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Abstract: Direction of arrival (DOA) estimation using a uniform linear array (ULA) is a classical
problem in array signal processing. In this paper, we focus on DOA estimation based on the maximum
likelihood (ML) criterion, transform the estimation problem into a novel formulation, named as
sum-of-squares (SOS), and then solve it using semidefinite programming (SDP). We first derive the
SOS and SDP method for DOA estimation in the scenario of a single source and then extend it under
the framework of alternating projection for multiple DOA estimation. The simulations demonstrate
that the SOS- and SDP-based algorithms can provide stable and accurate DOA estimation when the
number of snapshots is small and the signal-to-noise ratio (SNR) is low. Moveover, it has a higher
spatial resolution compared to existing methods based on the ML criterion.

Keywords: DOA estimation; maximum likelihood; uniform linear array; sum-of-squares;
semidefinite programming; alternating projection

1. Introduction

Estimating the direction of arrivals (DOAs) of multiple plane waves using passive arrays is one
of the central problems in radar, sonar, radio astronomy, and wireless communication. In the last
two decades, many methods have been proposed for solving this problem [1,2]. In existing literature,
DOA estimation based on maximum likelihood (ML) criterion can achieve the optimal estimation
performance [1,2], but requires solving a multidimensional optimization problem, which is nonlinear,
non-convex, and computationally intensive. The alternating projection (AP) technique [3] is proposed
to replace the multidimensional optimization problem by a sequence of one-dimensional optimization
subproblems, which are still nonlinear and non-convex. To reduce the computational complexity,
the subspace-based methods, such as multiple signal classification (MUSIC) [4], estimation of signal
parameters via rotational invariance technique (ESPRIT) [5], and RootMUSIC [2], are proposed. These
methods are efficient and can approach the optimal performance asymptotically. However, theoretical
analysis and simulation results show that subspace methods usually exhibit a certain performance
loss in estimating locations of highly correlated signals [6]. Results in [7,8] demonstrate that subspace
methods may also suffer from performance loss in active localization scenarios. Using the structure of
uniform linear array (ULA) array manifold, the authors of [9,10] have proposed an iterative quadratic
maximum likelihood (IQML) method to solve the ML problem. An improvement over IQML is
introduced in [6,11]. The resulting algorithm is called method of direction estimation (MODE) and
achieves the asymptotic accuracy of the true optimum with a closed form solution [2].
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Recently, DOA estimation methods based on compressed sensing have been proposed in [12–20].
The compressed sensing-based methods enjoy a lot of virtues. For example, they are robust
to coherent signals, can estimate DOAs with only one snapshot, and detect the number of
unknown signals automatically. In general, compressed sensing methods can be divided into three
categories: on-grid model-based methods [12,17], grid-based off-grid methods [13,16,18], and gridless
methods [14,15,19,20]. On-grid model-based methods choose a fixed discrete grid in the continuous
domain of directions as the set of DOA estimates, and assume that the true DOAs are exactly on
the grid. It is obvious that the on-grid assumption cannot be satisfied in practice and thus on-grid
methods are approximation methods. Grid-based off-grid methods parameterize the errors between
true (off-grid) DOAs and grid points and then estimate them together with on-grid variables. They are
more robust to errors induced by off-grid DOAs. However, these methods are still grid-based
methods, whose performance depends on the trade-off between the grid size and the computational
workload [15]. Gridless sparse methods avoid the off-grid problem completely. Moreover, they are
guaranteed to generate a sparse estimation with a high probability under moderate conditions.
However, they may suffer from spurious estimates and lower spatial resolution [15,20]. The reweighted
atomic norm minimization (RAM) approach can alleviate these problems when the signal-to-noise
ratio (SNR) is large [19].

In this work, we will focus on the ML criterion. First, we consider estimating the DOA of a single
source and show that the corresponding ML problem can be formulated into a univariate polynomial
optimization problem, which can further be transformed into an semidefinite programming (SDP) [21]
and solved efficiently by using interior point methods (IPM) [22]. Then, the proposed algorithm is
extended to the scenario of multiple DOA estimation under the framework of AP. Compared with the
existing methods, the proposed method can provide more stable and accurate DOA estimates when the
SNR is low and/or the number of snapshots is small. Moreover, it achieves a higher spatial resolution.

The rest of the paper is organized as follows. The array signal model and the ML estimation
problem are formulated in Section 2. Section 3 introduces the proposed method in detail.
Performance of the proposed method is demonstrated by simulations in Section 4. Then, Section 5
concludes the paper.

Notation: in the paper, the superscripts T and H denote the transpose and transpose conjugate,
respectively. The superscripts (r) and (i) are used to denote the real and imaginary part of a complex
parameter, respectively. SN

+ denotes the set of N-dimensional symmetric positive semidefinite matrices
andRM×N the set of M× N real matrices.

2. Modeling and Problem Statement

2.1. Array Signal Model

Consider an N-element ULA which is illuminated by M(<N) far-field narrow band sources.
The received array signal vector is denoted by:

x(t) = A(θ)s(t) + n(t) (1)

where s(t) = [s1(t), . . . , sM(t)]T is the signal vector, n(t) denotes the additive noise vector,
A(θ) = [a(θ1), . . . , a(θM)] is the array manifold, and a(θm) is the steering vector of the m-th source.
For a ULA, the steering vector a(θm) of source m has the following form:

a(θm) =
[
1, ej 2π

λ d sin(θm), . . . , ej 2π
λ (N−1)d sin(θm)

]T
(2)

where d and λ denote the element spacing and the wavelength of the working frequency, respectively.
The following assumptions are required for the subsequent ML estimation of

unknown parameters:
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1. The noise n(t) is stationary and Gaussian distributed with zero mean, E
[
n(t)nH(t)

]
= σ2

n I,
and E

[
n(t)nT(t)

]
= 0, where I is the identity matrix.

2. The signals are uncorrelated with the noise.

2.2. Maximum Likelihood Parameter Estimation

According to above-mentioned assumptions, the log-likelihood function of Equation (1) is
given by:

L = −MNtlnσ2
n −

1
σ2

n

Nt

∑
k=1

∥∥x(tk)− A(θ)s(tk)
∥∥2 (3)

where Nt is the number of snapshots. Maximizing Equation (3) with respect to σ2
n leads to the following

optimization problem [23]:

{θ̂, Ŝ}ML = arg min
θ,S

Nt

∑
k=1

∥∥x(tk)− A(θ)s(tk)
∥∥2

= arg min
θ,S

∥∥X − A(θ)S
∥∥2 (4)

where X = [x(t1), . . . , x(tNt)] and S = [s(t1), . . . , s(tNt)]. The ML estimate of S can be obtained
straightforwardly from Equation (4), given θ, and is denoted by Ŝ =

(
AH(θ)A(θ)

)−1 AH(θ)X.
Substituting this estimate back into Equation (4), we have the ML DOA estimation performed by:

θ̂ = arg max
θ

tr{R̂xPA(θ)} (5)

where R̂x = 1
Nt

XXH and PA(θ) = A(θ)
(

AH(θ)A(θ)
)−1 AH(θ) is the projection matrix in the column

space of A(θ).

3. The SOS and SDP Based DOA Estimation Approach

In this part, we will firstly derive the sum-of-squares (SOS) and SDP approach to solve problem
Equation (5) with M = 1 and then extend the method to the M ≥ 1 case under the framework of
alternating projection (AP).

3.1. Estimate the DOA of a Single Signal Source

When M = 1, the ML DOA estimation problem Equation (5) is reduced to

θ̂ = arg max
θ

aH(θ)R̂xa(θ) (6)

We first transform problem Equation (6) to a univariate polynomial fractional function
optimization problem by the following variable replacement. Define v = π

λ dsin(θ) and t = tan(v).
Then, the (k + 1)-th element of a(θ) can be written as:

ej 2π
λ kdsin(θ) = (ej2v)k = [cos(2v) + j sin(2v)]k (7)

Substituting the trigonometric identities cos(2v) = 1−t2

1+t2 and sin(2v) = 2t
1+t2 into Equation (7)

yields a fractional polynomial with variable t:

ej 2π
λ kdsin(θ) =

(1− t2 + 2jt)k

(1 + t2)k =
h(r)k (t) + jh(i)k (t)

(1 + t2)k (8)
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where h(r)k (t) and h(i)k (t) denote the real and imaginary parts of (1− t2 + 2jt)k, respectively. For ease
of expression, let us assume d = λ

2 , such that the bijection θ = arcsin( 2
π arctan(t)) is monotonic

when t ∈ R and θ varies within [−π
2 , π

2 ]. Notice that when d > λ
2 , the range of θ is decreased to

[− arcsin( λ
2d ), arcsin( λ

2d )] for t ∈ R.
Denote the (i, j)th entry of R̂x as ri,j, substitute Equation (8) into a(θ) and then a(θ) into

Equation (6). The objective function of Equation (6) can be equivalently transformed as follows:

aH(θ)R̂xa(θ) =
N

∑
i=1

ri,i + 2Re

{
N

∑
k=2

N

∑
i=k

r(i−k+1),ie
j(k−1)2v

}

=m1 + 2Re

{
N

∑
k=2

mkej(k−1)2v

}

=m1 + 2
N

∑
k=2

m(r)
k h(r)k−1(t)−m(i)

k h(i)k−1(t)
(1 + t2)k−1 (9)

where mk = m(r)
k + jm(i)

k = ∑N
i=k r(i−k+1),i and “Re{·}” denotes the real part of a complex number.

By omitting the constants in Equation (9), the problem Equation (6) is equivalent to the following
optimization problem:

max
t∈R

N

∑
k=2

m(r)
k h(r)k−1(t)−m(i)

k h(i)k−1(t)
(1 + t2)k−1 (10)

By defining the following polynomials:

f1(t) := (1 + t2)N−1 =
2N−1

∑
i=1

ait2N−1−i (11)

f2(t) :=
N

∑
k=2

[(
m(r)

k h(r)k−1(t)−m(i)
k h(i)k−1(t)

)
(1 + t2)N−k

]
=

2N−1

∑
i=1

bit2N−1−i (12)

The problem Equation (10) can be briefly expressed as:

max
t∈R

f2(t)/ f1(t) (13)

which is a univariate polynomial fractional function optimization problem.
Then, we will solve problem Equation (13) by two steps: Finding its optimal objective function

value and then solving the optimal solution. Note that the first step can be performed by solving the
following problem:

min
p

p

s.t. p ≥ f2(t)/ f1(t), ∀t ∈ R (14)

Since f1(t) > 0, ∀t ∈ R, Equation (14) is equivalent to:

min
p

p

s.t. p f1(t)− f2(t) ≥ 0, ∀t ∈ R (15)
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It is well known that a univariate polynomial is nonnegative over the real domain if and only if it
can be written as an SOS (see [24] and references therein). This means that the constraint in problem
Equation (15) is equivalent to ∃Z ∈ SN

+ , such that [21]:

tTZt = p f1(t)− f2(t) =
2N−1

∑
i=1

(pai − bi)t2N−1−i, ∀t ∈ R (16)

where t = [1, t, · · · , tN−1] is a Vandermonde vector and the second equation is based on Equations (11)
and (12). Since the coefficients of tk and ∀k on both sides of Equation (16) are equal, the identical
Equation (16) contains a bunch of equality constraints. With these constraints, problem Equation (15)
can be equivalently written as the following semidefinite programming (SDP):

min
p,Z

p (P1)

s.t. pa2N−1−k − b2N−1−k = tr{ZH(N,k+1)}
k = 0, 1, · · · , 2N − 2

Z � 0

where “Z � 0” indicates that Z is a positive semidefinite matrix and H(N,k) ∈ RN×N is a Hankel
matrix with the (i, j)th entry

H(N,k)
i,j =

{
1, if i + j = k + 1
0, otherwise

(17)

Problem (P1) can be solved by using IPM like SDPT3 [25].
In the second step, we find the optimal solution of Equation (13). Denote the optimal solution

of (P1) as p∗ and Z∗. Then, the optimal t must satisfy p∗ f1(t)− f2(t) = 0, or, equivalently, tTZ∗t = 0.
This is equivalent to finding a t such that the Vandermonde vector t is in the null space of Z∗,
i.e., solving the equation

Z∗t = 0 (18)

Denote the null space of Z∗ as N(Z∗), its rank as rn, and t∗ = [1, t∗, · · · , t∗(N−1)]T as the solution
of Equation (18). If rn = 1, t∗ is a scaled version of the unique base vector of N(Z∗), which can be
denoted as zn, and t∗ can be obtained by t∗ = zn(2)/zn(1). If rn > 1, the rank of Z∗ is N − rn, which
means that Equation (18) contains N − rn independent equations. Using Gaussian elimination to these
equations, we can finally obtain an equation with the order of rn. Solve this equation and choose the
root which maximizes f2(t)/ f1(t) as t∗. With t∗, the ML estimate of DOA can be obtained by:

θ̂ = arcsin(2 arctan(t∗)/π) (19)

We refer to the above ML-based single DOA estimation method as sum-of-squares and
semidefinite programming approach (SOS-SDP). This algorithm can provide a global optimal solution
for the DOA estimation problem Equation (6) with a worst case complexity ofO(N6.5) [26]. However, it
may be numerically unstable. For example, assume the number of antennas is N = 20 and t = 0.1. The
algorithm requires an accuracy of at least 10−19 to express t19. Therefore, SOS-SDP will be inaccurate or
fail as the number of antenna elements becomes large. We here propose two compensation strategies
to improve its robustness and accuracy.

1. When rn = 1, calculate t∗i = zn(i + 1)/zn(i) for i = 1, · · · , N − 1; when rn > 1, perform
Gaussian elimination procedure N − r0 times such that the obtained equations keep the i-th to
(i + r0)-th order of t for i = 1, · · · , N − r0, respectively, and calculate the roots of all the (N − r0)
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equations. Then, choose the t∗i or root that maximizes f2(t)
f1(t)

as t∗0 and obtain the corresponding θ∗0
by Equation (19).

2. Using θ∗0 as an initial point, minimize f (θ) = −tr{PA(θ)R̂x} by using the Newton’s iteration in
Algorithm 1.

Algorithm 1 The Procedure of One-Dimensional Newton’s Iteration.

Input: A small positive constant, ε0; the maximum number of iterations, K; an initial point, θ∗0 ;
Output: An estimate of DOA, θ∗;

1: k = 0 and θ0 = θ∗0 ;
2: repeat
3: dk = −( f ′′(θk))

−1 f ′(θk);
4: Choose a step size αk using Armijo rule [27];
5: θk+1 = θk + αkdk;
6: ε = f ′(θk)dk and k = k + 1;
7: until ε < ε0 or k > K;
8: return θ∗ = θk.

For the one-dimensional search problem above with an initial point very close to the optimal
value, the Newton’s iteration converges in several iterations and the cost of each iteration is very small.

3.2. Estimate DOAs of Multiple Signal Sources

In this section, we extend SOS-SDP proposed in Section 3.1 to estimate multiple DOAs in the
framework of AP [3]. Note that SOS-SDP applies to a single DOA estimation and cannot estimate
multiple DOAs simultaneously. On the other hand, AP transforms a multiple DOA estimation problem
into a sequence of one DOA estimation subproblems.

For ease of expression, we have listed the procedure of AP in Algorithm 2, where:

θ̂
(0)
m = [θ̂

(0)
1 , · · · , θ̂

(0)
m−1]

θ̂
(k)
m = [θ̂

(k)
1 , · · · , θ̂

(k)
m−1, θ̂

(k−1)
m+1 , · · · , θ̂

(k−1)
M ]

A(k)
m =

[
A(θ̂

(k)
m ), a(θm)

]
(20)

where θ̂
(k)
m denotes the estimate of θm at the kth iteration, k = 1, · · · , K, and K is the specified maximum

number of iterations.

Algorithm 2 The Framework of Alternating Projection Based on ML Criterion.

Input: A small positive constant, ε; the maximum number of iterations, K;
Output: DOA estimates, θ∗m, m = 1, 2, · · · , M;

1: k = 0;
2: for m = 1; m ≤ M; m ++ do
3: θ̂

(k)
m = arg maxθm tr

{
R̂xP

A(k)
m

}
;

4: end for
5: repeat
6: k = k + 1;
7: for m = 1; m ≤ M; m ++ do
8: θ̂

(k)
m = arg maxθm tr

{
R̂xP

A(k)
m

}
;

9: end for
10: until k > K or ∑M

m=1

∣∣∣θ̂(k)m − θ̂
(k−1)
m

∣∣∣ < ε;

11: return θ∗m = θ̂
(k)
m , m = 1, 2, · · · , M.
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According to step 1 in Algorithm 2, SOS-SDP proposed in Section 3.1 can be used directly when
k = 0 and m = 1. For the cases k + m > 1, we need to solve the problem listed in both step 1 and step
2 of Algorithm 2:

θ̂
(k)
m = arg max

θm
tr
{

R̂xP
A(k)

m

}
(21)

where P
A(k)

m
= A(k)

m

(
(A(k)

m )H A(k)
m

)−1
(A(k)

m )H. Substituting Equation [3]:

P
A(k)

m
= P

A(θ̂
(k)
m )

+ Pa(θm)
A(θ̂

(k)
m )

into Equation (21) yields the following problem:

θ̂
(k)
m = arg max

θm

aH(θm)P⊥
A(θ̂

(k)
m )

R̂xP⊥
A(θ̂

(k)
m )

a(θm)

aH(θm)P⊥
A(θ̂

(k)
m )

a(θm)
(22)

where a(θ)
A(θ̂

(k)
m )

= P⊥
A(θ̂

(k)
m )

a(θ) and P⊥
A(θ̂

(k)
m )

= I − P
A(θ̂

(k)
m )

.

Note that Equation (22) has a structure similar to Equation (6). Therefore, inserting variable
replacement Equations (8)–(22), and, following the same steps as Equations (9)–(12), one can easily
cast the optimization problem Equation (22) into a univariate polynomial optimization problem, which
has the same structure as Equation (13). Then, SOS-SDP proposed in Section 3.1 is applicable.

3.3. Complexity Analysis

The main costs of SOS-SDP come from two parts: estimating the data covariance matrix,
whose complexity is O(N2Nt), and solving the SDP problem (P1) in each iteration, whose worst
case complexity is O(N6.5), as mentioned in Section 3.1. Therefore, the worst case complexity of
SOS-SDP under the framework of AP is O(N2Nt + KMN6.5).

4. Results

In this section, we demonstrate the performance of SOS-SDP by comparing it with some existing
methods, which include RootMUSIC [1], MODE [6], IQML [10], sparse and parametric approach
(SPA) [15], greedy block coordinate descent algorithm (GBCD) [17], weighted GBCD (GBCD+) [17],
atomic norm minimization (ANM) [20] , reweighted atomic-norm minimization (RAM) [19], and AP
based on exhaustive search (AP) [3]. Note that RootMUSIC is a subspace-based method, MODE, IQML,
and SOS-SDP are based on the ML criterion, and SPA, GBCD, ANM, and RAM are sparse methods.
The Matlab (2013b script, The MathWorks Inc., Natick, MA, USA) codes of SPA and ANM are both
available online [28]. RootMUSIC and IQML are based on the Matlab built-in functions “rootmusic”
and “phased.RootWSFEstimator” with default settings. The Cramer–Rao bound (CRB) for the DOA
estimation is also given as a benchmark (see (8.102) in [1]). The parameters of SOS-SDP in Algorithm 2
are chosen as ε = 10−4 and the maximum number of iterations is K = 10. Note that K = 10 is large
enough for AP [3]. The parameters for Newton’s iteration in Algorithm 1 are chosen as ε0 = 10−10

with a maximum number of iterations of 10. The signal model is described in Equations (1) and (2),
where the distance between array elements is chosen as d = λ/2. Complex white Gaussian noise
is added to the array output with noise variance σ2

n . The SNR (in dB) is defined as 10 log10(p1/σ2
n),

where p1 = E(‖s1(t)‖2) and E[·] is the expectation of a variable.
The first experiment considers estimating DOAs of uncorrelated signal sources. Two equal-power

independent signal sources located at θ1 = ∆u and θ2 = −∆u are impinging on a standard 12-element
ULA, where ∆u = 0.2165

2 BWNN and BWNN = 2 arcsin( 2
N ) radians denote bandwidth between the first

nulls in the spatial spectrum [1]. The number of snapshots is Nt = 100. The root mean square errors
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(RMSEs) of the methods based on the subspace and ML criteria are calculated. The results are shown
in Figure 1, where T = 1000 Monte Carlo simulations are performed at each SNR, the RMSE of θi is
calculated by

RMSEi =
1
T

T

∑
t=1

(θi − θ̂i,t)
2, i = 1, 2 (23)

and θ̂i,t is the estimate of θi in the t-th simulation. In the figure, one can easily see that the RMSEs
of all the methods are decreased with the increase of SNR. When SNR ≥ −7 dB, the RMSE of
SOS-SDP coincides with the CRB. However, with the decreasing of SNR, this RMSE increases sharply.
This behavior is referred to as the threshold phenomenon [1]. The threshold of the SOS-SDP algorithm
is about 3 dB, 6 dB, and more than 10 dB lower than those of RootMUSIC, MODE, and IQML,
respectively. According to this result, SOS-SDP can provide a better estimation accuracy at the
low SNR region. The reason for this superiority might be SOS-SDP, which solves the ML problem
Equation (5) directly, providing a global optimal solution not only for DOAs, but also for signals and
noise variance (which are estimated implicitly). This means that all of the unknown variables in the ML
problem are jointly and optimally tuned. However, MODE and RootMUSIC estimate noise variance
(or noise subspace) firstly and then find optimal DOAs based on these estimates. Therefore, their DOA
estimates depend on the noise variance (or noise subspace) estimations, which might be inaccurate
when the SNR or the number of snapshots is limited. DOA estimates obtained via IQML are almost
always inconsistent and have larger mean squared errors [10].
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Figure 1. Comparison of RMSE of different methods and the CRB. Some settings include: ULA with
N = 12 and M = 2 equal power uncorrelated sources with θ = [∆u,−∆u], and the number of snapshots
Nt = 100.

In the second experiment, we consider estimating DOAs of two coherent signal sources, where the
correlation coefficient between the two sources is ρ = 1. Since the subspace-based method does not
work in this case, we only compare the methods based on the ML criterion. Two different scenarios
are considered: the first one sets the number of snapshots as Nt = 100 and varies the SNR, while the
second one lets SNR = 0 dB and changes the number of snapshots. The rest parameters are similar to
those of the first experiment.

Figure 2a illustrates the RMSE performance of three different methods against SNR. We can see
that, for SNR ≥ −5 dB, the RMSE of SOS-SDP approaches the CRB. When SNR < −5 dB, the threshold
phenomenon occurs and the RMSE increases rapidly. This threshold is lower than those of MODE
and IQML, which are SNR = 2 dB and SNR = 5 dB, respectively. The corresponding resolution
probabilities against SNR are given in Figure 2b. The two sources are said to be resolvable [29,30]
if |θ̂i − θi| ≤ |θ1 − θ2|/2 for both i = 1, 2, where θ̂i denotes the estimate of θi. We can see that the
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resolution probabilities of different methods are enhanced with the increase of SNR. The resolution
probability of the proposed method approaches 1 for SNR larger than −5 dB, while those of the rest of
the methods approach 1 at 0 dB. This result coincides with the RMSE performance in Figure 2a.
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Figure 2. Comparisons of RMSE and resolution probability of different methods for two equal power
coherent sources. Other settings include: θ = [∆u,−∆u] and ULA with N = 12. (a) RMSE versus SNR
with Nt = 100; (b) resolution probability versus SNR with Nt = 100; (c) RMSE versus the number
of snapshots with SNR = 0 dB; and (d) resolution probability versus the number of snapshots with
SNR = 0 dB.

Figure 2c illustrates the RMSE performance of three different methods varying with the number
of snapshots. We can see that although the SNR is small, the proposed method can achieve a good
estimation performance and approach the CRB with a small number of snapshots. Conversely,
the remaining two cannot provide an effective DOA estimation even when the number of snapshot
becomes larger. The corresponding resolution probability is shown in Figure 2d. It is seen that the
resolution probability of SOS-SDP approaches 1 when the number of snapshots is larger than 30, while
the rest of them are smaller than 0.9 with 100 snapshots. According to the trends of the curves in
Figure 2c,d, one can expect that MODE can achieve good estimation performance when the number of
snapshot is large. This coincides with the conclusion that MODE is a large sample realization of the ML
method [6]. Based on the results shown in the four figures, we can conclude that the proposed method
can provide a stable and accurate DOA estimation with a small number of snapshots and at low SNR
level. The reason for this virtue may be that subproblems in each iteration are solved optimally and
thus the ML problem is solved optimally.

In the third experiment, spatial resolution of the proposed method is tested. To achieve this,
we change the distance between signal sources and compare detection performance of SOS-SDP
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with those of SPA and the methods based on the ML criterion. Consider two equal power signal
sources impinging on a 10-element ULA. The signals are coherent with each other and the correlation
coefficient is ρ = exp(−jπ/4). They are located at θ1 = ∆θ/2 and θ1 = −∆θ/2, respectively, with
∆θ varying from 0.02 BWNN to 0.2 BWNN. The number of snapshots and the SNR are set as 100 and
10 dB, respectively.

Figure 3a shows RMSE curves against ∆θ. It is seen that the RMSEs of different methods are
decreased with the increasing of ∆θ. The corresponding resolution probabilities are shown in Figure 3b,
which approach 1 as ∆θ becomes larger. Based on the results of the two figures, we can see that
SOS-SDP can distinguish two signal sources with probability of 1 at ∆θ ≥ 0.06 BWNN, where its
RMSE also approaches CRB. This bound of ∆θ for MODE and IQML are 0.08 BWNN and 0.1 BWNN,
respectively. It is also seen that the RMSE of SPA cannot approach the CRB even when its resolution
probability approaches 1. The reason may be that SPA does not use the knowledge of M [15].
Hence, SOS-SDP has the highest spatial resolution according to the simulation results. The average
running time of SOS-SDP, IQML, MODE and SPA are 15.03 s, 0.18 s, 0.12 s, and 1.1 s. The complexity of
the proposed method is higher than that of others, which is a cost for the better estimation performance.
We should mention that IQML and MODE are built-in functions of Matlab, while the rest are based on
CVX (Version 2.0) [31], whose execution efficiency can be further improved.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
|3

1
-3

2
|/BW

NN

10-1

100

101

102

R
M

SE
 (

D
eg

re
e)

SOS-SDP(3 = " u)
IQML(3 = " u)
MODE(3 = " u)
SPA(3 = " u)
CRB(3 = " u)
SOS-SDP(3 = -" u)
IQML(3 = -" u)
MODE(3 = -" u)
SPA(3 = -" u)
CRB(3 = -" u)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
|3

1
-3

2
|/BW

NN

0

0.2

0.4

0.6

0.8

1

R
es

ol
ut

io
n 

Pr
ob

ab
ili

ty

SOS-SDP
IQML
MODE
SPA

(a) (b)

Figure 3. Spatial resolution of different methods with two equal-power coherent sources. Other settings
include: ULA with N = 10, number of snapshots Nt = 100, and SNR = 10 dB (a) RMSE versus distance
between sources; and (b) resolution probabilities versus distance between sources.

The fourth experiment compares SOS-SDP with AP based on exhaustive search and some sparse
methods developed recently, i.e., GBCD [17], weighted GBCD (GBCD+) [17], ANM [20], and RAM [19].
Note that GBCD and GBCD+ are on-grid model-based methods and ANM and RAM are gridless
methods. GBCD and GBCD+ are implemented as in [17] except that the gird size is 2000 and the
maximum number of iterations equals the number of antennas. RAM is implemented as in [19]
except that the number of signals is given. This is because RAM may underestimate the number
of signals when SNR is small. The grid size for exhaustive search in each step of AP is 10,000. To
save computational time, we initialize SOS-SDP by AP with grid size 1000. Three independent signal
sources are located at θ1 = − 180∆u

π + 0.1, θ2 = 180∆u
π + 0.1, and θ3 = 180BWNN

π degrees, respectively.
Note that AP may provide an RMSE lower than CRB if θ1 = −θ2. The numbers of antennas and
snapshots are 12 and 200, respectively.

Figure 4a,b illustrates the RMSEs of DOA estimations of θ1 and θ3, respectively. The RMSE of
θ2 is similar to that of θ1 and omitted here. In the figures, we can see that when SNR is small, AP
performs similarly to SOS-SDP, and with the increasing of SNR, the RMSEs of grid-based methods,
i.e., AP and GBCD+, are lower bounded by some constants, respectively. These constants depend on
the size of the grid. The weighted sparse methods (GBCD+ and RAM) outperform their unweighted
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versions (GBCD and ANM) in RMSE, respectively. RAM is the best in the compared sparse methods.
However, in Figure 4a, RAM still cannot approach CRB when two signals are closely spaced and SNR
is not large. This is because the estimates of RAM tend to merge together when SNR is small [19].
The average running times of AP, SOS-SDP (initialized by AP), GBCD (and GBCD+), ANM, and
RAM are about 0.3 s, 2.5 s, 3.5 s, 3 s, and 6 s, respectively. AP with exhaustive search performs
similarly to SOS-SDP with less time when SNR is small. However, it is a grid-based method, whose
performance is based on the trade-off between grid size and computational workload. As a result,
SOS-SDP might be faster than AP if a dense grid is adopted in exhaustive search for obtaining
high accuracy. Moreover, the complexity order of SOS-SDP might be decreased if there are more
sophisticated algorithms.
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Figure 4. Comparison of RMSE of different methods and the CRB with N = 12, Nt = 100, and M = 3
equal power uncorrelated sources. (a) RMSE of estimation of θ1 versus SNR; (b) RMSE of estimation of
θ3 versus SNR.

5. Conclusions

We propose an SOS formulation for the ML DOA estimation problem with ULAs and solve it by
using an SDP approach. The proposed method can provide a stable and accurate DOA estimation
with a small number of snapshots and low SNR. Moreover, it has a higher spatial resolution than the
existing methods. The proposed method is slow compared to the existing ML-based methods, since the
cost of solving the SDP in each iteration is extremely high. A future work is to develop faster solvers
for the SDPs involved in this paper. Since the alternating direction method of multipliers (ADMM) [32]
may provide an acceptable solution with a smaller cost, we may turn to the first-order method in
future studies. Another interesting direction will be extending the proposed DOA estimation method
to other kinds of arrays, such as uniform circular arrays.
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