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Abstract: Smart sensing and power line tracking is very important in a smart grid system. Illegal
electricity usage can be detected by remote current measurement on overhead power lines using an
inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable
and correct power line tracking is a very prominent issue. In order to correctly track and make
accurate measurements, the swing path of a power line should be previously fitted and predicted by
a mathematical function using an inspection robot. After this, the remote inspection robot can follow
the power line and measure the current. This paper presents a new power line tracking method
using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the
effectiveness of the proposed tracking method by simulation and experimental results.

Keywords: smart grid; inspection robot; illegal electricity usage; smart sensing; line tracking
algorithm; remote detection

1. Introduction

One of the aspects that characterizes the development of a society is its energy consumption in all
of its forms, where the amount of consumption is steadily increasing. As energy use increases, illegal
electricity usage causes an undue additional load on the power distribution system [1]. Therefore,
detecting and localizing illegal electricity usage is a significant challenge for power delivery companies
in many countries [2,3]. For example, the Minister of Energy and Natural Resources in Turkey
has stated that the illegal usage of electricity constitutes 19% of the total electricity consumption
in Turkey [4]. The same problem exists in Iran [5], and even Mongolia is now seeking an optimal
solution for remote detection of illegal electricity usage [6]. Low voltage power delivery system
includes power transformer and subsystems. Electrical voltage supported from the electrical source is
decreased because of the power transformer and is transmitted by low voltage transmission line to
each of the subsystems. The subsystems include energy users and energy meters. The subsystem then
transmits electricity from a note to local users. Illegal electricity usage may exist on the user side of the
subsystems, on the outside of nodes or on the low voltage transmission line. Electricity could be used
illegally in the four ways. One way is switching of energy cables at the energy meter box. Other ways
are use of external phase before the energy meter terminals, use of fixed magnet and use of mechanical
objects [7].

A number of detection methods for illegal electricity usage have been researched in recent years.
The detection methods of illegal electricity usage are classified into two kinds. These are off-line
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and real-time methods. Off-line detection methods are based on statistical tools, which use the
measurement data of energy users over several days and years. Remote detection methods in real
time are classified as follows: Smart meter method, high frequency signal processing method, and
inspection robot based methods [8]. Smart meter based remote detection methods are based on the
current differences between two energy meters [4]. High frequency signal processing based remote
detection method uses a disconnection conception of energy users. There, illegal electricity usage can
be detected by measuring the line impedance when the power distribution system of all users are
disconnected and then a low-voltage signal having a high frequency component is transmitted to the
power distribution system [5]. Recently, inspection robot-based detection systems are widely utilized
in power line measurement [9–14].

In this paper, we propose an illegal electricity detection system using a new power line tracking
algorithm for mobile sensing based on an inspection robot and smart meters. Figure 1 illustrates an
illegal electricity detection system using an inspection robot and smart meters.

Figure 1. Detection system with inspection robot for illegal electricity usage: (a) proposed power
delivery system; (b) terminal smart meter (TSM) [9].

In this detection system, the main energy meter (MEM) and the terminal smart meter (TSM) are
installed on the starting node and on the final end of each electrical user, respectively. MEM measures
the total energy of all electrical users. At the same time, TSM measures the energy usage of each user
and transmits the measured energy value through the power line communication system. If an illegal
electricity usage occurs on the power delivery system, the measured value of MEM and the summation
of each TSM measurements will not be equivalent. In this case, the detection system begins a process by
switching the status of TSMs, as shown in Figure 1b. The switch of a TSM can be either turned on or off
by the command of a control block with a high frequency component. The voltage sag is converted to
a normal voltage by AC/AC converter, which is created by the switching frequency. If MEM measures
some amount of current, even though the user’s currents were switched off by TSMs, that means
illegal electricity usage through that power line. But, when a user’s currents are switched on by a
TSM, the measured current of the MEM represents the total current of the power distribution system.
Therefore, an inspection robot can remotely measure those two kinds of currents. The inspection robot
can crawl and move under the transmission line and detect obstacles using camera and other sensors.
When the inspection robot detects an obstacle, it can pass through the obstacle [10–14]. Figure 2 shows
the working environment of a detection system with an inspection robot.

Figure 2. Working environment of inspection robot for detection system [9].
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The inspection robot starts to move away from a MEM and its motion is continued even if an
illegal current is measured and detected. To detect and localize of illegal electricity usage, the illegal
current should be separated from measured current using the inspection robot. Figure 3 shows the
signal process to separate the illegal current.

Figure 3. Separation process of illegal current [9].

When the measured current from the inspection robot is multiplied by an impulse signal, the illegal
current section can be extracted. In this case, the impulse signal becomes active when users are
disconnected by TSMs. In addition, the measured current can be multiplied by another active impulse
signal when users are connected by TSMs. In this condition, multiplied current represents the total
component of current. Furthermore, the measured voltage from the power delivery system is filtered
by a Kalman filter (KF) from the noise of measurement equipment. Because a KF generates efficiency
response for sinusoid signals with constant frequency. After that, the adaptive impedance is estimated
by values of multiplied illegal current section and filtered voltage using Recursive Least Square (RLS)
method. For an estimation, the impedance values of illegal electricity usage should be calculated
using measured current and filtered voltage when impulse signal is active. It is assumed that illegal
electricity usage is not changed and is constant. Then, calculation of the illegal current is possible
using an estimated impedance and filtered voltage.

If the measured current from the inspection robot has an illegal current section, the robot continues
its motion towards a node marker. When the robot arrives at the node marker, it detects all of the
triangle branch markers and moves to the right-most side of the branch by using its CCD camera.
The value of illegal current is calculated on the triangle marker of the passed branch. If the illegal
current is detected, the robot continues its motion to pass the branch until arrival at the exact location
of illegal electricity usage [9].

Used in this way, the exact location of illegal electricity usage can be transmitted by the robot.
After transmission, the robot goes back to the node and checks the next branch.

If the illegal current is not detected on the triangle marker of the passed branch, the robot goes
back to the node and checks the next branch. When all branches with triangle markers are examined,
the robot goes to a non-marker branch and repeats its process. The detection process terminates when
there is no branch having any markers, which is equivalent to a full coverage inspection of the entire
power delivery system. The finite state diagram of the inspection robot is shown in Figure 4.

When the above mentioned environment is used for remote detection of illegal electricity usage,
there is a very important aspect of exact tracking on the overhead power line. This exact tracking is the
main reason for correct measurement.

In particular, automatic power line detection and tracking are new topics in the world. This paper
presents a new power line tracking algorithm for mobile sensing and detection of illegal electricity
usage based on an inspection robot.
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Figure 4. Finite state diagram of inspection robot [9].

2. Inspection Robot Based Line Tracking Method

In order to remotely detect illegal electricity usage, the exact tracking of electric transmission
lines and accurate measurements are very important. To do accurate tracking, it is necessary to save
the distances of the remote current sensor and the electric transmission line with a constant value.
For the tracking process, the distances of the remote current sensor and the electric transmission line
are measured by various types of sensors. For example, there are ultrasonic sensors, proximity sensors,
and digital cameras. In this case, the measurement error is generated by sensors, which is inconvenient
for the tracking process.

The electric transmission line tracking algorithm in this paper consists of several purposes.
The tracking algorithm should predict measurement error and correct movement of tracking process
for correct current measurement. In order to consider a new tracking method, measurements are
executed with the following assumption. We assume that a mobile robot and manipulator are used for
the tracking process, the manipulator is placed on the mobile robot. In this tracking system, various
type manipulators can be used. However, in this paper, a cylindrical manipulator is selected, which
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is consistent for movement of tracking electric lines and their swing, and is very easy to use [15].
In addition, it is quick to show simulation results of the proposed tracking algorithm. The cylindrical
manipulator is shown in Figure 5.

Figure 5. The cylindrical manipulator [15].

Furthermore, the remote current sensor is placed on the vertical actuator of the cylindrical
manipulator, which measures electric current value during the tracking process. The swing of electric
transmission lines depends on environmental conditions, temperature and wind speed, and the
trajectory is different in such conditions. Figure 6 shows an example of the tracking system described.
The tracking system consists of an electric tower, electric transmission line, remote current sensor,
distance sensors, cylindrical manipulator, and a mobile robot. The height of the tower for electric
transmission lines and the distance between the two towers depends on construction, type of line,
voltage level, environmental conditions, and so on. However, the electric wire depends on transmission
power and voltage level. The current sensor on the tip of the cylindrical manipulator should be placed
near the electric wire with current, where it is possible to remotely measure the electric current [16,17].
In addition, the mobile robot moves along the electric line planned path using several kinds of sensors,
and is called an inspection robot [11].

The planned path of the mobile robot, the electric line swing and the desired remote current
sensor path are shown in Figure 6b. Distance sensors would be placed on the tip of the cylindrical
manipulator, which measures the distance between the current sensor and the electric wire. In addition,
PL is the electric line position coordinate, Ps is the remote current sensor position coordinate, and PR
is the mobile robot position coordinate. In this system, we assume that:

PLz “ PSz “ PRz; PRy “ 0

where: PLz is the Z coordinate of the electric line; PSz is the Z coordinate of the remote current sensor;
PRz is the Z coordinate of the mobile robot; and PRy is the Y coordinate of the mobile robot.

Also, noise is generated in the real system during measurement of PLx and PLy. Therefore,
the input coordinates are:

P̂Lx “ PLx ` δx (1)

P̂Ly “ PLy ` δy (2)

where: PLx is the X coordinate of the electric line; PLy is the Y coordinate of the electric line; δx is the
measurement noise of the X coordinate; δy is the measurement noise of the Y coordinate; P̂Lx is the X
coordinate of the electric line with measurement noise; and P̂Ly is the Y coordinate of electric line with
measurement noise.



Sensors 2016, 16, 250 6 of 14

Figure 6. Example of the line tracking system: (a) Tracking system collection; (b) Traveling paths of
the system.

The main objective of the tracking system is to carry out accurate remote current measurements.
In order to measure current, when the electric line swings due to wind, the current sensor could follow
the electric line. To move to the desired position, the control system for the cylindrical manipulator
has to get the coordinate of the movement position from input. Input coordinates are passed to the
proximity sensor model. Then, the coordinates with the measurement noise are transferred to the
inverse kinematics model. The inverse kinematics model for the control system can calculate the
motion angle of the first joint, the displacement of the next two joints and the offsets of joints, and then
put in the calculated parameters to the drivers of the motor. Furthermore, the drivers can control each
joint motor. The structure of the control system is shown in Figure 7. Motor 1 is installed on the first
joint, which can carry out the rotation of the manipulator. However, Motors 2 and 3 are installed on
the vertical and horizontal actuator, respectively.

Figure 7. Structure of control system for cylindrical manipulator.
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In order to determine parameters of movement, the inverse kinematics equations of the cylindrical
manipulator can be used [18]. In our tracking system, the inverse kinematics equations are:

θ1 “ arctanp
P̂Ly

P̂Lx
q (3)

d2 “
`

P̂Lz ´ Z1
˘

(4)

d3 “
b

P̂2
Lx ` P̂2

Ly ´ Z2 (5)

where: P̂Lx, P̂Ly, P̂Lz are the electric line coordinates of desired position with measurement noise; θ1 is
the angle of Joint 1; d2, d3 are the joint motions for 2 and 3; Z1, Z2 are the joint offsets for 1 and 2.

Next, the line tracking algorithm is described. The line tracking algorithm is shown in Figure 8.
First of all, the mobile robot travels along the electric line and stops at the target coordinate. Then,
the vertical actuator movement of the manipulator on the mobile robot is held at a constant value.
Furthermore, the horizontal actuator is moved to a horizontal direction. During this horizontal
movement, distance measurements between the remote current sensor and the electric line are executed
using proximity sensors by vertical direction, and the measurement data is saved. Now, the line swing
function can be fitted using gathered measured values, which can represent the swing trajectory of the
electric line and movement. The line swing function is mathematical description, which is represents
that how conductor of electric line hangs due to wind load. In this algorithm, the fitting process
can be implemented by parabolic and circle curve fitting to 2D points. Curve fitting is the process
of constructing a curve, or mathematical function, which has the best fit to a series of data points,
possibly subject to constraints [19]. The type of curve fits can be divided into three main categories:
Least squares curve fits, nonlinear curve fits, and smoothing curve fits.

Figure 8. Tracking algorithm of electric line.
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So, it is necessary to fit a circle to 2D points. Therefore, fitting a circle can be used in this algorithm.
Given a set of points

 `

xi, yi
˘(m

i“1, m ě 3, fit them with a circle px´ aq2 ` py´ bq2 “ r2 where (a, b) is
the circle center and r is the circle radius [20].

The example graphic of fitting is shown in Figure 9. In this example, the parabolic function is
y “ ax2 ` bx` c, the constants are a = 1.606, b = ´1.371, and c = 0.664. However, the circle function
is px´ aq2 ` py´ bq2 “ r2, the constants are a = 0.427, b = 0.750 and r = 0.377. In proposed tracking
algorithm, parabolic curve fitting is used. It is consistent for electric line swing trajectory of our
simulation model.

Figure 9. Example of (a) parabolic fitting and (b) circle curve fitting.

After fitting, the vertical and horizontal actuator of the manipulator should be moved to a center
place, and the system waits for the electric line to get to a vertical direction. If the electric line comes
on, the current sensor on the manipulator on the mobile robot starts to track the electric line. In this
case, the horizontal movement should be controlled by the measurement data of proximity sensors.
However, the vertical movement should be controlled by the determined coordinate using the fitted
line swing function. The distance between the remote current sensor and the electric line should be
held by the minimum permissible constant value. It is possible to determine the vertical coordinate
using the horizontal coordinate by the fitted line swing function. Then, the electric line tracking can be
executed. After the current measurement, the mobile robot should move to the next target coordinate
along the electric line, and repeat the above process.

3. Experimental and Simulation Results

3.1. Experimental Results

The experimental objective is to describe the current intensity, the measurement error depending
on distance between the remote current sensor and the electric line. This measurement is very
important for determining the minimum permissible distance of measurement. In the experiment,
a stationary electric line with load and split core current sensor was used. The type of split core current
sensor is CR3100 series, company of CR Magnetics LLC. The cross section, position of current sensor
and electric line are shown in Figure 10.
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Figure 10. Position of current sensor and electric line for measurement.

The current sensor can be moved by robot-arm. Robot arm is shown in Figure 11. In experiment,
RBD-707MG servo motor is used for robot-arm. Servo motor specification are: Type: RBD-707MG;
Size: 50 ˆ 40 ˆ 20 mm; Weight: 60 g; Torque: 7.8 kg/cm; Operation voltage: 6V; Resolution angle: 0.5˝;
Speed: 0.17 s/60˝. Mobile robot and robot-arm for measurement include servo motors of each joint,
motor driver, ARM cortex M4 microcontroller based (STM32F407) control system, FT2232H based USB
interface, two CMOS camera, and mobile robot using iRobot create. A mobile robot is used instead
of inspection robot. ARM Cortex M4 microcontroller was used for all of controls, which controls
servo motors of manipulator, and reads remote sensed current values. However, image processing
was carried out in microcomputer. The line position was sensed by two image cameras. The camera
capturing processing was implemented Video lab tools in RAD Studio C++ builder. However, image
processing of threshold, filtering, edge detection, shape detection, and removing abnormal object were
implemented by OpenCV functions.

Figure 11. Mobile robot and robot-arm for measurement: (A) Split core remote current sensor; (B) Image
sensor—Camera 1; (C) Image sensor—Camera 2; (D) Robot-arm; (E) Microcontroller unit for control;
(F) Serial communication module—USB FIFO.

This experimental process was implemented by different positions of the remote current sensor.
The current sensor was placed under the electric line by X and Y direction. In every position of the
current sensor, the current intensity was measured. The measurement results are shown in Figure 12.
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Figure 12. Remote current measurement using split core current sensor.

From the experimental result, the minimum permissible track distance should be around 5 mm.
Therefore, in order to correct the current measurement, the minimum permissible track distance for
the tracking algorithm is very important.

3.2. Simulation Results

In this paper, three simulation process was implemented. In order to implement simulation of
the proposed overall algorithm, simulation of electrical line swing model, simulation of cylindrical
manipulator model and simulation of line tracking algorithm are required. To describe swing trajectory
of electrical conductor, parabolic function is used. In order to get measurement data with noise,
Guassian white noise with 40 percent is added into distance data of between electrical conductor and
proximity sensor. However, in cylindrical manipulator simulation, the above mentioned kinematics
model is used. Furthermore, last simulation is carried out by the proposed overall tracking algorithm
presented in Figure 8. In this model of the line swing, we assume that the swing trajectory of the
electric line does not change due to wind speed and direction. All of the simulation models in this
paper were carried out in MATLAB.

Several important parameters should be inserted in the electric line swing model. These are
tower height, distance between the two towers, electric line sag, wind speed and the remote current
sensor position coordinates. The tower height and the distance between towers depends on electric
line construction. However, electric line sag depends on the type of electric transmission wire,
environmental conditions, and the climate. Simulation results of this model are shown in Figure 13.
It shows some scenes of the line swing and the swing surface of the line trajectory. These results are
required in the simulation model for the new tracking algorithm.
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Figure 13. Simulation results of the electric line swing: (a) first scene of line swing; (b) second scene of
line swing; (c) third scene of line swing; (d) surface of line trajectory.

The next simulation result is the measurement of distances from the current sensor to the electric
line during the electric line swing, which are determined in the current sensor constant position.
However, during determination, the electric line position is moved using the line swing model.
Simulation results are shown in Figure 14. In addition, in order to consider real environmental distance
measurement data, Gaussian white noise with 40 percent was added into the determined distance
data. This result is shown in Figure 14. The above process is related in the generated error of proximity
sensors. If this measured distance data with error is used, the movement of line tracking will contain a
little bit of vibration. This noise is represented by the red line in Figure 14.

Figure 14. Electric line trajectory: Real trajectory of line swing and trajectory of line swing with
Gaussian noise.
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In order to check the tracking algorithm, there is a necessary model of the robot manipulator
movement. In this paper, the model of the robot manipulator was implemented. The robot manipulator
can move to the inserted coordinate in 2D space. One movement result of the manipulator is shown in
Figure 15.

Figure 15. Simulation result of robot manipulator.

The final simulation model is of the new tracking algorithm. This model consists of the above
mentioned new algorithm in Section 2. Figure 16 shows the final tracking result, which represents the
current sensor trajectory on the robot manipulator. From the results, we can see that the manipulator
movement is smooth, and the Y direction errors are corrected.

Figure 16. Traveling result of robot manipulator using the new algorithm.

4. Conclusions

In this paper, an inspection robot with a new tracking method was proposed for detecting illegal
electricity usage. Experimental and simulation results of the proposed method were consistent with
the desired descriptions. From the results of the simulation processes, the new proposed algorithm
was useful, and the tracking performance could be increased.
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In the future, it is necessary to implement a real experiment of the robot manipulator with the
proposed algorithm, and to compare this with the simulation results. In addition, we need to consider
the selection issue of a robot-arm, its type, and control hardware for a real experiment. These processes
will be covered in our future research.
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