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Abstract: Localization, which is a technique required by service robots to operate indoors, has been
studied in various ways. Most localization techniques have the robot measure environmental
information to obtain location information; however, this is a high-cost option because it uses
extensive equipment and complicates robot development. If an external device is used to determine a
robot’s location and transmit this information to the robot, the cost of internal equipment required for
location recognition can be reduced. This will simplify robot development. Thus, this study presents
an effective method to control robots by obtaining their location information using a map constructed
by visual information from surveillance cameras installed indoors. With only a single image of an
object, it is difficult to gauge its size due to occlusion. Therefore, we propose a localization method
using several neighboring surveillance cameras. A two-dimensional map containing robot and object
position information is constructed using images of the cameras. The concept of this technique is
based on modeling the four edges of the projected image of the field of coverage of the camera and
an image processing algorithm of the finding object’s center for enhancing the location estimation
of objects of interest. We experimentally demonstrate the effectiveness of the proposed method by
analyzing the resulting movement of a robot in response to the location information obtained from
the two-dimensional map. The accuracy of the multi-camera setup was measured in advance.
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1. Introduction

Recently, various localization technologies for mobile robots have been studied with respect to
acquiring accurate environmental information. Typically, mobile robots have self-organized sensors
to obtain environmental information. However, such robots are very expensive to manufacture
and have complicated body structures. The structural layout of indoor environments is typically a
known state; thus, many localization studies have obtained the required information from external
sensors installed on a robot. The infrared light, ultrasonic, laser range finder, RFID (Radio Frequency
Identification), and RADAR (Radio Detecting and Ranging) are the popularly used sensors for
localization. Hopper et al. [1] presented an active sensing system, which uses infrared emitters
and detectors to achieve 5–10 m accuracy. However, this sensor system is not suitable for high-speed
application as the localization cycle requires about 15 s and always requires line of sight. Ultrasonic
sensor uses the time of flight measurement technique to provide location information [2]. However,
the ultrasonic sensor requires a great deal of infrastructure for its high effectiveness and accuracy.
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Laser distance measurement is executed by measuring the time that it takes for a laser light to be
reflected off a target and returned back to the sensor. Since the laser finder is a very accurate and
quick measurement device, this device is widely used in many applications. Subramanian et al. [3] and
Barawid et al. [4] proposed a localization method based on a laser finder. The laser finder was used
to acquire environment distance information that can be used to identify and avoid obstacles during
navigation. However, their high performance relies on high hardware costs. Miller et al. [5] presented
an indoor localization system based on RFID. RFID based localization used RF tags and a reader with
an antenna to locate objects, but detection of each tag can only work over about 4–6 m. Bahl et al. [6]
and Lin et al. [7] introduced the RADAR system, which is a radio-frequency (RF) based system for
locating and tracking users inside buildings. The concept of RADAR is to measure signal strength
information at multiple stations positioned to provide overlapping field of coverage. It aggregates
real measurements with signal propagation modeling to determine object location, thereby enabling
location-aware applications. The accuracy of the RADAR system was reported by 2–3 m.

Recently, visual image location systems have been preferred because they are not easily disturbed
by other sensors [2,8,9]. Sungho [10] used workspace landmark features as external reference sources.
However, this method has insufficient accuracy and is difficult to install and maintain due to the
required additional equipment. Kim et al. [11] proposed the augmented reality techniques to achieve
an average location recognition success rate of 89%, though the extra cost must be considered.
Cheoket et al. [12] developed a method of localization and navigation in wide indoor areas by using a
vision sensor. Though the set-up cost is lower, this method is not easy to implement if users do not
have knowledge about the basic concept of electronic circuit analysis Recently, two camera localization
systems have been proposed [13,14]. The concept of this system is that the object distances can be
calculated by a triangular relationship from two different images of the cameras. However, to ensure
the measuring reliability, the relative coordinates between two cameras must be maintained at the
same position. In addition, the set-up cost of the experimental environment is quite expensive due to
the use of two cameras.

Nowadays, surveillance systems exist in most modern buildings, and cheap cameras are usually
installed around these buildings. Indoor surveillance cameras are typically installed without blind
areas, and visual data are transferred to a central data server for processing and analysis. If a mobile
robot can determine its position using indoor cameras, it would not require an additional sensor for
localization and could be applied to multi-agent mobile robot systems [15,16]. Kuscue et al. [17] and
Li et al. [18] proposed a vision-based localization method using a single ceiling mounted surveillance
camera. However, there are several problems that must be addressed prior to the realization of this
concept. First, lens distortion arises from the poor-quality lenses in surveillance cameras, and shadow
effects are produced by indoor light sources [19,20]. Second, information about occluding objects
cannot be obtained using a single camera. Third, calibrations of camera and a map for localization are
carried out independently, and it is very time-consuming work.

Herein, we propose a localization method for a mobile robot to overcome the abovementioned
problems associated with indoor environments. A two-dimensional map containing robot and object
position information is constructed using several neighboring surveillance cameras [21]. The concept
of this technique is based on modeling the four edges of the projected image of the field of coverage of
the camera and an image processing algorithm of the finding object’s center for enhancing the location
estimation of objects of interest. This approach relies on coordinate mapping techniques to identify the
robot in the environment using multiple ceiling-mounted cameras. It can be applied for localization
in complex indoor environments like T- and L-shaped environments. In addition, simultaneous
calibration of cameras and a two-dimensional map can be carried out. Via the above modeling process,
a 2D map is built in the form of air-view and quite accurate location can be dynamically acquired
from a scaled grid of the map. Significant advantages of the proposed localization are its minimal cost,
simple calibration and little occlusion, where it needs multiple ceiling-mounted inexpensive cameras
that are installed in opposition to each other and wirelessly communicate with the mobile robot and



Sensors 2016, 16, 195 3 of 13

update its current estimated position. Moreover, we experimentally demonstrate the effectiveness
of the proposed method by analyzing the resulting robot movements in response to the location
information acquired from the generated map.

2. Two-Dimensional Visual Map by Using the Homograph

2.1. Projected Image Plane for Two Dimensional Map

Indoor surveillance cameras are typically installed to view the same object from opposite
directions. Such images contain ground-area information that may be occluded by objects, as shown
in Figure 1. Therefore, two object images viewed from opposite directions must be combined into a
single image. We have attempted to accomplish this using homography.

Homography is a projection wherein a plane is transformed into another plane in space.
A surveillance camera is mounted on a slant to obtain an image, as shown in Figure 2a. To observe the
position and size of an object viewed from the camera, the image in Figure 2a is transformed into the
air-view image of Figure 2b using homography.
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To transform an original image from a surveillance camera into an air-view image, a feature point
Q of the original image is matched with the corresponding point q of the air-view image, as shown in
Figure 3. We used a large placard of a chess board to match feature points between the original and
air-view images.

Using Equation (1), a homography matrix H is obtained using four points from both plane Q and
plane q

q “ HQ (1)

The resulting homographically transformed positions of the same feature points of these two
images from two surveillance cameras are combined in a new projected plane, as shown in Figure 4 1 .
This results in a single united plane, as shown in Figure 4 2 . We can then construct a two-dimensional
map, as shown in Figure 4 3 , by extracting the region of interest (ROI) of the actual floor area from
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the single plane. The homography transformation process makes the floor width of the projected
image to be spread evenly like the air-view image. At that time, the distortion of the camera could be
compensated together.
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If multiple cameras are used for localization in more complex indoor environments, rotational
relationships between image planes of the cameras are considered as shown in Equation (3).

q “
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where n “ t nx ny nz u, o “ t ox oy oz u, a “ t ax ay az u are normal, orientation and
approach unit vectors, respectively.

2.2. Object Modeling on the Two-Dimensional Map

Here, we present a method to acquire the position and size of an object image on the
two-dimensional map. Since two neighboring cameras view an object from opposite directions,
their images of the same object differ. However, the floor area occupied by the object is the same in the
two images. Therefore, if the rest of the image (except for the floor area) is deleted, we can obtain the
actual floor area of the object on the two-dimensional map. Even if an object is looked at from opposite
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directions by two cameras, image correspondence on the two-dimensional map can be obtained by
adopting area features of the object, i.e., center position and size of the area.

To obtain the object floor area on the two-dimensional map, two projected images are transformed
from their original images, as shown in Figure 5. Figure 5a shows the original images from the two
cameras, Figure 5b shows binary images of Figure 5a with shadow effects removed, and Figure 5c
shows the projected images of Figure 5b obtained by homography. If the coordinates of the two
projected images are similar, the actual size and position of an object in contact with the floor,
as represented by the image, are nearly the same. If the rest of the images not including the floor area
are eliminated, the object image can be expressed with an air view. Equation (3) represents the size
and position of an object on the projected plane H(x, y).
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Now, the size and center position of the object image on the two-dimensional map can be
calculated. Generally, labeling or a contour technique is used to detect the area shape of an object
in the image. These techniques are suitable for detecting the area shape from an image, such as
Figure 6, which is a binary image. We apply the contour technique to rapidly determine its size and
center position. Then, the moment of the area shape is calculated to obtain its center point and area.
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The moment is used to measure the size of the area shape. We obtain the size and center position of
the object area from the edge information via the abovementioned process.

To compare the object area with its real position, the actual floor image is transformed onto a
projected plane and the object area is detected by contour processing, as shown in Figure 7.Sensors 2016, 16, 195 6 of 13 
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2.3. Calibration of the Detected Object Area

When the size and center position of the object area obtained from contour processing are
compared to the actual values of the object, considerable errors are revealed. We then measure the
difference between the position of the real and visually detected object using a measurement grid,
as shown in Figure 8.
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In a calibration experiment, we used a cylindrical object (diameter, 20 cm). Figure 9 shows position
errors between the real (black line) and visually detected center position (red line) of the object.
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There is considerable difference between the real and visually detected center position of the
object, as shown in Figure 9. We consider that the error is caused by scale changes in the image
projection and the installation error of the measurement grid. After the initial measurement to detect
the object area, error compensation was performed using homography. When the visually detected
grids were mapped to the floor image in an air view, we obtained the position with an error bound
of 7.1 cm on the two-dimensional map. Figure 10 shows a representation of the error-compensated
results of the object area, as detected by homography.
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3. Topology Map Building and Optimal Path

Path planning is required for a robot to safely move without colliding into any object placed on
the two dimensional map (Section 2). Herein, we employ the thinning algorithm [22]. The thinning
algorithm leaves a single pixel in the center after continuous elimination of contour in random
areas. Thus, a path by which a robot can avoid obstacles and move safely is generated by the
thinning algorithm.

After generating a moving path with the thinning algorithm, as shown in Figures 11 and 12 a
movement indicator is required for a robot. Thus, a topological map is generated to create the path
indicator. However, the algorithm can generate a path that is difficult for a robot to move along; thus,
eliminating information about such paths by checking the area around nodes is required. To make
robots move through nodes, an area around each node that is larger than that of the robot should be
examined to eliminate nodes and edges that cannot be traversed by the robot. Note that a robot cannot
pass if there is an object in the search field around a node and if the search field exists beyond the
boundary of an image around a node.
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Figure 13 shows an image formed after removing a searched path by which a robot cannot
pass. A path by which a robot could pass was generated with a topology map by applying the
thinning algorithm.
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The A* algorithm is a graph exploring algorithm that calculates an optimal driving path with a
given starting point and goal [23]. It uses a heuristic estimate on each node to estimate the shortest
route to the target node with minimal calculation.

Figure 14 shows the shortest robot path estimated by the A* algorithm. A robot moves along
nodes on the estimated path.
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4. Experimental Results

We performed a series of experiments to demonstrate the effectiveness of the proposed
two-dimensional-map-based localization method using indoor surveillance cameras. The width and
length of the floor viewed by the two neighboring cameras were 2.2 and 6 m, respectively. The detected
two-dimensional map by homography represents the area of the floor viewed by the two cameras in
an air view. We used a self-developed mobile robot with an omnidirectional wheel in the experiment.
The surveillance camera had a resolution of 320 ˆ 240 pixels and three RGB (Red Green Blue) channels.

The accuracy of the two dimensional map with the proposed method was experimentally obtained.
Each position error in Figure 15 has two x- and y-axis components in a plane. To represent two error
components as a single parameter at each position, we suggest the position error estimation shown in
Figure 16. Here, xreal and yreal mean the real position, and xmeasur and ymeasur represent the visually
detected object position on the two dimensional map. xe and ye are obtained using Equation (4).Sensors 2016, 16, 195 9 of 13 
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xe “ xreal ´ xmeasur , ye “ yreal ´ ymeasur (4)

Position error verror is composed of xe and ye in Equation (4) and is expressed by Equation (5).
The magnitude of position error estimate verror is obtained using Equation (6).

verror px, yq “ rxe, yes (5)

|verror px, yq| “
b

x2
e ` y2

e (6)

We define the position error estimate E(x, y) as the absolute value of verror using Equation (7).

E px, yq “ |verror px, yq| (7)

Here, E(x,y) is the error plane of the difference between the real and visually detected object
position. To examine the effectiveness of the proposed error compensation by homography (Section 2),
we compared E(x,y) before and after error compensation. The position error estimate before error
compensation is shown in Figure 16. The x–y plane of Figure 16 is the x–y plane of the two-dimensional
map, and the z plane is the value of E(x, y). The maximum and average values of E(x, y) are
11.5 and 6.7 cm, respectively. After error compensation by homography, the maximum and average
values of E(x, y) are 7.1 and 2.6 cm, respectively, as shown in Figure 17. The maximum position
error was decreased by 38% through the proposed error compensation method. The accuracy of the
two-dimensional map obtained by two ceiling surveillance cameras is 7.1 cm, which is sufficient for
mobile robot localization.
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Figure 17. Position error estimate after error compensation.

Figure 18 shows two images from the two neighboring surveillance cameras. There are several
objects on the floor. A mobile robot was controlled to move from one position to the opposite position
using the proposed localization based on the two-dimensional map described in Section 2.2. We used
the A* algorithm as the path planning method for the mobile robot. The objects on the floor were
detected by homography as the object area in the projected plane, and the robot’s moving path was
planned considering the object area in the two-dimensional map. The experimental results of the
robot’s path control are shown in Figure 19. The error bounds between the planned and actual
movement path of the robot was ˘5 cm. This means that the proposed localization method may be
effective for indoor mobile robots.
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Figure 19. Experimental results of the robot’s path control using the proposed localization method.

To show that the proposed method can be applied for complex indoor environments,
an experiment was carried out at a T-shaped indoor environment. As shown in Figure 20a, three
surveillance cameras were used to build a two-dimensional map. Figure 20b–d show images from the
three cameras.
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Figure 20. (a) Map of our experimental environment; (b) Image of camera 1; (c) Image of camera 2;
(d) Image of camera 3.

Figure 21 shows the two-dimensional map using the proposed method. The accuracy of the
two-dimensional map by three ceiling surveillance cameras is 7 cm, which is satisfactory for mobile
robot localization.
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5. Conclusions

We have proposed a new vision-based approach for mobile-robot localization in an indoor
environment using multiple remote ceiling-mounted cameras. The proposed approach uses a
two-dimensional mapping technique between camera and ground-image plane coordinate systems.
We used homography to transform the image planes. Two camera-image planes were combined into a
single ground-image plane with an air view, which resulted in a two-dimensional map. The position
error bound of the developed two-dimensional map was within 7.1 cm. We performed a series of
experiments to demonstrate the effectiveness of the proposed two-dimensional-map-based localization
method. Among several obstacles fixed on the floor, the mobile robot successfully maneuvered to
its destination position using only the two-dimensional map without the help of any other sensor.
In future, we plan to extend the proposed method to the localization of multiple mobile robots in an
indoor environment.
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