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Abstract: This paper proposes a compressive sensing (CS) method for multi-channel electroencephalogram
(EEG) signals in Wireless Body Area Network (WBAN) applications, where the battery life of sensors
is limited. For the single EEG channel case, known as the single measurement vector (SMV) problem,
the Block Sparse Bayesian Learning-BO (BSBL-BO) method has been shown to yield good results. This
method exploits the block sparsity and the intra-correlation (i.e., the linear dependency) within the
measurement vector of a single channel. For the multichannel case, known as the multi-measurement
vector (MMV) problem, the Spatio-Temporal Sparse Bayesian Learning (STSBL-EM) method has
been proposed. This method learns the joint correlation structure in the multichannel signals by
whitening the model in the temporal and the spatial domains. Our proposed method represents the
multi-channels signal data as a vector that is constructed in a specific way, so that it has a better block
sparsity structure than the conventional representation obtained by stacking the measurement vectors
of the different channels. To reconstruct the multichannel EEG signals, we modify the parameters of
the BSBL-BO algorithm, so that it can exploit not only the linear but also the non-linear dependency
structures in a vector. The modified BSBL-BO is then applied on the vector with the better sparsity
structure. The proposed method is shown to significantly outperform existing SMV and also MMV
methods. It also shows significant lower compression errors even at high compression ratios such as
10:1 on three different datasets.

Keywords: EEG signals; tele-monitoring; compressed sensing; BSBL; multivariate compression;
linear and nonlinear dependency

1. Introduction

For tele-monitoring and other applications involving EEG signals in Wireless Body Area Networks
(WBANs) the amount of data acquired by the sensor is fairly large. Since the battery life of sensors in
WBANs is limited, Compressed Sensing (CS) has been drawing much attention for such applications.
CS requires less energy in compressing signals than existing techniques such as transform-based
compression methods [1–6]. These CS methods have been applied to reconstruct single EEG
channels [1–4,6]. The work in [2,3] proposes a CS framework for EEG signals. This framework
is compared with those using the following dictionaries: a Gabor dictionary, a Mexican hat (second
derivative of Gaussian function), a linear spline, a cubic spline, and a linear B spline and cubic
B-spline. In [7], ECG and EEG signals were reconstructed using a linear B-spline wavelet dictionary
and cubic B-spline matrix and reconstructed using Bayesian Compressive Sensing. The dictionary
is randomly sampled and a modified banded Toeplitz dictionary matrix is formed. Another recent
approach is to apply independent component analysis to pre-processes the EEG signals, prior to
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applying compressed sensing, so as to improve their sparse representation [8]. Zhang et al. have
recently proposed reconstructed the EEG signals using a Block Sparse Bayesian Learning-Bounded
Optimization (BSBL-BO) framework [1]. BSBL-BO reconstructs EEG signals without using a sparsifying
dictionary matrix such as a Gabor dictionary. It is empirically shown to be highly effective in
reconstructing EEG signals, as long as a low reconstruction error is tolerated. In [6], a compressive
sensing framework is proposed where inter-channel redundancy removal is applied at the sensor
after the sensing stage. Comparing the compression results of this approach with JPEG2000 and
BSBL-BO shows that JPEG 2000 achieves the lowest error at high compression rates. However, the
power consumption is of JPEG 2000 is too high and it is thus not suitable for WBAN applications.

The above studies have addressed the Single Measurement Vector (SMV) CS case i.e., where single
EEG channels are compressed and decompressed channel by channel. However, the simultaneous
reconstruction of the CS signals from their multi-channel measurements (referred to as the MMV
problem) has been shown to recover the signals more accurately than by applying SMV solutions on
each channel separately [9–12]. In [11] the MFOCUSS algorithm extended the diversity minimization
FOCUSS algorithm from an SMV to an MMV algorithm. MFOCUSS is an iterative re-weighted
regularized algorithm that solves a l p norm minimization, where 0 < p ď 1 for MMV. In [10], the
MFOCUSS was modified to tMFOCUSS by replacing the regularization with the Mahalanobis distance
regularization, to capture the temporal correlation of the MMV signals. A similar idea is used in [9]
to capture the temporal correlation, but in this case a Sparse Bayesian framework for MMV signals
is employed. In [12] a STSBL-EM algorithm is proposed to solve the MMV model by exploiting the
temporal and spatial correlation of the signals. It was to achieve somehow lower reconstruction errors
compared to applying BSBL-BO on each channel. In this paper we propose a method to solve the MMV
problem (and the SMV problem). We show that our proposed method outperforms existing algorithms
in terms of reconstruction accuracy at different compression rates using three different datasets.

The previously mentioned work has focused only on reducing the power consumption of the data
transmission part of the sensor, and only a few works have addressed the sensing and the processing
power of the sensor node, however, the power consumption is still too high to consider in WBAN
applications. Recent studies in [13–15] attempt to reduce the sensing and processing power. In [14] it
is argued that to reduce the sensing energy, a smaller number of samples should be acquired directly
in a random fashion. That is the signal should not be fully sampled and then compressed. Standard
CS recovery techniques result in high NMSE so an alternative recovery approach based on the theory
of low-rank completion is proposed. Their proposed algorithm is shown to be able to achieve power
savings at a compression ratio of 2:1, the signal recovery is however poor at high compression ratios.
In [15] it is shown that by applying blind compressed sensing; (a compressed sensing technique that
involves dictionary learning) while solving the synthesis prior formulation, achieves better results. The
work presented in [13] proposes a technique that combines blind compressed sensing with low-rank
recovery (i.e., combining the techniques in [14,15]). This technique achieved on average 0.18 NMSE for
a compression ratio of 5:1, using the BCI data set in [16]. All of these techniques are not suitable for
WBANs because the recovery quality is not high, hence high NMSE at high compression rates.

There are several studies that explain the physiological basis of EEG channels [17]. The EEG
signals contain many redundancies that result in strong inter- and intradependencies within and
among channels [17–20]. In this study, we estimate the linear dependency structure of EEG signals
(by using the correlation measure) and the non-linear dependency (by using the phase locking values).
We show the existence of linear and non-linear dependencies within and amongst the EEG channels.
Unlike BSBL-BO [1] that exploits only the intra-block correlation structure (i.e., linear dependence) to
decompress the EEG signals, we modify the BSBL-BO so that it can exploit the linear and non-linear
dependencies in EEG signals. The modified algorithm is shown to give better results than BSBL-BO and
other existing algorithms, for the single channel (SMV) and the multi-channel (MMV) EEG problems.
The modified algorithm reconstructs the multi-channels (MMV problem) by a specific vectorizing of
the measurement vectors of the channels. We show that the DCT coefficients of this resulting vector
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(of the multi EEG channel signals) form a redundant block-sparse structure and that this structure
has linear and nonlinear dependencies. This structure promotes low error even at high compression
rates. We show that our proposed method (called BSBL-LNLD) outperforms many existing MMV
methods and achieves a very low mean square error even at a high compression ratio of 10:1
(90% compression rate).

2. Background Literature

2.1. Compressed Sensing of L Dimensional Signals

Assume the number of EEG channels is L. For the lth channel, the corresponding CS model,
denoted as the single measurement vectors (SMV) model is expressed as:

yl “ Axl ` vl (1)

In Equation (1), the vector xl P RN is the raw signal of the lth channel, yl P RM is the CS
compressed signal, and A P RMXN is the measurement matrix (also called the sensing matrix). vl P RN

is the channel noise. N is the number of samples of xl , and M is the number of samples after the
reduction/compression of xl . Traditional CS recovery algorithms use the compressed data yl , and
the sensing matrix A to recover the original signal xl , the recovered signal is referred to as x̂l . The
success of recovery relies on the key assumption that xl is sparse or has a sparse representation in a
certain transform domain. When xl has a sparse representation in a certain domain, then xl can be
expressed as xl “ Dzl , where zl is the sparse representation of xl and D P RNXN is a basis matrix that
sparsifies the signal. For example D can be the discrete cosine transform (DCT) or the discrete wavelet
transform (DWT) matrix.

Based on the sparsity requirements, to achieve the optimal reconstruction, Equation (1) is
re-written as:

yl “ ADzl ` vl (2)

Given A and D, a Compressed Sensing (CS) rule known as the Restricted Isometric Property
(RIP) must be satisfied so that a perfect reconstruction is achieved at a minimum sampling rate given
by [21–24]:

M ě µ2 pA, Dq .S.log pNq (3)

Equation (3) shows the minimum value of M that can be chosen, so as perfect reconstruction is
achieved. In Equation (3), S is the number of non-zero elements in zl , and µ2 is a coherence function
between the two matrices A and D. The minimum value that can be chosen for M is dictated by S
and µ2. To achieve maximum incoherence, both matrices A and D should be selected carefully, so
that D achieves a minimum S in sparsifying xl . Much work has been done by previous researchers, to
find the optimal D and A to achieve a minimum M. Unfortunately, finding the optimal D and A to
compress any data or signal is not easy to achieve. Based on Equation (2), one may use a traditional CS
algorithms to estimate zl , and then calculate x̂l , that is:

min||ẑl||l1 subject to ||ADẑl ´ yl||l2 (4)

x̂l “ Dẑl (5)

Equation (4) uses the Euclidian distance and minimizes the l1 norm of ẑl . However, for highly
correlated signals in the multivariate domain such as in EEG signals, the work presented in [9]
shows that minimizing the Mahalanobis distance signal measurement achieves better results for
highly correlated signals in the multivariate domain such as in EEG signals. The result of using the
Mahalanobis distance is presented in Section 4.
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2.2. Block Sparse Bayesian Learning via Bounded Optimization (BSBL-BO)

BSBL-BO is a CS framework [24] that has been recently proposed for solving the
Single-Measurement-Vector (SMV) model (i.e., the model Equation (1) with L = 1). While some
CS algorithms depend on the sparsity of the signal, BSBL-BO exploits the block sparsity in the signal,
provided the signal is block sparse [1]. That is, BSBL-BO assumes that the vector xl consists of
(g non-overlapping) blocks and some of these blocks are all zeros. As mentioned in [1,24], the block
size can be arbitrarily and the block partition does not need to be consistent with the true block
structures of the signal.

Raw EEG signals generally do not have clear block structures in the time domain. Therefore,
BSBL-BO is applied on the DCT coefficients of the signals [1]. By using the DCT dictionary matrix, an
EEG signal is expressed as a DCT coefficient vector, where the coefficients with significant nonzero
values concentrate at the lower frequencies of the coefficient vector (from the “energy compaction”
property of DCT). The coefficient vector can be viewed as a concatenation of one or more nonzero
blocks followed by a number of zero blocks. Therefore, BSBL-BO can exploit this specific block sparsity
in the DCT coefficients by first obtaining the DCT coefficients and then reconstructing the original
EEG signal.

The BSBL-BO algorithim is derived by applying type II maximum likelihood derivation [24] of
the posterior probability given as:

p
´

x̂
ˇ

ˇ

ˇ
y, λ, tγi, Biu

g
i“1

¯

“ N pµx, Σxq (6)

The hyperparameters λ, tγi, Biu
g
i“1 represent the noise (λ), the block sparsity structure (γi), and

the intra-correlation structure (Bi) in the non-overlapping blocks g. Let Σ0 be a diagonal matrix
such that Σ0 “ diag

´

tγiBiu
g
i“1

¯

. After estimating the hyper-paramteres, the reconstructed signal x̂
is estimated by minimizing the negative log-likelihood Equation (6). The resulting estimate of the
reconstructed signal is given as: x̂ “ µx “ Σ0 AT `λI`AΣ0 AT˘´1 y.

The hyperparameters λ and γi are derived based on the bound-optimization estimation in [24].
λ is a scalar that helps the algorithim perform in noisy conditions. In noiseless cases, λ is fixed
to a small value, e.g., λ “ 10e´10 but when the SNR is less than 15 dB, λ is estimated using the

bounded optimization technique given in [24]. This yields λÐ
||py´Aµxq||

2
2 `

řg
i“1 Tr

´

Σi
x
`

Ai˘T Ai
¯

M
.

The hyperparameter γi is a nonnegative scalar that controls the block-sparsity of the signal.
When γi = 0, the corresponding x̂ of the ith block = 0. This hyperparaemter is given as

γi Ð

g

f

f

e

xT
i B´1

i xi

Tr
´

pAiq
T
pΣ˚yq

´1 AiBi

¯ .

The other hyperparameter, Bi P Rdiˆdi is a positive definite matrix that captures the
intracorrelation structure of the ith block. di is the number of samples of the ith block. The
intra-correlation is useful because it indicates a predictive relationship that can be exploited.
Equation (7) below is a covariance matrix which is derived by minimizing the negative log-likelihood
of the posterior probaility Equation (6). Bi is further modified to obtain B̂i Equation (8) by constraining
it to be a positive definite intracorrealtion matrix. B̂i is formed using a first-order Auto-Regressive
(AR) process which is sufficient to model the intra-block correlation [24]. The resulting B̂i is a Toeplitz
matrix that is selected to represent the intra-block correlation matrx Bi:

Bi “
1
g

g
ÿ

i“1

Σi
x ` µi

x
`

µi
x
˘T

γi
(7)
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B̂i “ Toeplitz
´”

1, r, . . . rdi´1
ı¯

“

»

—

–

1 r ¨ ¨ ¨ rdi´1

...
. . .

...
rdi´1 rdi´2 ¨ ¨ ¨ 1

fi

ffi

fl

@i (8)

The first order Auto-Regressive coefficient is r “
m1

m0
, where m0 & m1 are the average of the

elements of the main diagonal and sub-diagonals of the estimated covariance matrix Bi. In BSBL-BO,
B̂i captures the intra-block correlation structure by converting the estimated covariance matrix Bi to a
bounded first order Toeplitz matrix. The intra-block correlation is a measure of linear dependency. In
the next section, we modify the BSBL-BO so it can exploit both the linear dependency structure as well
as the non-linear dependency structure in EEG signals.

3. Approach and Implementation

3.1. Approach

It has been shown that better reconstruction can be obtained by exploiting the block-sparsity
(assuming the data vector is block sparse) than by only exploiting the sparsity in the signal (assuming
the vector is sparse in the conventional sense) [1,25,26]. The conventional sparsity solution method
only assumes that xl has at most S non-zero elements, in a sparse domain. However, it does not exploit
any further structure that the signal may have. The non-zero components can appear anywhere in
xl , however, there are cases in which the non-zero values can form blocks [26]. We propose to apply
the block-sparse recovery approach to the EEG multiple measurement vector (MMV) problem as the
MMV data share a joint sparsity pattern [27–29]. For the case of EEG signals, the channels have linear
and non-linear dependencies structure between them as well as within a channel [19,20,29].

The work presented in [1] addresses the SMV case. It uses a DCT dictionary matrix (that results
in energy compaction of a single EEG channel) to obtain a vector of block sparse DCT coefficients.
These DCT coefficients are recovered by BSBL-BO in [1]. To study the MMV case, we first investigate
the structure of the MMV data vector. For the MMV case let X be the matrix rx1, x2, . . . xL s where
L is the number of channels. In conventional studies vec rXs i.e., the vector formed by stacking the
columns of X has been studied. However in this paper we propose to study vecrXTs i.e., the vector
formed by stacking the rows of X as a vector. The DCT coefficients of vecrXTs and vec rXs are shown
in Figure 1a,b, respectively. These correspond to the case when the number channels L is 23. The DCT
coefficients of Figure 1c are the DCT transform of xl , when xl is formed of 23 s of data of the channel l,
and the DCT coeficients of Figure 1d are the DCT transform of xl when it is formed of one second of
data of the same channel. In Figure 1c, the length of the channel was formed of 23 s so as to result in
the same number of coefficents as those of Figure 1a,b. This paper compresses the DCT coefficients of
multi-channel EEG signals, which we denote as DTvecrXTs. DTvecrXTs has more of a block sparse
structure than the vector formed by concatenating the channels of the EEG signals, i.e., DTvecrXs. The
blocks in DTvecrXTs also have more structure than the DCT coefficients of a single channel which
we denote as DTxl . Figure 1a shows that the MMV vector, DTvecrXTs, exhibits more structure and
more redundant non-zero blocks than the vector formed by concatenating the channels, DTvecrXs,
(Figure 1b) and DTxl (Figure 1c,d). This is investigated further in more details in Sections 3.2.3 and 4.3.

BSBL-BO exploits the intra-block correlation, which is a measure of linear dependency in the
blocks of a single channel data (temporal data only). Previous works however show that EEG
signals and neurophysiological signals exhibit linear as well as non-linear dependencies [19,20].
In [19], EEG signals are examined for non-linear interdependence between channels, and a significant
evidence of the existence of non-linear interdependency is shown. In order to describe the structure
of EEG signals, the work in [20] suggests that nonlinear dependency measures, such as: mutual
information, entropy, phase synchronization, and state space synchronization are not intended to
substitute linear dependency measures such as auto regression (AR) and cross correlation. Instead,
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non-linear dependency must be regarded as a complement to the linear dependency when studying
EEG signals. This allows a more comprehensive structure in the EEG data.

Based on our observation above, we therefore vectorize the signals of the multichannel data as
vecrXTs i.e., in a way that is different from the conventional one. This will help us better exploit the
block-sparse structure of vecrXTs exhibited in Figure 1a. We also show that this resultant multichannel
vector has significant linear and non-linear dependencies. In our method, the compressed data is
reconstructed using this vectorization in conjunction with a modified version of BSBL-BO, which will
be presented in Section 3.2.4. As will be shown, we will modify the matrix B̂i Equation (8) in BSBL_BO.
This matrix is Toeplitz and its AR coefficients model the intra-channel correlation for every channel by
exploiting the intra-block correlation of each EEG channels. The modified version of B̂i combines the
Phase Locking Values (PLV) of the blocks (so as to exploit the non-linearity intra-dependence) with the
intra-channel correlation. The use of DvecrXTs instead of processing single channels, would enable
the exploitation of the intra-blocks interdependencies and modelling the intra and inter dependencies
(whether linear dependence, non-linear dependence, or both) of channels. Applying the modified
BSBL-BO on the vector from the suggested vectorization (vecrXTswill enable us to exploit the linear
and non-linear dependencies within the channels of the EEG data as well as between the channels.
The detail of the modified algorithm follows in the next subsection.
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Figure 1. Block Sparsity of EEG DCT Coefficients of EEG channels. (a) The DCT coefficients of vecrXTs;
(b) The DCT coefficients of vecrXs ; (c) The DCT coefficients of xl , when xl is formed of 23 s of data of
the channel l; (d) The DCT coefficients of xl when it is formed of one second of data of the same channel.

3.2. Implementation

The corresponding CS model for the L channels case, denoted as the MMV problem is expressed as
Y “ AX` V, where Y “ ry1, y2, . . . yls , X “ rx1, x2, . . . xls, V “ rv1, v2, . . . vls, (X P RNXL, Y P RMXL,
V P RNXL), and N is the number of samples per epoch. In this paper, the matrix XT is vectorized so that
the measurement vector is represented as y “ AvecrXTs ` v. The implementation of the compression
technique is shown in Figure 2 and implementation is discussed in the following subsections.

3.2.1. Epoching

The EEG data of each channel is divided into non-overlapping epochs each of size N. In our
experiments, we choose N to be equal to the sampling frequency of the dataset i.e., it corresponds to one
second. After the compression, the data of each epoch are recovered independently from other epochs.

3.2.2. Channel Arrangement and Vectorization

In [1], BSBL-BO was developed to decompress a single vector and was thus applied on
each SMV channel. To compress the multiple channels, in this paper the BSBL-BO in [1] is
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modified and then applied to reconstruct the channels jointly and exploits the linear and nonlinear
dependencies of the EEG signals. Given a data matrix X P RNXL, whose columns are the
data of the L channels then (as mentioned above) the matrix X is transformed into the vector
vecrXTs “ rx1,1, x2,1, . . . xL,1, x1,2,x2,2 . . . xL,2 . . . x1,N . . . xL,Ns

T , and also into the vector vec rXs “
rx1,1, x2,1, . . . xN,1, x1,2,x2,2 . . . xN,2 . . . x1,L . . . xN,Ls

T . When vecrXTs is divided into non-overlapping
blocks, d1is, such that di ą 2L then each block of vecrX̂Ts would contain both temporal and spatial
information about the data. It is thus important that di ą 2L otherwise temporal correlation would
be neglected.
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between the matrices ܣ and ܦ. It is shown in [5,21,22] that the higher the incoherence between ܣ 

Figure 2. Block Diagram showing our approach for multivariate compression in CS.

As shown in Figure 1a the DCT coefficients of vecrXTs exhibit better block sparsity than the DCT
coefficents of vec rXs and of xl shown in Figure 1b–d. The structure shown in Figure 1a is found to
be consistent for different data samples. The DCT of vecrXTs shows that this distinct block-sparse
structure has a redundant form. In Figure 1a the non-zero values forms blocks that repeat in a consistant
fashion. This structure does not exist for uncorrelated signals. To prove this emperically, the DCT of
vecrXTs is examined when XTis f ormed o f uncorrelated and of correlated random variables as show
in in Figure 3a–d Figure 3a shows the DCT coefficients of the vectorized form of uncorrelated random
signals. Figure 3b–d shows the DCT coefficients of the vectorized forms of correlated multichannel
signals generated of random multi-channels variables.

As shown in Figure 3b–d, the DCT coefficients of the vectorized correlated signals exhibit a
distinct block sparse-structure. The redundancy of the non-zero structure increases by increasing
the number of channels. As the number of correlated channels increases the number of structured
non-zero blocks increases and this increases the accuracy of the recovery for high compression rates.
This is illustrated in Figure 3b–d.

Sensors 2016, 16, 201 7 of 15 

 

,ଵ,ଵݔൣ ,ଶ,ଵݔ … ,ே,ଵݔ ଶ,ଶݔ,ଵ,ଶݔ … ே,ଶݔ	 … ଵ,௅ݔ ݏ′is divided into non-overlapping blocks, ݀௜ [்ܺ]ܿ݁ݒ ே,௅൧். Whenݔ	… , such that ݀௜ > ܮ2  then each block of ܿ݁ݒ[ ෠்ܺ]  would contain both temporal and spatial 
information about the data. It is thus important that ݀௜ >  otherwise temporal correlation would 	ܮ2
be neglected. 

 
Figure 2. Block Diagram showing our approach for multivariate compression in CS. 

As shown in Figure 1a the DCT coefficients of ܿ݁ݒ[்ܺ] exhibit better block sparsity than the 
DCT coefficents of vec[ܺ] and of ݔ௟ shown in Figure 1b–d. The structure shown in Figure 1a is found 
to be consistent for different data samples. The DCT of ܿ݁ݒ[்ܺ] shows that this distinct block-sparse 
structure has a redundant form. In Figure 1a the non-zero values forms blocks that repeat in a 
consistant fashion. This structure does not exist for uncorrelated signals. To prove this emperically, 
the DCT of ܿ݁ݒ[்ܺ]  is examined when ்ܺ݅ݏ	݀݁݉ݎ݋݂	݂݋  uncorrelated and of correlated random 
variables as show in in Figure 3a–d Figure 3a shows the DCT coefficients of the vectorized form of 
uncorrelated random signals. Figure 3b–d shows the DCT coefficients of the vectorized forms of 
correlated multichannel signals generated of random multi-channels variables. 

As shown in Figure 3b–d, the DCT coefficients of the vectorized correlated signals exhibit a 
distinct block sparse-structure. The redundancy of the non-zero structure increases by increasing the 
number of channels. As the number of correlated channels increases the number of structured non-
zero blocks increases and this increases the accuracy of the recovery for high compression rates. This 
is illustrated in Figure 3b–d. 

 
Figure 3. Block structure of correlated and uncorrelated signals in the DCT domain. (a) The DCT 
coefficients of the vectorized form of uncorrelated random signals; (b) The DCT coefficients of the 
vectorized forms of correlated 6 channel signals; (c) The DCT coefficients of the vectorized forms of 
correlated 10 channel signals; (d) The DCT coefficients of the vectorized forms of correlated 14 channel 
signals. 

3.2.3. Compression 

As mentioned in Section 2.1, the compression effectiveness depends on the degree of coherence 
between the matrices ܣ and ܦ. It is shown in [5,21,22] that the higher the incoherence between ܣ 

Figure 3. Block structure of correlated and uncorrelated signals in the DCT domain. (a) The DCT
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of correlated 10 channel signals; (d) The DCT coefficients of the vectorized forms of correlated
14 channel signals.
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3.2.3. Compression

As mentioned in Section 2.1, the compression effectiveness depends on the degree of coherence
between the matrices A and D. It is shown in [5,21,22] that the higher the incoherence between A
and D, the larger the compression that can be achieved. This is valid only when the R.I.P condition
applies. Regardless of the type of D, to achieve maximum incoherence, A should be independent

and identically Gaussian distributed [5]. Using a Gaussian N
ˆ

0,
1
N

˙

results in an optimal sensing

matrix [5], but the generation of such a matrix is computationally expensive. For energy saving
purposes, a sparse binary matrix that contains few non-zeros (of value equal to one) in each column
of the A matrix was used in [1,6]. It was shown that two non-zero entries are sufficient to compress
the signals when the positions of the non-zeros entries are randomly selected in each column of A [1].
Also, it was shown that the sparse binary matrix performs as well as using a Gaussian matrix [6].

For the MMV problem, to compress vecrXTs for every epoch, we use A P RLM X LN , where M
is the number of random projections that determines the compression ratio given by N{M (or the

compression rate percentage CR% “

ˆ

1´
M
N

˙

100). L is the number of channels of the EEG signals.

To solve the MMV problem, the compressed data is given by y “ A vecrXTs, where y P RLM. In
case of the SMV problem, yl “ Axl , where yl P RM and A P RM X N . The matrix A is fixed for the
measurement of all epoches.

3.2.4. Modification of BSBL-BO (BSBL-LNLD)

As mentioned in Section 2.2, BSBL-BO exploits the block-sparse structure by learning the
hyper-parameter γi. It exploits the intra-block correlation (in a single channel) by learning the
hyper-parameter B̂i. The hyper-parameter Bi is evaluated by minimizing the negative log-likelihood
with respect to Bi [24]. The resultant derivative is shown in Equation (7). Bi, is transformed to B̂i by
constraining it to being a positive definite and symmetric matrix. Assuming all the blocks have the
same size, the idea is to find one parameter from which a close estimate of Bi is formed. The B̂i formed
using the parameter, r, is especially close to Bi along the main diagonal and the main sub-diagonal
of Bi [24]. Further, it is found that for many modelling applications, if the elements of a block form a
first-order Auto-Regressive (AR) process then this is sufficient to model the intra-block correlation [30].
In this case, the covariance matrix Bi of the block (Equation (6)) is converted to a Toeplitz matrix B̂i as
shown in Equation (8). The parameter r is the AR coefficient. Instead of estimating r from the BSBL

cost function, it is empirically calculated as r “
m1
m0

. For most of the time m0 is greater than m1, which
makes r ă 1. If for any case r ą 1, then r is constrained to be equal 0.99. This is done in order to
insure that Bi is always invertible.

To exploit the linear and nonlinear dependencies, we modify r so that it can also learn the
non-linear dependency and not only the linear one, but the rest of the algorithm remains unchanged.
The Phase Locking Value (PLV) between each block of DvecrX̂Ts and every other block is calculated.
Here X̂ is a matrix of size N x L that represents the reconstructed signal at every learning iteration. The
PLV between every two non-overlapping blocks is calculated and then averaged to become a scalar p.
This scalar value, p, represents the average phase synchronization between all blocks. Since each block
of vecrX̂Ts contains temporal and spatial information about the EEG signals, then p captures the intra
and inter non-linear dependence in the EEG channels.

The PLV was proposed in [31] to measure the phase relationship between two neuro-electric or
bio-magnetic signals. The PLV between two signals varies from 0 to 1. When the PLV between two
signals is equal to one, this implies that the signals are perfectly synchronized. When the PLV between
two signals is equal to zero this implies that the signals are completely out of synchronization. The
PLV between two signals is given as:
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PLV “
1
N

N
ÿ

i“1

exp
`

j
`

∅1,i ´∅2,i
˘˘

(9)

where ∅1,i ´∅2,i will now be explained: to obtain Equation (9), each signal is converted into the
Hilbert space to obtain a real and imaginary part for each sample of the signal i. The phase angle ∅1,i
and ∅2,i are then obtained by calculating arctan of the real and imaginary values. Thus ∅1,i ´∅2,i
is the phase angle difference between two signals in each sample. Phase synchronization is useful
because the phase component is obtained separately from the amplitude component. Unlike coherence,
it does not separate the effects of amplitude and phase in the interrelations between two signals.

To exploit the information about the phase synchronization in BSBL-BO, the parameter r is
modified so that it learns the linear and also the non-linear dependencies in a vector. Thus when
applied to vector DvecrX̂Ts which contains the inter- and intra-information about the multi channels, r
would learn both types of dependencies in the channels. As such r would contain information about
inter relationships between channels and not only intra relationships in each channel. This would then
allow BSBL-BO to exploit the inter- and intra linear/non-linear dependence in the channels instead of

the linear dependency (intra-correlation) only. The modified r is given as r “
ˆ

m1
m0

` p
˙

{2, where p

is the average of the PLV between the blocks. In the experiments section we show the performance
of the modified version, BSBL-LNLD, in a compressed sensing framework for both SMV and MMV
problems (we denote our modified algorithm as BSBL-LNLD).

4. Experiments and Results

4.1. Data Set

The experiments were conducted on three datasets. Dataset 1 is the BCI Competition IV [16]. This
dataset is recorded from seven healthy subjects. The recording was made using 59 EEG channels per
subject at a sampling rate of 1000 Hz. Dataset 2 is a collection of 108 polysomnographic recordings
of different sleep disorders monitoring. Each recording contains between five and 13 EEG channels
sampled at 256 Hz [32]. The third dataset consists of seizure data of 22 pediatric subjects. The
recordings contain 23 EEG channels at a sampling rate of 256 Hz [33].

4.2. Dependence Measure of Intra and Inter EEG Blocks

In this experiment, we study the correlation and the PLV measures over the same data samples. A
total of 3000 samples were used, 1000 samples from each dataset. Each sample of the EEG data was
selected randomly from a dataset and was over a one second window of the multiple channels. Each
sample was thus formed of the data of all channels in that dataset, each sample was transformed into
its DCT coefficients and the vectors, DTvecrXTs, DTvec rXs , & DTxl were formed. Each of these three
vectors was divided into equal size blocks, then the intrablock and interblock correlations and PLV
were calculated for each vector. Then the absolute value of these measures were averaged over all
1000 samples taken from the dataset it belongs to this experiment was then repeated few times but for
different block sizes. That is each sample was again divided into equal size blocks but for a different
block size. The results of correlation and PLV of different block sizes are shown in Figure 3. Correlation
is a measure of linear dependency and it ranges between ´1 and 1. When the correlation measure is
positive, then the average block correlation is a positive correlation. When the correlation measure is
negative, then it is a negative correlation. The phase synchronization measures such as the PLV finds
a statistical relationship between two signals and varies from 0 to 1. PLV is important because EEG
signals are noisy and chaotic, thus two or more EEG signals may have their phases synchronized even
if their amplitudes are uncorrelated over time [20].

Figure 4 shows the average correlations and PLV of the randomly selected samples. The vector
DTvec

`

XT˘ has the most intra-correlation structure in the blocks (over 1000 repetitions). We used
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Matlab version 8.5 on a PC with 12 GB RAM, and a 2.8 GHz Core i7 intel CPU. Our results agree
with [19,20] that there exist non-linear dependency between the EEG channels and also within each
channel. Unlike the correlation measure, the PLV is invariant to the type of vector (i.e., it gives the same
results for the DTvecrXTs, DTvec rXs, DTxl). Although the PLV shows a more dominant dependency,
it is not meant to replace the correlation type dependency [20]. For this reason we have added the PLV
measure in Equation (8) of the BSBL-BO algorithm so as to exploit the non-linear dependency in the
EEG signals.Sensors 2016, 16, 201 10 of 15 
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4.3. Error Metrics and Experiements

The original data are compressed at different compression rates given by CR% “

ˆ

1´
M
N

˙

100.

Please note that the compression ratio
N
M
“ 2 : 1 corresponds to CR% = 50%. In our experiments we

compress the EEG datasets at different rates including, 50, 60, 70, 80, and 90% compression rates. For
these expriements, windows of 4 s each were randomly selected from the three datasets, 200 windows
from each channel and for each subject. We measured the reconstruction quality using the Normalized
Mean Square Error (NMSE). During the recording of the EEG datasets, a voltage DC bias was present
in the electrodes. This bias could cause misleading results when calculating NMSE, to avoid this
bias the mean of each signal is subtracted. For a fair evaluation we use the NMSE proposed in [6],

NMSE px, x̂q “
||X´ X̂||
||X´ µX||

.

4.4. Compression/Decompresion Results

The compression was done using the sparse binary matrix as a sensing matrix. This matrix has
only two non-zeros (i.e., ones) in each column selected at random. The length of the matrix depends
on M and this depends on the compression rate. For the MMV problem, our proposed BSBL-LNLD,
and the BSBL-BO algorithims are applied. Based on Figure 4, the smaller the block size (i.e., the more
number of blocks per epoch), the higher the dependency measures. This however, causes a slow
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performance in Matlab 8.5. For this reason, a block size of 92 is chosen because it is found to be a
suitable tradeoff.

Figure 5 shows the performance of our proposed MMV method as the number of EEG channels
increases. The more EEG channels (spatial data), the lower the reconstruction error. This is because the
spatial dependence between channels increases as the number of channels increase. This promotes
more joint dependency which makes the decompression more immune to compression rate values.

In our experiments we compared the performance of our proposed MMV method (BSBL-LNLD)
with the following state of the art decompression EEG algorithms as:

(1) The tMFOCUSS proposed in [10] is a modified version of the MFOCUSS. It works by capturing
the temporal correlation in the channels. The modification lies in replacing the norm minimization
with the Mahalanobis distance.

(2) The TMSBL method proposed in [9]. It is a Bayesian approach. It defines the signal in the
hyper-parameter space instead of the Euclidian space such as in l1/l2 minimization techniques.
The hyper-parameter space is defined by temporal correlation and sparse modelling, this
approach is called the Automatic Relevance Determination as proposed in [9,34]. By using
Expected Maximization, the hyper-parameters are estimated from the posterior information,
which is derived from a prior and the log-likelihood of the compressed signal. One can argue
that TMSBL is similar to BSBL-BO in its basic approach and derivation. However, BSBL-BO
reconstructs the signal in blocks form, unlike TMSBL.
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(3) Recently, the BSBL-BO approach [1] was compared with the STSBL-EM algorithm presented
in [12]. The comparison was performed on BCI data at different compression rates such as
50%, 60%, 70%, 80%, and 90%. It was shown that the decompression of SMV BSBL was less
accurate than STSBL-EM. Two learning hyper-parameters were introduced in STSBL-EM, to
capture the correlation between the blocks in the temporal and spatial domains. STSBL-EM learns
the parameters by temporally whitening the model at first, and then the spatial hyper-parameter
is learned and the signals are estimated. Then the signals are spatially whitened and then the
temporal hyper-parameter and the signals are estimated. This process repeats until convergence
within 2 to 3 s on average. The repetitive whiting of the model reduces the correlation in the
signals which causes less redundancy during decompression, hence less correlation amongst the
blocks. Our results in the Table 1 show that compared to the other methods STSBL-EM does not
achieve low errors at high compression rates.

The DCT transform matrix is used for all experiments for all the algorithms, the proposed
BSBL-LNLD, tMFOCUSS, TMSBL, STBSL, and BSBL-BO methods. These five methods were applied on



Sensors 2016, 16, 201 12 of 16

the MMV problem. For the SVM problem only BSBL-LNLD and BSBL-BO, were applied as the others
are only applicable to the MMV problem. Thus single channels are compressed channel by channel for
the SMV problem, and multiple channels are compressed simultaneously in case of the MMV problem.
For the SMV problem, the EEG data is compressed for each vector such that yl “ Axl ,@l “ r1, 2, .., Ls.
In case of the MMV problem, the EEG signals were compressed using the vector y “ AvecrXTs. As
shown above the proposed method can sustain good recovery results even at high compression rates
e.g., CR 90% (10:1 compression ratio).

To the best of our knowledge, these are the best results that have been achieved so far with respect
to obtaining high compression rates and low construction errors for the EEG signals in compressed
sensing. Not ignoring that fact that the JPEG2000 still achieves the most accurate results at high
compression rates, however, it is not suitable for WBANs.

Table 1. NMSE of the different methods.

CR 90% 85% 80% 70% 60% 50%

Compression Experiment

NMSE (BCI
DataSet)

BSBL-LNLD (Multichannel) 0.065 0.058 0.016 0.008 0.005 0.002
BSBL-BO (Multichannel) 0.094 0.089 0.075 0.014 0.006 0.003

BSBL-LNLD (SingleChannel) 0.461 0.384 0.242 0.154 0.094 0.045
BSBL-BO (SingleChannel) 0.551 0.414 0.318 0.217 0.134 0.089

STBSL-EM 0.791 0.427 0.133 0.038 0.017 0.009
TMSBL 0.248 0.178 0.066 0.04 0.022 0.014

tMFOCUS 0.665 0.269 0.077 0.035 0.018 0.011

NMSE (Seizure
DataSet)

BSBL-LNLD (Multichannel) 0.242 0.191 0.174 0.114 0.097 0.035
BSBL-BO (Multichannel) 0.311 0.257 0.216 0.165 0.114 0.058

BSBL-LNLD (SingleChannel) 0.457 0.412 0.35 0.261 0.156 0.098
BSBL-BO (SingleChannel) 0.671 0.575 0.472 0.319 0.228 0.147

STBSL-EM 0.984 0.728 0.419 0.166 0.091 0.032
TMSBL 0.698 0.687 0.217 0.154 0.11 0.036

tMFOCUS 0.912 0.757 0.683 0.441 0.098 0.021

NMSE (Sleep
DataSet)

BSBL-LNLD (Multichannel) 0.148 0.135 0.095 0.064 0.009 0.004
BSBL-BO (Multichannel) 0.176 0.153 0.113 0.094 0.015 0.007

BSBL-LNLD (SingleChannel) 0.388 0.265 0.147 0.092 0.058 0.029
BSBL-BO (SingleChannel) 0.475 0.356 0.225 0.134 0.075 0.044

STBSL-EM 0.89 0.561 0.315 0.126 0.065 0.007
TMSBL 0.352 0.243 0.156 0.114 0.072 0.009

tMFOCUS 0.864 0.587 0.413 0.324 0.054 0.017

4.5. Power Consumption Simulation

The power consumption evaluation of the sensor node is obtained using an open-source
cycle-accurate Wireless Sensor Network (WSN) simulator called Avrora [35]. It emulates the sensor
node circuitry by providing a virtual operating environment of the execution. An emulator software
for an Atmel AVR micro-controller sensor platform, Mica2 and MicaZ, is provided in Avrora. It is used
to provide a detailed monitoring evaluation of different behaviors such as packet transmission, energy
monitoring, interrupts and stack usage. The energy monitor in Avrora provides the state changes of
the sensor node and estimates the power consumption of each component of the sensor platform.

The compression techniques for the SMV and the MMV problem is implemented in Network
Embedded Systems C for TinyOS [36]. TinyOS is an embedded operating system (OS) that provides
hardware abstraction for operations such as packet transmission, storage and input/output (I/O). The
code was compiled and simulated for a MicaZ sensor platform using Avrora. The MicaZ consists of an
ATMega 128 micro-controller, ZigBee radio, 4 KB of RAM and 128 KB of flash memory. To simplify
the evaluation process, real-time EEG acquisition simulation was not performed. Alternatively, a
short epoch segment of EEG data was loaded into the memory to simulation for a 1 s data window.
This simplification does not affect the evaluation results of the power consumption because the EEG
sensing is the same across all epochs. The majority of the power on the sensor node is consumed
by the micro-controller and the wireless transmitter. Approximately 20% of power consumption is
accounted for the micro-controller, while 70% of the power is accounted for the radio transmitter [37].
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For this reason usually the main focus of the power consumption is on the micro-controller and the
wireless transmitter.

The results of the total power consumption on the sensor node is broken down into the code
execution of the microcontroller, wireless transmitter radio, and flash memory. The power consumption
of the sensor node of different CR% is estimated over a span of 1 hour of data which is sampled at
256 Hz. The battery life is estimated assuming that the battery used is a 3 Volt of 200 mAh. The battery

life is estimated using the following equation: BatteryLi f e “ 0.7
Battery Capacity pmAhq

Total load current { hour pmAq
. The

results is shown in the following Table 2.

Table 2. Breakdown of power consumption results at different compression rates in milliwatts.

CR MCU Transmitter Memory Total (mW) Battery Life hrs (3V, 200 mAh)

0% (No
Compression) 46.14 160.68 0 20.82 3.04

50% 20.07 30.67 13.60 64.34 9.79
60% 19.24 20.58 13.25 53.07 11.87
70% 18.41 14.1 12.91 45.42 13.87
80% 17.72 9.65 12.76 40.14 15.69
90% 17.04 6.67 12.78 36.49 17.27

5. Conclusions and Future Work

This paper proposes a novel method for compressing multi-channel EEG signals using
compressive sensing. It introduces a way for representing the multi-channel EEG data measurements
as a vector that has a significantly better “block” sparsity structure than the conventional one. The DCT
coefficients of the reorganized vector is shown experimentally to have a high sparse and redundant
block sparse structure. That is the new organization of the data results in a high number of sparse
blocks. This enables the state-of art BSBL-BO to produce better reconstruction results of EEG data
that have been compressed using compressive sampling. These results are then further improved by
modifying the BSBL-BO method so that it exploits both the linear and non-linear dependencies in the
EEG data and not only the linear one.

Previous works have shown that neurophysiological signals (including EEG signals) have linear
and non-linear dependencies within each channel and between channels. To find the characteristics of
the linear and non-linear dependencies in the proposed EEG vector representation, we experimentally
calculate the average correlation and phase locking values of various EEG multi-channel data. To
exploit these dependencies, we propose a modification to the parameters of BSBL-BO. The modified
BSBL-BO is then applied on the sparse vector that results from our proposed representation of the EEG
data. We show that these modifications enable BSBL-BO to exploit not only the linear dependency
but also the non-linear ones. We also studied the characteristics of the reorganized DCT coefficients
vector. We used correlated and uncorrelated random signals to prove that the sparse structure of
the reorganized DCT coefficients is reproducible in correlated signals. The redundancy in the block
structure increases with the increase in the number of correlated channels.

The proposed compressed sensing technique is applied on the MMV and the SMV problems.
The compressed signals were decompressed using different existing algorithms for comparison. Two
datasets of EEG signals of different patients and a third dataset of brain computer interface data were
used. The results show that, the proposed BSBL-LNLD method results in a significant lower error
compared to other methods, even at high compression rates such as 10:1. To the best of our knowledge,
the results obtained are the best in the (WBAN) literature for EEG signals, JPEG2000 still remains the
best compression technique in terms of accuracy at high compression rates, but it is not suitable for
WBANs due to its high power consumption.
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Mostly, the sensor architecture of a WBAN framework consists of a sensing part, processing
and data transmission parts. Approximately 20% of power consumption is accounted for the
micro-controller and the sensor, while 70% of the power is accounted for the radio transmitter [37].
The data transmission accounts for the most significant power consumption. That is the reason why
reducing the power consumption of the data transmission has been an interesting topic in previous
works. Therefore, it is essential to transmit fewer amounts of bits to achieve the lowest possible
energy consumption. This is usually how the sensor’s battery lifetime is extended, provided that the
recovery quality is high to achieve a reliable operation in WBAN applications. Only few papers shows
little improvement to solve the power consumption of sensing, processing, and data transmission
power all together [13–15]. Their work does not achieve high compression rates of the EEG, hence
the recovery quality is too low which is reliable for WBAN applications. This work only solved the
data compression problem achieving high recovery quality at high compression rates. However, it did
not propose a solution for the power consumption of the sensing, processing, and data transmission
together. In the future work, we intend to find a solution that accounts for high recovery quality during
high data compression (10:1) while optimizing the sensing and processing power as well.

Acknowledgments: This work was made possible by NPRP grant # 7-684-1-127 from the Qatar National Research
Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author Contributions: This paper presents the research conducted by Hesham Mahrous, in collaboration with
Dr. Rabab K. Ward. I hereby declare that I am the first author of this paper. Dr. Ward helped in formulating
the research problem, supervised the direction of the research, and provided significant editorial comments and
important suggestions for the organization of each manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Z.; Jung, T.-P.; Makeig, S.; Rao, B.D. Compressed Sensing of EEG for Wireless Telemonitoring
with Low Energy Consumption and Inexpensive Hardware. IEEE Trans. Biomed. Eng. 2014, 60, 221–224.
[CrossRef] [PubMed]

2. Aviyente, S. Compressed Sensing Framework for EEG Compression. In Proceedings of the IEEE/SP 14th
Workshop on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007; pp. 181–184.

3. Abdulghani, A.M.; Casson, A.J.; Rodriguez-Villegas, E. Quantifying the performance of compressive sensing
on scalp EEG signals. In Proceedings of the 3rd International Symposium on Applied Sciences in Biomedical
and Communication Technologies (ISABEL), Rome, Italy, 7–10 November 2010; pp. 1–5.

4. Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time
energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58,
2456–2466. [CrossRef] [PubMed]

5. Candes, E.; Wakin, M. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30.
[CrossRef]

6. Fauvel, S.; Ward, R.K. An Energy Efficient Compressed Sensing Framework for the Compression of
Electroencephalogram Signals. Sensors 2014, 14, 1474–1496. [CrossRef] [PubMed]

7. Zhang, H.; Chen, C.; Wu, Y.; Li, P. Decomposition and compression for ECG and EEG signals with sequence
index coding method based on matching pursuit. J. China Univ. Posts Telecommun. 2012, 19, 92–95. [CrossRef]

8. Mijovic, B.; Matic, V.; de Vos, M.; van Huffel, S. Independent component analysis as a preporocessing step
for data compression of neonatal EEG. In Proceedings of the Annual International Conference of the IEEE
Engineering Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 7316–7319.

9. Zhang, Z.; Rao, B.D. Iterative Reweighted Algorithms for Sparse Signal Recovery with Temporally Correlated
Source Vectors. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Prague, Czech Republic, 22–27 May 2011.

10. Zhang, Z.; Rao, B.D. Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse
Bayesian Learning. IEEE J. Sel. Top. Signal Process. 2011, 5, 912–926. [CrossRef]

11. Cotter, S.F.; Rao, B.D.; Kjersti, E.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with
multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [CrossRef]

http://dx.doi.org/10.1109/TBME.2012.2217959
http://www.ncbi.nlm.nih.gov/pubmed/22968206
http://dx.doi.org/10.1109/TBME.2011.2156795
http://www.ncbi.nlm.nih.gov/pubmed/21606019
http://dx.doi.org/10.1109/MSP.2007.914731
http://dx.doi.org/10.3390/s140101474
http://www.ncbi.nlm.nih.gov/pubmed/24434840
http://dx.doi.org/10.1016/S1005-8885(11)60251-3
http://dx.doi.org/10.1109/JSTSP.2011.2159773
http://dx.doi.org/10.1109/TSP.2005.849172


Sensors 2016, 16, 201 15 of 16

12. Zhang, Z.; Jung, T.-P.; Makeig, S.; Pi, Z.; Rao, B.D. Spatiotemporal Sparse Bayesian Learning with Applications
to Compressed Sensing of Multichannel Physiological Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2014,
22, 1186–1197. [CrossRef] [PubMed]

13. Ward, R.K.; Majumdar, A. Energy efficient EEG sensing and transmission for wireless body area networks:
A blind compressed sensing approach. Biomed. Signal Process. Control 2015, 20, 1–9.

14. Ward, R.K.; Majumdar, A.; Gogna, A. Low-rank matrix recovery approach for energy efficient EEG acquisition
for wireless body area network. Sensors 2014, 14, 15729–15748.

15. Majumdar, A.; Shukla, A. Row-sparse blind compressed sensing for reconstructing multi-channel EEG
signals. Biomed. Signal Process. Control 2015, 18, 174–178.

16. Blankertz, B.; Dornhege, G.; Krauledat, M.; Mller, K.; Curio, G. The non-invasive berlin brain-computer
interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 2007, 37, 539–550.
[CrossRef] [PubMed]

17. Gevins, A.S.; Cutillo, B.A. Neuroelectric measures of mind. In Neocortical Dynamics and Human EEG Rhythms;
Oxford University Press: New York, NY, USA, 1995; pp. 304–338.

18. Katznelson, R.D. Normal modes of the brain: Neuroanatomical basis and a physiological theoretical model.
In Electric Fields of the Brain: The Neurophysics of EEG, 1st ed.; Oxford University Press: New York, NY, USA,
1981; pp. 401–442.

19. Breakspear, M.; Terry, J.R. Detection and description of non-linear interdependence in normal multichannel
human EEG data. Clin. Neurophysiol. 2002, 113, 735–753. [CrossRef]

20. Pereda, E.; Quian, R.Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals.
Prog. Neurobiol. 2005, 77, 1–37. [CrossRef] [PubMed]

21. Herrmann, F.J. Randomized sampling and sparsity: Getting more information from fewer samples.
Geophysics 2010, 75. [CrossRef]

22. Mallat, S.G. A Wavelet Tour of Signal Processing, 3rd ed.; Academic Press: New York, NY, USA, 2008.
23. Herrmann, F.J.; Friedlander, M.P.; Yilmaz, O. Fighting the curse of dimensionality: Compressive sensing in

exploration seismology. IEEE Signal Process. Mag. 2011, 29, 88–100. [CrossRef]
24. Zhang, Z.; Rao, B.D. Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-Block

Correlation. IEEE Trans. Signal Process. 2013, 61, 2009–2015. [CrossRef]
25. Eldar, Y.C.; Kuppinger, P.; Bolcskei, H. Block-Sparse Signals: Uncertainty Relations and Efficient Recovery.

IEEE Trans. Signal Process. 2010, 58, 3042–3054. [CrossRef]
26. Eldar, Y.C.; Mishali, M. Block sparsity and sampling over a union of subspaces. In Proceedings of the 16th

International Conference on Digital Signal Processing, Santorini, Greece, 5–7 July 2009; pp. 1–8.
27. Eldar, Y.C.; Mishali, M. Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf.

Theory 2009, 55, 5302–5316. [CrossRef]
28. Chen, J.; Huo, X. Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans.

Signal Process. 2006, 54, 4634–4643. [CrossRef]
29. Duarte, M.F.; Sarvotham, S.; Wakin, M.B.; Baron, D.; Baraniuk, R.G. Joint Sparsity Models for Distributed

Compressed Sensing. In Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured
Representations, Rennes, France, 16–18 November 2005.

30. Zhang, Z.; Rao, B.D. Sparse signal recovery in the presence of correlated multiple measurement vectors. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Dallas, TX, USA, 14–19 March 2010.

31. Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals.
Hum. Brain Map. 1999, 8, 194–208. [CrossRef]

32. Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.;
Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic
alternating pattern (CAP) in human sleep. Sleep Med. 2001, 2, 537–553. [CrossRef]

33. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.;
Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215–e220. [CrossRef]
[PubMed]

34. Michael, E. Tipping: Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001,
1, 211–244.

http://dx.doi.org/10.1109/TNSRE.2014.2319334
http://www.ncbi.nlm.nih.gov/pubmed/24801887
http://dx.doi.org/10.1016/j.neuroimage.2007.01.051
http://www.ncbi.nlm.nih.gov/pubmed/17475513
http://dx.doi.org/10.1016/S1388-2457(02)00051-2
http://dx.doi.org/10.1016/j.pneurobio.2005.10.003
http://www.ncbi.nlm.nih.gov/pubmed/16289760
http://dx.doi.org/10.1190/1.3506147
http://dx.doi.org/10.1109/MSP.2012.2185859
http://dx.doi.org/10.1109/TSP.2013.2241055
http://dx.doi.org/10.1109/TSP.2010.2044837
http://dx.doi.org/10.1109/TIT.2009.2030471
http://dx.doi.org/10.1109/TSP.2006.881263
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:4&lt;194::AID-HBM4&gt;3.0.CO;2-C
http://dx.doi.org/10.1016/S1389-9457(01)00149-6
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218


Sensors 2016, 16, 201 16 of 16

35. Palsberg, J.; Titzer, B.L.; Lee, D.K. Avrora: Scalable sensor network simulation with precise timing. In
Proceedings of the Fourth International Symposium on Information Processing in Sensor Networks, Los
Angeles, CA, USA, 25–27 April 2005.

36. Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.;
Brewer, E.; et al. Tinyos: An operating system for sensor networks. In Ambient Intelligence; Springer: New
York, NY, USA, 2005.

37. Yazicioglu, R.F.; Torfs, T.; Merken, P.; Penders, J.; Leonov, V.; Puers, R.; Gyselinckx, B.; van Hoof, C.
Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems.
Microelectron. J. 2009, 40, 1313–1321. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mejo.2008.08.015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Background Literature 
	Compressed Sensing of L Dimensional Signals 
	Block Sparse Bayesian Learning via Bounded Optimization (BSBL-BO) 

	Approach and Implementation 
	Approach 
	Implementation 
	Epoching 
	Channel Arrangement and Vectorization 
	Compression 
	Modification of BSBL-BO (BSBL-LNLD) 


	Experiments and Results 
	Data Set 
	Dependence Measure of Intra and Inter EEG Blocks 
	Error Metrics and Experiements 
	Compression/Decompresion Results 
	Power Consumption Simulation 

	Conclusions and Future Work 

