNAzyme) and the substrate strand DNA (Pb-sub) were synthesized
and purified by TaKaRa Biotech. Co., Ltd. (Dalian, China), and the DNA sequences are shown
as follows:

Pb-DNAzyme:

5′-CCAAAGTGCTCCGAGCCGGTCGAAGTGAAACC-3′

Pb-Sub:

5′-GGGTTGGGCGGGATGGGTTTCACTrAGGCACTTTGGGTAGGG-3′, (rA represents an adenosine
ribonucleotide).

Pb(NO3)2, Cu(NO3)2, Cd(NO3)2, Co(NO3)2, Mn(NO3)2, Ni(NO3)2, Hg(NO3)2 were 1 g/L
certified reference materials (CRMs) obtained from the Shanghai Institute of Measurement and
Testing Technology (Shanghai, China). 4-(2-Hydroxyethyl)-1-piperazineethane sulfonic acid (HEPES)
and 3,6-dimethyl-2-(4-dimethylaminophenyl) benzothiazolium cation (ThT) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All reagents were of analytical grade and all solutions were
prepared using ultrapure water (18.2 MΩ·cm resistivity).

2.2. Apparatus

Fluorescence spectra were measured on a F-7000 spectrophotometer (Hitachi, Tokyo, Japan)
equipped with a 150 W xenon lamp excitation source, using a quartz cell of 10 mm path length.
The excitation wavelength was 425 nm, and the emission spectrum was from 450 nm to 600 nm.
The slits for excitation and emission were 2.5 nm. A nanodrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA) was used to quantify the oligonucleotides by measuring the UV
absorbance at 260 nm (OD260).
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2.3. DNAzyme-Based Fluorescence Sensor for Pb2+

Pb2+ solutions were prepared in ultrapure water of a series of concentrations, and then 0.3 µM
Pb-DNAzyme, 0.2 µM Pb-sub DNA, 50 mM KCl and 10 mM HEPES buffer were added, and then
the mixture was incubated in 37 ◦C air bath for 2 h to firstly form the substrate-enzyme complex
DNAzyme and then perform the DNAzyme cleavage. After the cleavage, 20 µM ThT was added to
react with the G-rich sequence at 37 ◦C for 30 min to form the ThT/G-quadruplex complex. Finally,
the fluorescence signal at 490 nm was measured.

3. Results

3.1. The Principle of Pb2+ Detection

The label-free fluorescent strategy for Pb2+ sensing based on the DNAzyme and the
ThT/G-quadruplex complex is shown schematically in Figure 1. The sensing system consists of
a DNAzyme strand (Pb-DNAzyme), a substrate strand (Pb-sub), and a single, ribo-adenine (rA,
indicated as a red point in Figure 1) between them. The substrate strand is tailed with a G-rich
sequence at the 5′ end, and most importantly, part of the G-rich sequence hybridized to the DNAzyme
strand, inhibiting the formation of G-quadruplex structure. In the presence of Pb2+ ions, Pb-sub is
cleaved at the rA site, and thus released the G-rich strand to form a G-quadruplex structure under
the combination of ThT dye. Finally, an obviously enhanced fluorescence signal was obtained, and
the increase in the fluorescence intensity was calculated as the signal gain for Pb2+ quantification
through F-F0, where F0 and F are the fluorescence intensity before and after Pb2+ DNAzyme reaction,
respectively. CD Spectrum (Figure S1) and polyacrylamidegel electrophoresis results (Figure S3)
demonstrated the formation of G-quadruplex, and when we increased the time of DNAzyme cleavage,
the signal gain (F-F0) increased until it reached a plateau at 2 h (Figure S2).
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Figure 1. Illustration of the label-free fluorescent sensing strategy based on the Pb2+-DNAzyme and
ThT/G-quadruplex complex.

3.2. Optimization of the Detection Conditions

As a DNAzyme-based analysis, the reaction temperature is a key characteristic in the system.
Our results showed that when we raised the reaction temperature from 4 ◦C to 37 ◦C, the signal gain
(F-F0) increased more than 2000 times (from 0.02 to 52.17) (Figure 2), because the higher temperature
improved the DNAzyme activity, and promoted the reaction kinetics of the liquid phase reaction
system. Meanwhile, the unspecific DNA secondary structure was eliminated under higher temperature
to suppress the background noise.
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Figure 2. The optimization result of the analysis temperature for Pb2+ sensing in the presence of 1 µM
Pb2+. Original data for the optimization result of the analysis temperature shown in Figure S4.

Next, in order to verify the influence of DNAzyme amount, the cleavage reaction was
performed with different DNAzyme final concentrations. After 2 h incubation with and without
Pb2+ (100 nM), the fluorescence signal gain was compared (Figure 3). As the results show, the signal
gain obviously increased as the concentration of Pb-DNAzyme increased from 0.1 to 0.3 µM, because
more DNAzyme provided higher cleavage efficiency, generating a higher signal gain, However, when
the concentration of Pb-DNAzyme exceeded 0.3 µM, the signal gain decreased slightly, maybe because
too much background fluorescent signal was produced due to unspecific cleavage, even without the
combination with Pb2+. As a result, we chose 0.3 µM as the optimized Pb-DNAzyme concentration in
our analysis.
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result of the Pb-DNAzyme concentration for Pb2+ sensing shown in Figure S5.

ThT dye was very important for the fluorescence signal generation, through recognizing and
intercalating into the G-quadruplex structure after the G-rich sequence was cleaved by DNAzyme
from the Pb-sub strand, although, like with many other fluorescent DNA intercalators, if too much
dye is added, a higher background fluorescence signal might happen because of its unspecific binding
to the double strand DNA or other DNA second structures. In order to improve the signal-to-noise
ratio, we investigated the relationship between ThT concentration and the fluorescence signal, while
all other experiment conditions were fixed including the final concentration of Pb-sub strand (0.2 µM)
and Pb-DNAzyme strand (0.3 µM).

As shown in Figure 4, the fluorescence signal gain increased obviously as the ThT concentration
increased from 2 to 20 µM. However, when the concentration of ThT is higher than 20 µM,
the fluorescence signal gain decreased, mainly due to the increase of the fluorescent background.
Thus, 20 µM ThT was used as an optimized condition in all our following analysis.
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3.3. Quantification of Pb2+

In order to investigate the sensitivity, a series of Pb2+ solutions were prepared with different
concentrations and then analyzed by our Pb2+ sensor. Figure 5A shows the fluorescence spectra
of ThT/G-quadruplex in the presence of Pb2+ from 10 to 1000 nM. As the concentration of Pb2+

increased, the fluorescence intensity increased obviously, indicating successful DNAzyme cleavage of
the Pb-Fl/Pb-Sub duplex and the formation of ThT/G-quadruplex structure.
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at least three distinct sensors.

As Figure 5B shows, the fluorescence signal gain has a good linear relationship with the base
10 log of Pb2+ concentration from 10 nM to 1000 nM: F = 31.6857lg[Pb2+] − 43.1832, where the [Pb2+]
is the concentration of Pb2+. The background signal F0 was 69.91 ± 1.23 when a blank sample was
analyzed. The limit of detection (LOD) was thus calculated to be 0.06 nM, using the 3δ (3 × 1.23) in the
fitting equation.

3.4. Specificity of Pb2+ Analysis

To challenge the specificity for the Pb2+ sensor, we then investigated the response of
ThT/G-quadruplex towards several other divalent metal ions including Cu2+, Hg2+, Co2+, Ni2+,
Cd2+ and Mn2+ under the same analysis condition. As shown in Figure 6, our sensor generated
a significant fluorescence enhancement for 100 nM Pb2+, which is 8~100 times higher than for the
other ions, and the signal gain for some of the interfering ions was only negligible. Our results thus
demonstrated that our sensing system had a high selectivity to Pb2+ over other metal ions.
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Our DNAzyme-based sensor represents a new progress in the family of label-free Pb2+ sensors.
It is an easy-to-operate sensor with 0.06 nM sensitivity that exceeds most of the previously reported
label-free Pb2+ sensors by several orders of magnitude (Table 1). We also note that this sensor showed
a wider and practical linear range from 10 nM to 1 µM.

Table 1. Comparison of similar Pb2+ sensors.

DNA Probe Linear Range Detection
Limit

Detection
Methods

Detection
Time

Reaction
System Reference

G-quadruplex 1 ng/mL –1 mg/mL,
R2 = 0.992

1 ng/mL
(4.83 nM) Fluorescence 0.5 h

DsDNA’s
conformational

changes/PicoGreen
[25]

Allosteric
G-quadruplex
DNAzyme

1 nM –316 nM,
R2 = 0.980 1 nM Chemiluminescence 2 h luminol-H2O2 [26]

DNAzymes/
AUR

0 nM–1000 nM,
R2 = 0.95 0.4 nM Fluorescence 3.5 h

G4/hemin/H2O2/
AUR catalytic

system
[27]

G-quadruplex
DNAzyme

5 nM–100 nM,
R2 = 0.996 3 nM Fluorescence 3.5 h catalytic

beacons/G4/ZnPPIX [28]

G-quadruplex
DNAzyme

10 nM–1000 nM,
R2 = 0.997 0.06 nM Fluorescence 2.5 h G4/ThT This work

4. Conclusions

In this work, we constructed a novel Pb2+ fluorescence sensor, based on a DNAzyme directed
G-quadruplex/ThT conformation. Our results demonstrated the excellent sensing performance of
the DNAzyme when Pb2+ was added. The sensitivity was 0.06 nM which is much lower than
EPA-defined maximal contamination level for Pb2+ in drinking water (72 nM) and is, to our knowledge,
quite competitive among all the reported label-free Pb2+ sensors. The analysis was conveniently
performed in one tube in two simple steps, avoiding unnecessary contamination and oxidation,
thus our quantification results were so stable that the relative standard deviations (RSD) were all
below 5% except for only the RSD for 10 nM Pb2+ (11%). Importantly, good selectivity was achieved
compared with six different metal ions, indicating a great potential application of our sensor for assays
in complex samples.
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s1. Figure S1. CD spectrum of different samples. Figure S2. A time-dependent amplification of the fluorescence
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presence of 1 µM Pb2+. Figure S5. Original data of 100 nM Pb2+ sensing in the presence of different concentration
of Pb-DNAzyme: (A) 0.1 µM; (B) 0.2 µM; (C) 0.3 µM; (D) 0.5 µM. Figure S6. Original data of 100 nM Pb2+ sensing
using different concentration of ThT: (A) 2 µM; (B) 5 µM; (C) 10 µM; (D) 20 µM; (E) 30 µM; (F) 50 µM.
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