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Abstract: Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence
of ethylenediamine, after a calcination step at 800 ˝C in static air. From X-ray powder diffraction
analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group
P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to
1.6 µm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods
had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures
were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 ˝C) at
temperatures 23, 150, 200, 250 and 300 ˝C. The pellets were exposed to different concentrations of
carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the
MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.
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1. Introduction

The global scientific community has recently come to understand the importance of better control
over the high-polluting gas emissions sent into the atmosphere by motor vehicles and industries,
mainly in big cities [1]. The results are ecological instability and global warming. These gas emissions
include CO, CO2, NO2, NO and SO2 [2,3], which have triggered health problems connected with
respiratory diseases among dense populations. In order to avoid these conditions and to protect
the environment, it is important to know the concentrations of these gases on an ongoing basis, by
constantly monitoring strategic points. Therefore, extensive research has been conducted into the field
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of gas sensors. One of the main lines of research is based on the preparation of inorganic materials
like oxide semiconductors, which are chemically stable and capable of operating in a wide range of
temperatures. The most widely studied semiconductors for this application include LaFeO3, SnO2,
ZnO and WO3 compounds, among others [4–6]. However, during the past few years, oxides with
a trirutile-type structure have also aroused interest for this purpose because these materials exhibit
good electrical response, as well as short recovery and response times [7]. In order to investigate their
gas sensing properties, P. T. Moseley et al. [8] prepared transition metal tantalates with trirutile-type
structure (CoTa2O6 and NiTa2O6). They found that this compound group exhibits changes in electrical
conductivity, which can be used to elaborate reliable gas detectors. Tamaki et al. [9] synthesized the
trirutile-type ZnSb2O6, finding good sensitivity at 300 ˝C in an atmosphere of H2S (0.01 ppm). The
good sensitivity of this material could be in part attributed to the porous structure of the film made of
ZnSb2O6.

With regard to advances in the preparation of these inorganic materials, different methods
have been used in order to obtain materials with nanometric particle sizes (10´9 m) and improved
microstructural characteristics. Among the most commonly used methods are non-aqueous,
solution-polymerization, aerosol and colloidal routes [10–14]. The colloidal method is more used
nowadays because this process produces materials with unique morphologies and very small particle
sizes (<100 nm) [15]. Matijevic et al. [16] have synthesized inorganic materials based on the colloidal
method (oxides and sulfides among others). Basically, when colloidal particles are precipitated inside
homogeneous dispersions, diverse morphologies can be obtained. Libert et al. [17] reported the
formation of microspheres using a similar procedure. In this work, MgSb2O6 (magnesium antimony
oxide, also known as Bystromite) nanorods were synthesized by a colloidal method for gas sensing
purposes. The characterization of the MgSb2O6 powders was made by scanning and transmission
electron microscopy (SEM and TEM, respectively). In addition, different sensitivity tests were
performed on pellets of MgSb2O6, which showed high sensitivity in carbon monoxide (CO) and
propane (C3H8) atmospheres at relatively low temperatures.

2. Experimental Section

2.1. Synthesis of MgSb2O6 Nanorods

The synthesis of MgSb2O6 nanorods was performed at room temperature by a colloidal
method [7,15,16]. In a typical synthesis, 1.28 g (0.005 mol) of Mg(NO3)2¨ 6H2O (Mallinckrodt, Dublin,
Ireland ), 2.28 g (0.01 mol) of SbCl3 (Sigma-Aldrich, St. Louis, MO, USA), and 4 mL of ethylenediamine
(Sigma, St. Louis, MO, USA) were used. The reagents were dissolved separately in 5 mL of ethyl
alcohol (Golden Bell, Anaheim, CA, USA), except for the ethylenediamine, which was dissolved in
10 mL of the same solvent. The three solutions showed transparency and were stirred for one hour.
Following that, the solutions based on ethylenediamine and magnesium nitrate were mixed, obtaining
a white solution and the formation of a large coagulum. Afterwards, a solution based on antimony
chloride was slowly added, generating a white refined precipitate. The resulting solution (or colloidal
dispersion) was kept under stirring for 24 h and the solvent was then evaporated through microwave
radiation. The exposure of the colloidal solution to the radiation was done in short periods of time
of 20 to 30 s, reaching its maximum temperature of 70 ˝C. The power applied for the evaporation
of the solvent was of 178 W, using a home microwave device (General Electric model JES769WK,
Louisville, KY, USA). The energy absorbed by the colloidal solution was calculated to be 45 kJ. The
obtained precursor material was a white paste, and it was dried at 200 ˝C for 8 h. Afterwards, the
obtained powders were calcined from 800 ˝C and up at a rate of 100 ˝C/h, yielding white powders.
The calcinations were carried out in a Vulcan 3-550 oven (DENTSPLY NeyTech Division, Yucaipa, CA,
USA), which had a programmable temperature control.
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2.2. Physical Characterization of MgSb2O6 Powders

The crystalline structure of the MgSb2O6 (calcined at 800 ˝C) was analyzed by X-ray powders
diffraction at room temperature, using a D500 Siemens diffractometer (Siemens, Munich, Germany)
with a Cu-Kα radiation (λ = 0.1518 nm). The 2θ scanning range was from 10˝ to 70˝ with a size step of
0.02˝ and a time step of 1 s. The morphology of the MgSb2O6 powders was characterized by means
of a scanning electron microscopy system (JEOL JSM-6390LV; Jeol, Inc., Dearborn, MI, USA) in high
vacuum and using the secondary electron emission. Size and shape of the nanorods were analyzed
with a transmission electron microscopy (TEM) system (Jeol, JEM-2010; Jeol, Inc., Boston, MA, USA)
with a B6La filament at 200 kV. For the TEM analysis, the powders were previously dispersed for 5 min
in isopropyl alcohol and supported in a formvar/carbon grid on copper 400 mesh.

2.3. Pellets Preparation for Gas Sensitivity Analysis

The sensing properties were analyzed using MgSb2O6 pellets. To elaborate the pellets, 0.4 g of
MgSb2O6 powders were pressed at 20 ton during 160 min with a manual pressing machine (Simplex
Ital Equip–25 tons (México, Mexico), see Figure 1a. The obtained pellets had a diameter of 12 mm and
a thickness of 0.5 mm. The sensitivity testings were done inside a measurement vacuum chamber
with 10´3 torr of capacity. Gas concentration and partial pressure were controlled using a TM20
Leybold detector (Oerlikon Leybold Vacuum, Cologne, Germany). Electric resistance measurements
were carried out by means of a digital multimeter (model Keithley 2001; Keithley Instruments, Inc,
Cleveland, OH, USA). A diagram of the equipment is shown in Figure 1b. This sensing system was
tested in our previous work [18].
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Figure 1. (a) Diagram of the device used to compact the powders of MgSb2O6 oxide; (b) arrangement
used for the sensitivity testing in controlled atmospheres and temperatures [18].

3. Results and Discussion

3.1. XRD Analysis

Figure 2 shows a typical diffractogram of the MgSb2O6 powders after the thermal treatment at
800 ˝C. This result reveals the presence of the main phase corresponding to MgSb2O6, which was
identified by the file JCPDF No 88-1725. According to this, the MgSb2O6 is a trirutile-type oxide
(showing tetragonal structure) with cell parameters a = 4.64 Å and c = 9.25 Å, and space group
P42/mnm [19]. In addition, the width of the diffraction peaks was an indication of the nanometric size
of the particles [7,20]; the presence of slight fluorescence indicated high crystallinity. Furthermore, a
secondary phase was identified through the JCPDF No 26-1083 file, localized on the angular position
2θ = 42.1˝, which corresponds to carbon (C). The secondary phase in the MgSb2O6 at 800 ˝C is
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attributed to that carbon, which could be produced during the thermal decomposition of organic
material when the sample was calcined inside a closed ceramic crucible; this has been discussed in
previous works [21]. These results are consistent with those reported in the literature, where the same
oxide and similar ones were used [22]. As a comparison, Mizoguchi and Woodward [23] synthesized
the MgSb2O6 based on a wet-chemical method, where the phase was obtained at higher temperature
(1047 ˝C). In the present work, as previously mentioned the oxide was obtained at a lower temperature
(800 ˝C) but employing an alternative synthesis procedure (the microwave-assisted colloidal method).
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colloidal method.

3.2. Scanning Electron Microscopy Analysis

In order to observe the morphology of the MgSb2O6 oxide, scanning electron microscopy (SEM)
was used. Figure 3 shows two typical SEM images of the oxide’s surface at different magnifications. A
great number of rods are observed, which formed over the whole surface. These microstructures have
grown individually and in all directions, taking a microplate as a substrate (Figure 3a). It can be seen
in Figure 3b that tiny linked crystals forming a polycrystalline surface constitute the microbase. The
microrods’ sizes were estimated in the range 0.2–1.6 µm, with an average of ~0.60 µm and a standard
deviation of ˘ ~0.23 µm; see Figure 3c to check these assertions.
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The effect of ethylenediamine in the formation of very small structures of materials, like nanorods
and nanowires, has been discussed in previous studies [7,24,25]. The ethylenediamine acts as a
template, which is incorporated first into the inorganic framework and then escapes from it during
the thermal treatment, forming particles of desired morphologies [25]. In this work, we achieved
the growth of rods on the surface of the MgSb2O6 incorporating the ethylenediamine during the
synthesis process. The colloidal-dispersion formation (nucleation and growth) has been established by
the LaMer and Dinegar mechanisms [7,15,18,26]. These authors proposed three theoretical principles
for this: (1) the concentration of stable reagents in colloidal dispersions increases gradually; (2) the
concentration of reagents reaches the limit of oversaturation and nucleation occurs faster, forming the
nuclei of crystals; (3) the particles’ growth begins and their morphology is now clearly discernible. The
microstructures are attributed to the formation of stable nuclei, which were formed during a strong
reaction caused by the ethylenediamine (the colloidal dispersion) [27,28].

3.3. Transmission Electron Microscopy Analysis

Figure 4 shows three transmission electron microscopy (TEM) images of the MgSb2O6 morphology
in samples obtained at 800 ˝C. The black zones are caused by the small electron beam transmission
through the sample; this effect is caused by the particle agglomeration over the material’s surface.
Figure 4 corroborates the morphology observed by Scanning Electron Microscopy (SEM). In Figure 4a,b,
the agglomeration of nanorods of different size, sitting on a microbase, is clearly visible. The size of
the biggest nanorods was estimated of ~303 nm; the shorter ones had a calculated size of ~86 nm. The
surface of a rod can be observed in Figure 4c, where some porosity and the formation of nanoparticles’
clusters distributed over the surface are visible.
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Figure 5 depicts the size distribution of the nanorods and nanoparticles of the MgSb2O6 oxide.
The estimated nanorod diameter was in the range of 5–45 nm and ~23.8 nm on average, with a standard
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deviation of ˘~10 nm (Figure 5a). The nanoparticles size was estimated in the range of 5–40 nm,
~20 nm on average, and a standard deviation of ˘~7 nm (Figure 5b).
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Figure 6 shows two high-resolution images (HRTEM). Figure 6a depicts one nanorod with a
diameter of ~16 nm. In this particle, a fringe located all along the nanorod divides it into 2 sections.
The minimum diameter of the nanorod was estimated of ~8 nm. In addition, resolved lattice fringes
over the surface of the nanorods were observed, confirming its crystalline nature. This is more evident
in Figure 6b. The distance d between planes was measured on two different zones, based on intensity
profiles. These distances were ~0.42 nm and ~0.33 nm, which respectively correspond to the distance
between the planes (101) and (110) in the tetragonal structure of the MgSb2O6. These planes have
maximum diffraction angles at 2θ = 21.35˝ and 27.16˝, which can be observed in the X-ray diffraction
pattern (see Figure 1).
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3.4. Sensing Properties

In order to evaluate the MgSb2O6 as a potential gas sensor, it was necessary to prepare
pellets (~500 µm) of the material, measuring the changes in the electrical resistance at different
gas concentrations and operating temperatures. The pellets of MgSb2O6 were exposed to carbon
monoxide (CO) and propane (C3H8) flows at concentrations 0, 1, 5, 50, 100, 200, 300, 400 and 500 ppm
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of both gases. The working temperatures were 23 (ambient), 150, 200, 250 and 300 ˝C. The tests were
performed in three steps: (1) the pellets were heated in air at the cited temperatures and were let to rest
for 5 min for their thermal stabilization; (2) at every temperature, the CO and the C3H8 were allowed
to flow, recording the variation of electric resistance; (3) the sensitivity changes (S) were evaluated
using the equation [15,29–31]:

S “
GCO{propane ´ Gair

Gair
(1)

where, GCO{propane and Gair are the pellets’ conductance (1/electric resistance) in the test gases.
Figure 7a,b show the sensitivity tests; Table 1 summarizes the sensitivity variations in

carbon monoxide (CO). According to these results, the MgSb2O6 nanorods are highly sensitive to
concentrations of CO at the given operation temperatures. However, at temperatures below 150 ˝C no
sensitivity changes were detected. As expected, the maximum sensitivity values were at the maximum
CO concentration at the given temperatures; a sensitivity of ~245.75 in a CO atmosphere at 300 ˝C
for a gas concentration of 300 ppm. When the carbon monoxide made contact with the MgSb2O6

pellets at moderate temperatures, the adsorbed CO reacted with the oxygen anions chemisorbed on
the surface, yielding CO2 and a release of electrons back into the conduction band [18,32]. A possible
reaction between the CO and similar materials to one used in this work has been discussed in previous
works [18,32,33].

Sensors 2016, 16, 177 7 of 11 

 

ܵ = ஼ை/௣௥௢௣௔௡௘ܩ − ௔௜௥ܩ௔௜௥ܩ  (1) 

where, GCO/propane and Gair are the pellets’ conductance (1/electric resistance) in the test gases. 
Figure 7a,b show the sensitivity tests; Table 1 summarizes the sensitivity variations in carbon 

monoxide (CO). According to these results, the MgSb2O6 nanorods are highly sensitive to 
concentrations of CO at the given operation temperatures. However, at temperatures below 150 °C 
no sensitivity changes were detected. As expected, the maximum sensitivity values were at the 
maximum CO concentration at the given temperatures; a sensitivity of ~245.75 in a CO atmosphere 
at 300 °C for a gas concentration of 300 ppm. When the carbon monoxide made contact with the 
MgSb2O6 pellets at moderate temperatures, the adsorbed CO reacted with the oxygen anions 
chemisorbed on the surface, yielding CO2 and a release of electrons back into the conduction band 
[18,32]. A possible reaction between the CO and similar materials to one used in this work has been 
discussed in previous works [18,32,33]. 

(a)  

(b)  

Figure 7. Sensitivity of MgSb2O6 pellets: (a) S vs. CO concentration; (b) S vs. operating temperature. 

Table 1. Sensitivity values of MgSb2O6 in CO atmospheres. 

Temperature 
(°C) 

Concentration 
CO (ppm) Sensitivity (S) Temperature

(°C) 
Concentration 

CO (ppm) Sensitivity (S) 

200 

0 0 

300 

0 0 
5 0.36 5 1.37 

50 2.40 50 153.47 
100 2.84 100 183.46 
200 3.39 200 219.93 
300 3.87 300 245.75 

Figure 7. Sensitivity of MgSb2O6 pellets: (a) S vs. CO concentration; (b) S vs. operating temperature.



Sensors 2016, 16, 177 8 of 12

Table 1. Sensitivity values of MgSb2O6 in CO atmospheres.

Temperature
(˝C)

Concentration
CO (ppm) Sensitivity (S) Temperature

(˝C)
Concentration

CO (ppm) Sensitivity (S)

200

0 0

300

0 0
5 0.36 5 1.37

50 2.40 50 153.47
100 2.84 100 183.46
200 3.39 200 219.93
300 3.87 300 245.75

In general, the gas-sensing mechanism of materials like the MgSb2O6 is based on the change of the
electrical resistance or conductance produced by electron transfer due to the adsorption and desorption
of oxygen over the MgSb2O6 pellets [34–36]. Below 150 ˝C, the available oxygen species are mainly O´2 ,
while at temperatures above that the more reactive species O´ and O2´, are predominant [37,38]. At
150 ˝C, the thermal energy is not enough to provoke the oxygen’s desorption reactions, meaning that
no electrical signal could be detected, no matter the gas concentration [15,18]; conversely, at a higher
temperature (like at the tested temperatures of 200 and 300 ˝C) more oxygen species are generated,
provoking a rise in the CO-solid interaction [39] and consequently an increase of the sensitivity [18].

Sensitivity to propane (C3H8), as a function of the gas concentration at the given temperature, is
depicted in Figure 8a,b; Table 2 summarizes the sensitivity results for such gas.
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Table 2. Sensitivity values of MgSb2O6 in C3H8 atmospheres.

Temperature (˝C) Concentration C3H8 (ppm) Sensitivity (S)

250

5 0.311
50 35.62

100 41.72
200 47.62
300 52.20
400 57.75
500 61.66

As for CO, the nanorods show high sensitivity to propane concentrations and operation
temperatures. However, at temperatures 23 (ambient) and 150 ˝C, no response was detected.
Conversely, when the temperature increased to 250 ˝C, the sensitivity rose to the maximum (S ~ 61.66)
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at the highest concentration (500 ppm). The sensitivities were roughly: 0.311, 35.62, 41.72, 47.62, 52.20,
57.75 and 61.66 for the concentrations: 5, 50, 100, 200, 300, 400 and 500 ppm, respectively. The observed
sensitivity trend has been widely reported in the literature [40]. This sensitivity rise can be attributed
to the oxygen desorption that occurs at temperatures higher than 150 ˝C [29], which is probably
due to the interaction of the propane molecules with the material’s surface when the temperature
increases [30] (in our case, at 250 ˝C). Also, the gas sensitivity depends on the temperature and involves
the chemisorption of the oxygen and its subsequent reaction with the sampled gas [29,30,41,42].
Therefore, at a given temperature, the sensitivity depends on the oxygen’s partial pressure and the
adsorption-desorption kinetics [41,43]. Notwithstanding that results are not shown here for when the
gas chamber was evacuated, the material’s sensitivity went back to its baseline, guaranteeing that the
material could be reused. Regardless, the excellent results shown here assure that this material can be
perfectly used at least once.

According to Figure 8, the propane detection mechanism at 250 ˝C is not quite obvious. Some
authors have studied the catalytic and detection properties of metallic oxides, like the one studied here,
for propane, and have proposed some mechanisms involving a relative low kinetics in the presence of
oxygen, without oxygen, and mixtures of propane with other gases [42–47].

The propane sensitivity results were compared with similar previous works [29,30], finding that
we have succeeded obtaining a better sensitivity to such gas. For example, in references [15,29,30],
it is stated that: (a) LaCoO3 showed a maximum sensitivity of ~42 at a temperature of 350 ˝C and a
C3H8 concentration of 300 ppm; (b) a sensitivity of ~0.7 and ~0.6 was reached for SnO2 at 300 ˝C and a
propane concentration of 500 ppm; (c) for ZnO, the maximum sensitivities were 2.25, 3.6 and 5.8 at
300 ˝C and a gas concentration of 300 ppm. We have recently reported that a maximum sensitivity
of 4.8 was reached for CoSb2O6 at 350 ˝C and a C3H8 concentration of 300 ppm [18]. It is therefore
important to emphasize that a sensitivity of ~62 at 250 ˝C and a propane concentration of 500 ppm
was obtained in this work. Part of this success is due to the fact that the gas detection ability of a
semiconductor material depends on the morphology and the particle size [48]. When the particle size
is fine enough (in our case, of nanometric size), the sensitivity increases considerably [7,18,49–52].
In addition, the smaller structures (“almost 1D”) show the higher thermal stability and the better
electrical conduction [34,42]. All these advantages have been verified during this work.

4. Conclusions

The colloidal method is a convenient synthesis method (as an economically cheap process,
compared with alternatives) for the preparation of MgSb2O6 nanorods, because it is possible to have
greater morphology control for the final structures. The MgSb2O6 nanorods are clearly sensitive to
the tested gases at temperatures above 150 ˝C. A uniform response to the operating temperatures and
gas concentrations was obtained in carbon monoxide (CO) and propane (C3H8) atmospheres. The
maximum sensitivity was ~245.75 in a CO atmosphere at 300 ˝C for a gas concentration of 300 ppm.
The high sensitivity of the material is attributed to the nanometric-sized structures obtained during
the synthesis process. MgSb2O6 oxide is therefore very suitable for use as a gas sensor.
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