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Abstract: Multiple cropping provides China with a very important system of intensive cultivation,
and can effectively enhance the efficiency of farmland use while improving regional food production
and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping
and reflects the effects of climate change on agricultural production and cropping systems, often
serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland
over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs
related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed
leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics
of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were
selected based on a gridded spatial sampling strategy, and then the LAI information was extracted
from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data
of the samples, and then the MCIs of the samples were obtained using a second-order difference
algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution
of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results
showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and
increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high
MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of
MCIs had clear geographical characteristics, with the largest change in Henan Province.

Keywords: GLASS LAI; NCP; multiple cropping index; spatial and temporal changes; remote sensing

1. Introduction

Agricultural areas are very sensitive to climate change and variability, which can lead to profound
changes in regional agricultural resources and production [1,2]. The North China Plain (NCP; Figure 1),
located in the mid-latitudes, serves as a major grain-cotton production region in China; more than
one fifth of China’s food crops acreage and yield comes from here [3,4]. Therefore, the spatial and
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temporal variations of the cropping system, the characteristics of grain production structures, and the
distribution of agricultural production of this region should be analyzed as should laws governing
land management [5,6].
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Figure 1. Location and scope of the study area. (a) Location of the study area within China; (b) map of
the study area, with a regional inset map showing the study area within eastern China. (BA, Build-up
Areas; DL, Dry Land; GL, Grassland; OC, Ocean; PF, Paddy Field; WB, Water Body; WL, Woodland;
UL, Unused Land).

Humans need farmland to survive [7,8] and it plays a major role in food production and food
security. Multi-cropping is an efficient and commonly used cropping system that relieves the pressure
created by the limited availability of farmland resources while increasing crop output and farm
income [9,10]. Cropping intensity is often measured using a multiple cropping index (MCI); an MCI
measures the planting frequency of crop(s) in the same farmland in one year [11]. An MCI can
reflect the ratio of use of water, soil, light energy, and other natural resources [12,13]. Therefore, MCI
monitoring is used during the analysis and evaluation of the rational use of land (especially farmland)
resources; this provides information related to food production, food security assessment, and scientific
planning of agricultural development [14,15].

Currently, using long time serial satellite remote sensing data, the measurement of MCI and an
analysis of its characteristics provide a relatively accurate and efficient analysis method. This method
can be used to probe the effects of climate change on the dynamic spatial and temporal changes in
agricultural production, especially when compared to traditional statistical methods [16–18]. Periodic
growth curves of crops can be fitted, and MCIs can be easily extracted by building the serial vegetation
indices covering a long period of time. These types of indices include the normalized difference
vegetation index (NDVI), enhanced vegetation index (EVI) and leaf area index (LAI) [19,20]. These
indices can be used with various denoising methods, e.g., curve fitting [21], harmonic analysis of time
series (HANTS) filtering [22], Savitzky-Golay filtering [23,24] and Whittaker smoothing [25]. Many
studies have been conducted with MCI monitoring using NDVI and EVI time series data derived from
remote sensing data with moderate and low spatial resolution [26]. For example, Canisius et al. studied
the cropping systems in Asia by employing a Fourier Transform (FT) and Decision Tree (DT) method
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based on NOAA’s Advanced Very High Resolution Radiometer (NOAA/AVHRR) NDVI data [27].
In addition, Galford et al. and Sakamoto et al. used a Smooth Wavelet Smoothing algorithm to denoise
and reconstruct the moderate-resolution imaging spectroradiometer (MODIS) EVI dataset, and then
monitored multi-cropping information in Brazil and in the Vietnam Mekong region, respectively [28,29].
Also, Li et al. and Yang et al. extracted the MCIs of two areas of Shanxi Province, China, from 2000 to
2007 and the Bohai Rim in China for 2000, 2004, and 2008 using the SPOT/VEGETATION (VGT) NDVI
time serial data, respectively [30,31]. The MODIS NDVI and EVI time series were used to monitor the
MCIs of farmland at different regional scales [32–35].

The use of remote sensing data to map cropping systems often focuses on directly mapping the
distribution of cropping patterns based on multi-spectral data [36]. For instance, Martínez-Casasnovas
et al. used a Geographic Information System (GIS) with overlay analysis to map the main multi-year
cropping patterns in the Flumen Irrigation District. This analysis was based on a 7-year time-series
of cropping images that had been derived from the supervised classification of Landsat-5 Thematic
Mapper and Landsat-7 and Enhanced Thematic Mapper+ imagery [37]. Toshihiro et al. analyzed
the phenological characteristics of rice growing areas of the Mekong Delta, Vietnam, using MODIS
EVI time series products, and documented the five main rice planting patterns [28]. Yang et al. used
NOAA-AVHRR-NDVI (of 1986 and 1996) and SPOT-VEGETATION-NDVI (of 2000) data to map the
main cropping systems of China [33]. However, they used very dense samples and spatial interpolation
methods (e.g., Kriging and Inverse Distance Weighting approaches) to map the spatio-temporal
distribution of cropping systems (or multiple crop indices). This technique can reduce mapping
errors resulting from the effects of many mixed pixels that are often found in remote sensing images,
especially on a very segmented area [38,39]. In this paper, we employed a Kriging spatial interpolation
method in terms of the variation law of the parameter (MCI) to map the spatio-temporal distribution
information of MCIs of dry land in the NCP from 1982 to 2012 and to analyze their characteristics.
In some subareas this landscape exhibits very high levels of fragmentation.

Meanwhile, few research studies have reported on the extraction of MCIs related to farmland
based on LAI time series derived from remote sensing data. This parameter, LAI, provides a very
useful structural vegetation index that is defined as the single-sided leaf area in per unit ground area.
When compared with the other vegetation indices such as NDVI and EVI, LAI can well represent the
characteristics of the vegetation canopy as well as accurately and quantitatively reflect crop growth
information [20]. Hence, in this paper, the MCIs of dry land in the NCP were extracted from the
Global LAnd Surface Satellite (GLASS) LAI time series products collected during 1982–2012, and
subsequently, the spatial-temporal characteristics of the MCIs were analyzed.

2. Material and Methods

2.1. Study Region

The NCP of Northern China forms one of the largest plains in eastern Asia. Most of the NCP
is less than 50 meters above sea level, and serves as one of the major food-producing regions in
China. It extends over the municipalities of Beijing and Tianjin, and includes much of Henan, Hebei,
and Shandong provinces, as well as parts of northern Jiangsu and Anhui provinces; these last two
provinces are not included in this study. The studied ranged across 31.6˝N–42.5˝N and 110.4˝E–122.6˝E
(Figure 1). The flat, open typical fluvial NCP has many rivers and lakes, and is composed of very deep
alluvial deposits, principally re-deposited loess resulting in fertile soil. Most of its area experiences
a warm temperate continental monsoon climate with four distinct seasons, and features relatively
abundant light and heat resources. The annual average temperature is 12–15 ˝C), with an annual
accumulated temperature (ě0 ˝C) of 4100–5400 ˝C, and an annual frost-free period of 190–220 days.
This climate can meet the needs of a double cropping system within one year and/or triple cropping
system over two years. The average annual precipitation of 500–1000 mm is unevenly distributed over
time, and is largely concentrated from July to September. Most of the dryland farmland of the NCP



Sensors 2016, 16, 557 4 of 21

supports a typical cropping practice of mainly rotationally cultivated winter wheat and summer corn.
However, farmers may grow other crops such as corn, sorghum, peanuts, vegetables, and cotton and
the region exhibits a high degree of regional agricultural development [40].

2.2. Data

The GLASS LAI product, a global LAI product with long time series, has a temporal resolution of
eight days and is available from 1982 to 2012. This product is archived in a hierarchical data format
for NASA’s Earth Observing System. The Center for Global Change Data Processing and Analysis at
Beijing Normal University in China generated and released this data. The LAI product (1982–1999)
with a spatial resolution of 0.05˝ ˆ 0.05˝ was generated from AVHRR reflectance, and the MODIS data
(2000–2012), with the spatial resolution of 0.05˝ ˆ 0.05˝ and 1ˆ 1 km, and is derived from MODIS land
surface reflectance (MOD09A1) [41,42]. This study used the GLASS 0.05˝ resolution data. The product
has very good accuracy in space and time because it was produced under a strict quality control
system. The product has remarkable advantages related to the integrity of spatial scope and continuity
of the time series. In addition, any pixels with cloud and snow have been removed from the images.
Missing values were extrapolated, and the images were processed using optimized filters, which can
reduce the errors of the LAI product to meet the needs of highly efficient applications [43,44]. The LAI
digital number (DN) values range from 0–255 in the image of the product, setting a valid value range
of 0–100. Meanwhile, the other values are set to 255 and are deemed to be water-filled areas; a DN
value of an image is converted into a LAI value by the formula: LAI = DN ˆ scale factor + add offset
with scale factor = 0.1 and add offset = 0.

The land use dataset was derived from China’s land use remote sensing monitoring database in
2010 at a 1:100,000 scale, provided by the Science Data Center of Resources and Environment, Chinese
Academy of Sciences. The data were produced through artificial visual interpretation based on Landsat
Thematic Mapper and Enhanced Thematic Mapper satellite images, which include 25 secondary types
with six primary types: farmland, woodland, grassland, water body, build-up areas, and unused
land [45]. We used the land use data to extract the location and area information related to dry land,
i.e., arable land with a secondary type, over the NCP as defined above. Then, based on the obtained
dry land information, we monitored the MCIs of the NCP and fulfilled the extension of spatial scale
for the MCIs (mapping MCIs).

Additionally, this study used farming season and agricultural statistical data for dry land of the
NCP. These data were provided by the Department of Planting Industry Management, Ministry of
Agriculture of the P. R. of China. The study also employed agricultural statistical data, including
the dry land area and total sown area of crops for the study region. These data were obtained from
the China Statistical Yearbooks for 1982, 1987, 1992, 1997, 2002, 2007, and 2012 [46]. These data were
used to calculate the statistical multi-cropping indices of each subarea and the total study area, and to
comparatively analyze and validate the MCI monitoring results using the previously discussed remote
sensing methods [10,12,47].

2.3. Methods

Based on the reflectance spectra of green vegetation in remote sensing imagery, large-area LAIs
can be retrieved and easily reveal the growth status and vegetation in an objective area. LAI time-series
dataset can represent the intra-year or inter-annual growth characteristics of cultivated crops [48] and
through using them, phenological features can be detected. During growth, a crop generally moves
through seeding, emergence, jointing, heading, to harvest stages. Therefore, a crop’s LAI values will
change from increasing to peaking (perhaps with multiple peaks) to declining. Obviously, a marked
peak, two peaks, and three peaks exists in single-cropping, double-cropping and triple-cropping
systems, demonstrating the associated dynamic changes of crop growth in each type of cropping
system. This allows crop LAI time series curves to be constructed in areas with dry land farming, so
that the number of peak(s) can be employed to extract the MCI information [49]. Based on the GLASS
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LAI long time series products, a scheme has been developed for extracting and analyzing the MCIs of
dry land over the NCP in this study (Figure 2).

Sensors 2016, 16, 557 5 of 20 

 

 

Figure 2. Schematic diagram of the extraction processes of multiple cropping indices (MCIs) of dry 

land. Note: LAI, leaf area index; GLASS, Global LAnd Surface Satellite. 

2.3.1. Spatial Sampling and Extracting LAI Time Series Information 

The 2162 typical samples (Figure 3) were selected from high-definition, high-resolution 

imagery (e.g., Google Earth imagery with Version 6.1.0.5001, 2012) based on a gridded spatial 

sampling strategy where there were pure or nearly pure pixels of images within the study area. 

Then, we extracted the LAI information in each sample in 1982, 1987, 1992, 1997, 2002, 2007, and 2012 

using the GLASS LAI products. 

 

Figure 3. Distribution of dry land sample sites in the North China Plain. 

Figure 2. Schematic diagram of the extraction processes of multiple cropping indices (MCIs) of dry
land. Note: LAI, leaf area index; GLASS, Global LAnd Surface Satellite.

2.3.1. Spatial Sampling and Extracting LAI Time Series Information

The 2162 typical samples (Figure 3) were selected from high-definition, high-resolution imagery
(e.g., Google Earth imagery with Version 6.1.0.5001, 2012) based on a gridded spatial sampling strategy
where there were pure or nearly pure pixels of images within the study area. Then, we extracted
the LAI information in each sample in 1982, 1987, 1992, 1997, 2002, 2007, and 2012 using the GLASS
LAI products.
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2.3.2. Filtering and Reconstructing LAI Curves

Using the GLASS LAI data directly, some “small” serrated peaks were observed in the obtained
LAI time series curves of each sample. To avoid “pseudo” and “false” peak phenomena, the LAI
change trendlines should be processed further with a denoising method to improve the usability of the
data. Here, we used the Savizky-Golay (S-G) filtering method to remove the noise components of the
LAI long time series of samples and reconstruct the LAI curves of crop growth [50]. The reconstructed
LAI curves of crops have apparent peaks, which can more effectively and accurately present the
multiple cropping situations (Figure 4). For example, Figure 4a shows the low LAI values of the curve
for bare or vacant land with no obvious peaks (or troughs), while the single and double peaks in
Figure 4b,c can be linked with dry land in a single- and double-cropping system, respectively.
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2.3.3. Extracting MCIs

Given that the LAI value on a reconstructed LAI time series curve in each sampling pixel location
is a discrete function of the time phases of the GLASS LAI images, we employed a second-order
difference algorithm to detect the number of the peaks for the reconstructed LAI curves, and further
extract the MCIs of dry land from the NCP for 1982 to 2012 [51]:

sp1qi “ NLAIi ´ NLAIi´1 (1)

sp2q “

#

1 sp1qi ě 0

´1 sp1qi ă 0
(2)

sp3qi “ sp2qi ´ sp2qi´1 (3)

where NLAIi is the LAI value of a sampling pixel with i being the time series phase of GLASS LAI
imagery and sp1q, sp2q and sp3q are the correspondingly detecting parameters in Equations (1)–(3),
respectively. Initially, the sequence sp1q was calculated by Equation (1), i.e., using the differences
between the LAIs of two adjacent time phases in each sampling pixel location. After the sequence sp2q
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was obtained by reassignment of element of sp1qi , a second difference was carried out by sp2q, and then
the sequence sp3q was obtained, which was composed of several numerical values (´2, 0 and 2). Hence,
a value of ´2 in sp3q could be regarded as linked to a wave peak on the crop growth curve of a sample
where it is located in a position of the curve in accordance to the two adjacent values of 0 before and
after it. In the same way, this was used to decide the corresponding positions of more than one peak
on the crop growth curve of a sample [12,52].

Meanwhile, owing to the influence of image quality, mixed pixels and so on, the change curves of
the LAI time series for partial samples would show up as noise peaks resulting from the occurrence
of abnormal fluctuations. To remove the interference of pseudo peaks, the farming season and
agricultural statistical data of dry land of the NCP were thus used to limit the minimum value and the
time positions of peaks where they might appear in the LAI curves, and then the correct number of
peaks that was validly extracted. Qualifications included:

(A) The time positions of peaks in the LAI curves of dry land appeared from 120 to 300 day of a year;
(B) The LAI value in the peaks could not be less than two under the single-peaked curve;
(C) The time differences between peaks could not be less than 40 days when multimodal peaks

appeared in a LAI time series curve; in addition, the LAI value of the smaller peak could not be
less than 40% of the maximum peak value.

Consequently, based on the relationship between the LAI time series curves of dry land and the
MCIs, the calculation of the MCIs can easily be converted to the statistic parameter of number of peaks
for the LAI curves as follows:

MCI “ Fi “

ř

sjpiq
ř

pjpiq
ˆ 100% (4)

where MCI represents the multiple cropping index; the Fi represents the frequencies of wave peaks
with the i-th year;

ř

sjpiq is the amount of peaks for the curves of the LAIs of all samples during a year;
ř

pjpiq is the total number of samples; and j (equal to 1, 2, 3, . . . ) is the sample number.

2.3.4. Mapping MCIs

Based on spatial characteristics of the MCI data of the dry land samples, different semivariogram
models (i.e., Gaussian, spherical, exponential, and linear models) were compared to select the most
optimal Kriging model for spatial interpolation; then mapping of the MCIs of dry land in the NCP
over nearly 30 years was conducted.

In the above steps, Interactive Data Language was applied to make it easier to interactively and
visually preprocess the long time series remote sensing data and extract MCIs. Then, using ArcGIS
software, the map sets of spatial distribution and time series of MCIs of dry land of the NCP were
effectively produced.

2.3.5. Validation Analysis

Using the two statistics of the dry land area (Tpjqi prealq) and total sown area (Tpjqi psownq) of crops
over the study administrative regions, derived from the China Statistical Yearbooks in 1982, 1987, 1992,
1997, 2002, 2007 and 2012, MCIs were calculated by formula (5) below:

MCIipstatisticq “
Tpjqi psownq

Tpjqi prealq
ˆ 100% (5)

where MCIipstatisticq is the multiple cropping index in the i-th year with the number j (equal to 0, 1, 2,
3, 4, and 5) of the total area and six administrative regions mentioned above, respectively. Then, the
results of the MCIs obtained by the previous remote sensing approach were comparatively analyzed
and validated with the results from the statistical data [53].
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3. Results

3.1. Temporal and Spatial Changes of MCI in the North China Plain

The dry land MCIs of the NCP over the past 30 years were successfully extracted using Interactive
Data Language codes that were combined with ArcGIS tools; then, the temporal-spatial pattern
characteristics of the MCIs were obtained. The temporal and spatial changes of the MCIs in the NCP
over the past 30 years exhibit a south to north decreasing spatial pattern (Figure 5). The dry land
MCIs of the southern subregions with better light-heat and precipitation conditions (such as Henan)
significantly exceed those of the northern parts (such as northwestern Hebei) that have relatively
smaller values for those factors.
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The subregions with MCIs no less than 160% are mainly distributed in northern Henan, western
Shandong and southern Hebei which are traditional and important national agriculture development
regions [54]. The subregions with higher MCIs are mainly located in relatively flat areas such as the
plains in Henan and Shandong provinces. However, the subregions with lower MCIs are mainly
distributed in the densely populated and hilly areas with an arid climate [55], including Beijing, Tianjin
and mountainous areas in Hebei Province. The variation tendency chart on the temporal scale of MCI
in the NCP (Figure 6) was derived from the average MCIs in 1982, 1987, 1992, 1997, 2002, 2007, and
2012. The results show that the MCIs in the NCP had generally continued to increase during the past
30 years. The lowest value of the MCI, 107.57%, appeared in 1982, but the highest value of 152.15%
was in 2002. The MCIs significantly increased during the period from 1982 to 2002 (with the largest
increase from 1982 to 1987), followed by a slight decline from 2002–2012.
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Figure 6. Variation tendency of the Multiple Cropping Indices in the North China Plain from 1982
to 2012.

In contrast with the district level (Table 1 and Figure 7), the MCIs of dry land for each province
also represented the same growth trend. For example, in Henan Province the MCI varied from 177.69%
in 2012 to 126.44% in 1982, and had peaked at 179.95% in 2007. However, the MCIs of Beijing and
Tianjin remained at a low level with minor variation.

Table 1. Multiple Cropping Indices of different provinces (or cities) in the North China Plain (NCP)
from 1982 to 2012.

Year Beijing City Tianjin City Shandong
Province

Henan
Province

Hebei
Province NCP

1982 100.00 99.05 101.35 126.44 96.06 107.57
1987 101.72 100.00 127.90 170.42 109.12 134.43
1992 121.63 111.99 136.38 156.36 120.84 137.03
1997 130.80 99.14 146.49 176.06 123.64 147.33
2002 120.12 113.29 153.65 174.33 132.63 152.15
2007 108.75 105.79 142.88 179.95 124.24 147.40
2012 100.32 100.00 148.53 177.69 125.57 148.72

Average 111.91 104.18 136.74 165.89 118.87 139.23
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The dry land MCIs were extracted longitudinally along the 115˝E Meridian in the NCP over
the past 30 years. The MCIs approximately dip from lower latitudes to higher latitudes (Figure 8).
The MCIs in the zones from 31.4˝N to 32˝N, 36.7˝N to 37.3˝N and 40˝N to 41.6˝N are relatively
lower because of the large area of mountains and hills in these regions (Figure 1). Conditions here
led to poorer agricultural conditions and thus multi-cropping has failed to improve crop production
over time. In contrast, the MCIs in flat areas from 32.2˝N to 36.2˝N and 37.6˝N to 38.6˝N tend to be
relatively higher, especially after 1997, and tend to remain relatively stable, including a maximum MCI
above 160% in some subregions.

Figures 9 and 10 were created based on MCI change rates to reflect the spatial distribution of MCI
ranges in the subareas of the NCP. The MCI change rates of the central plain areas are greater than
50%, and they are even more than 150% in some subareas that are mostly located in the south of Hebei,
west of Shandong and north of Henan (Figure 9). However, the MCI variation rates in mountainous
areas, coastal regions, and parts of traditionally agricultural regions are very low, and they are less
than 10% in some areas. In terms of district level, we can conclude that the MCI change rates from
1982 to 2012 in Beijing and Tianjin which are economically well developed were the least (i.e., less than
10%); meanwhile those of Hebei and Shandong are second, and the MCI variation rate in Henan was
the highest (i.e., greater than 50%; Figure 10).

In addition, the annual variation tendency of dry land MCI in the NCP, which was represented by
the average change rate of annual MCI in this region for nearly 30 years, was not consistent. It presents
a trend that the MCIs have an overall positive growth but those show a negative growth in some
provinces (Figure 11). Furthermore, the partial spatial changes of MCIs of the dry land in this region
had obvious geographical characteristics; for example, the change of MCIs largest, second largest,
and smallest in Henan Province (whose change rate increased by 51.52%), Shandong, and in Beijing
(0.32%), respectively.
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3.2. Comparison Analysis

3.2.1. Statistical Comparison

No relevant records were available from 1982, resulting in missing statistical data for Tianjin and
Henan in 1982 (Table 2). Meanwhile, the accuracy of MCIs extracted by remote sensing in 1982 was
abnormally low, based on the benchmark of MCI statistics in Beijing, Hebei, and Shandong, which



Sensors 2016, 16, 557 13 of 21

were only about 70%; this was mainly influenced by the uncertainty of statistics and remote sensing.
After 1982, the accuracy of data for each administrative region (excluding Beijing and Tianjin) was
greater than 90%, meaning their accuracies were relatively high overall. As is well known, the rapid
urbanization in Beijing and Tianjin has led to heavy fragmentation in farmland patches, and hence, the
remote sensing images in those regions had a larger proportion of mixed pixels which would cause the
lower accuracy of inverted MCIs. However, an opposite phenomenon in that the accuracy of MCIs
retrieved from remote sensing data was clearly high in Hebei, Shandong, and Henan provinces was
observed. This is where there was a large area of traditional agriculture with centralized farmland
patches that were related to a smaller proportion of mixed pixels; therefore, the accuracy in some
provinces was more than 97%.

Table 2. Comparison between Multiple Cropping Indices extracted from remote sensing data and
statistics in the North China Plain from 1982 to 2012.

Year Term Beijing City Tianjin City Hebei
Province

Shandong
Province

Henan
Province

1982
Statistical Data 151.46 – 134.86 145.10 –
Extracted Data 100.00 99.05 96.06 101.35 126.44

Accuracy * 66.02% – 71.23% 70.46% –

1987
Statistical Data 123.07 110.82 120.14 140.24 171.43
Extracted Data 101.72 100.00 109.12 127.90 170.42

Accuracy 82.65% 90.24% 90.83% 91.20% 99.41%

1992
Statistical Data 143.18 133.52 130.97 159.43 173.31
Extracted Data 121.63 111.99 120.84 136.38 156.36

Accuracy 84.95% 83.88% 92.26% 85.54% 90.22%

1997
Statistical Data 134.12 123.63 135.90 164.03 180.41
Extracted Data 130.80 99.14 123.64 146.49 176.06

Accuracy 97.53% 80.19% 90.98% 89.31% 97.59%

2002
Statistical Data 99.45 107.66 129.81 143.68 164.73
Extracted Data 120.12 113.29 132.63 153.65 174.33

Accuracy 82.79% 95.03% 97.87% 93.51% 94.49%

2007
Statistical Data 127.05 97.81 137.02 142.86 177.74
Extracted Data 108.75 105.79 124.24 142.88 179.95

Accuracy 85.60% 92.46% 90.68% 99.98% 98.77%

2012
Statistical Data 122.44 108.59 139.01 144.60 179.93
Extracted Data 100.32 100.00 125.57 148.53 177.69

Accuracy 81.93% 92.09% 90.33% 97.35% 98.75%

* Accuracy “ pExtracted Data{Statistical Dataq ˆ 100%, which is the same as the following.

3.2.2. Comparison with the Other Remote Sensing Monitoring Results

Comparisons can be made to the results in this study with other MCIs (in 2002, 2007, and 2012)
extracted from the corresponding regions based on remote sensing data with a higher spatial resolution
(Table 3) [10,12,47]. This comparison shows that the various studies had generally good consistency,
and the MCIs in Henan Province were the largest, but were the least in Beijing and Tianjin. In addition,
our results were relatively lower in contrast with the monitoring results using finer resolution remote
sensing data, and there was the largest overall difference in Hebei Province. However, the least
difference was generally observed in Beijing and Henan (except the former in 2012, and the latter had
the least difference of only 0.55 in 2007).
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Table 3. Comparison of the differences in remote sensing monitoring results of other studies in the
North China Plain.

Terms Beijing City Tianjin City Shandong
Province

Henan
Province

Hebei
Province Derived from

MCIs (%) 120.12 113.29 153.65 174.33 132.63 This study (2002)
Other results 113.4 128.2 165.3 194 153.5 Fan et al., (2002) [10]

Difference value 6.72 ´14.91 ´11.65 ´19.67 ´20.87
MCIs (%) 108.75 105.79 142.88 179.95 124.24 this study (2007)

Other results 117.8 125 169 179.4 145.1 Tang et al., (2007) [12]
Difference value ´9.05 ´19.21 ´26.12 0.55 ´20.86

MCIs (%) 100.32 100 148.53 177.69 125.57 This study (2012)
Other results 124.5 110.6 147.6 184.3 138.6 Xie et al., (2012) [47]

Difference value ´24.18 ´10.6 0.93 ´6.61 ´13.03

MCIs: multiple cropping indices.

4. Discussion

This study analyzed the extracted dry land MCIs in the NCP over nearly 30 years based
on GLASS LAI remote sensing data, as well as their dynamic spatial and temporal distribution
variation. According to the MCIs retrieved from remote sensing data, we can conclude that the MCI
dynamic change in this area was generated together by both natural conditions and human activities.
Regarding the aspect of the natural environment, the dry land MCIs in the NCP were closely related
to solar-thermal-precipitation conditions, geographical conditions, and variation of latitude in this
region. Therefore, the MCIs in low latitudes with enough solar-thermal-precipitation resources and
flat terrain are significantly higher than that of the high latitudes (i.e., lacking in those conditions).
Meanwhile, human activities also had a significant impact to the regional dry land MCIs through
changing the natural conditions; specifically, the districts with more frequent human activities and
higher urbanization had lower MCIs.

In this study, a few technical issues remain which need to be further explored to better understand
and reduce/remove uncertainties about the MCIs being extracted by remote sensing, as follows:

(1) Compared with other vegetation index products (such as NDVI and EVI), the GLASS LAI product
has a great advantage in this study. This LAI product has remarkable advantages related to the
integrity of the spatial scope and continuity of time series. For example, cloud and snow spots on
the images were removed, missing values were extrapolated, and the images were processed by
optimized filters (see Section 2.2). Although EVI is currently a commonly used fine vegetation
index, the high quality EVI product could not be obtained until 2000; therefore, it was not suitable
for our research [56,57]. However, long time series NDVI products were easily obtained, e.g.,
AVHRR NDVI (1981–2006) and the MODIS NDVI (since 2000) dataset; nevertheless, these require
elaborate consistency analysis, fusion processing, and large cross validation, etc. when they are
synthetically used [58,59]. This shows that the GLASS LAI product is very significantly different
from other aspects of valid applications. The GLASS LAI product generally has a good data
quality. More pseudo peaks exist in AVHRR & MODIS NDVI time series curves than that of
the GLASS LAI curves because the AVHRR & MODIS NDVI data contains a greater number
of outliers (Figure 12). A considerable amount of preprocessing of the latter is thus needed to
successfully extract the MCIs, which may increase the corresponding errors of extraction of MCIs
and lower the availability of research results [60]. In addition, GLASS LAI data has its special
merit; therefore, in this case we used the long time series LAI product to extract the MCIs of dry
land over the large-scale NCP and study its cropping system.
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(2) Given the fact that widely mixed pixels exist in satellite remote sensing data, the accuracy of dry
land MCI extraction would be affected by the spatial resolution of remote sensing data [10,61]. In
contrast, in this study, the GLASS LAI product (with a coarse spatial resolution of 0.05 ˆ 0.05˝)
was used and a gridded spatial sampling strategy of selecting typical sample areas and Kriging
sampling interpolation were used to obtain the MCIs of dry land in the NCP. This means that
we could reduce the errors of MCI extraction to a certain extent (with the benchmark of MCI
statistics in Table 2) that are derived from the spatial fragmentation of dry land in the NCP and
were caused by the complicated cropping such as inter-planting and co-cropping in this region.
Therefore, the correlation between the land fragmentation and accuracy of the MCIs extracted
from the GLASS LAI data was not significant (Table 4). The correlation coefficients over the
administrative regions are all less than 0.3. Nevertheless, the correlation coefficients in Henan and
Hebei provinces were obviously only 0.066 and 0.042, respectively, but they were relatively much
higher in Beijing, Tianjin, and Shandong (0.294, 0.268, and 0.263, respectively). The documented
land fragmentation shows Beijing and Tianjin have higher levels of urbanization. The more
complex landforms in Shandong were created by a special case with the high fragmentation
of this entire region but overall with low fragmentation in local subregions. Henan and Hebei
are two typical traditional agricultural regions with lower land fragmentation (Section 3.1 in
detail). In particular, land fragmentation was one of the crucial factors influencing accuracies of
the MCI extraction of dry land in some research, based on the higher spatial-resolution remote
sensing data, where the continuously spatial research areas presented discontinuous dry land
space, some patterns of nesting multi-cropping (i.e., inter-planting and co-cropping) and complex
topographical situations [47,55].

(3) In addition, the fact that crop LAI growth curves are reconstructed to extract the MCIs using
different de-noising methods would lead to uncertainty. Currently, S-G and HANTS filters have
been widely applied to smooth the crop growth curves. However, the HANTS method is often
greatly influenced by setting many parameters such as frequencies, error thresholds, and number
of maximum delete points. As a result, the different parameters based on different types of
multiple cropping must be properly set and adjusted, especially in some areas with complicated
multi-cropping structures; otherwise, the results of the curve smoothing would be affected. If the
related parameters were invariably set, it could not effectively reflect the spatial-temporal real
dynamics of the MCIs on a large regional scale [50,62]. In addition, the S-G filtering approach
using the least square fitting method can settle the issues quite well. Consequently, in this study
the more suitable S-G filtering method was employed to derive the MCIs of dry land in the NCP.

(4) The geo-statistical Kriging method was employed to map the spatial distribution and obtain the
time-series dataset of the MCIs of dry land over the NCP by using spatial sampling interpolation.
Owing to the different semivariogram models, they would, however, affect the results of spatial
sampling interpolation and result in uncertainties of the spatial expansion of the MCIs. Thus,
we quantitatively calculated the residual values between the original and interpolated data of
the MCIs in the check points, based on the four types of semivariogram models (i.e., spherical,
exponential, Gaussian and linear models), to analyze the consistency between the source and
interpolated data so as to choose the optimal Kriging interpolation model [63,64]. The residual
values of the linear model are significantly lower than that of the spherical, exponential, and
Gaussian models (Figure 13). The absolute values of which are almost entirely less than 50, and
its data points are gathered more together with a standard deviation (SD) of only 25.03 (being
compared with spherical, exponential and Gaussian models with the SDs of 32.4, 47.54, and 47.79,
respectively). Additionally, its average residual value and average of absolute residual value are
also the smallest with 0.77 and 20.57, respectively. This clearly indicated that the residual values
of the linear model were the most stable and the sampling-expanding results derived by using it
showed a good consistency with the original data. Therefore, we selected the linear model to
perform a most optimal sampling interpolation expansion of the MCIs of dry land in the NCP.
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(5) The reliability of the dry land area and sown area in the statistics also existed with some
uncertainties to evaluate the inversion accuracy of arable MCIs in the study area [53].

(6) The validation work of this article still needs to be improved because the accuracy analysis of
the research results was only implemented comparatively with the MCI statistics and previous
remote sensing monitoring results, but without any verification using in-situ measurement data.
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Figure 12. Comparing of Global LAnd Surface Satellite Leaf Area Index (GLASS LAI) with Advanced
Very High Resolution Radiometer (AVHRR) and Moderate-resolution Imaging Spectroradiometer
(MODIS) Normalized Difference Vegetation Index (NDVI) time series curves in the North China Plain.
(a) The comparison between GLASS LAI and AVHRR NDVI time series unimodal (left) and bimodal
(right) curves in the NCP; (b) the comparison between GLASS LAI and MODIS NDVI time series
unimodal (left) and bimodal (right) curves in the NCP.
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Table 4. The correlation between land fragmentation and accuracy of extracted Multiple Cropping
Indices in each subarea from 1992 to 2007.

Areas Terms 1992 1997 2002 2007 Correlation
Coefficient (R)

Beijing Land fragmentation ** 24.63 24.45 22.87 25.16 0.294
City Accuracy 84.95 97.53 82.79 85.60

Tianjin Land fragmentation 17.25 18.86 18.10 17.81 0.268
City Accuracy 83.88 80.19 95.03 92.46

Shandong Land fragmentation 23.08 24.11 22.09 23.11 ´0.263
Province Accuracy 85.54 89.31 93.51 99.98
Henan Land fragmentation 15.68 15.63 15.45 15.64 ´0.066

Province Accuracy 90.22 97.59 94.49 98.77
Hebei Land fragmentation 18.50 19.01 18.76 18.58 0.042

Province Accuracy 92.26 90.98 97.87 90.68

** Land f ragmentation “ Number o f land patches
Land area , i.e., number of land patches per ten square kilometers.
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Figure 13. Residual value of different Kriging interpolation modes: standard deviation (SD),
average residual value (ARV), and average of absolute residual value (AARV). (a) Spherical Model;
(b) Exponential Model; (c) Gaussian Model; (d) Linear Model.

5. Conclusions

Based on the time-series LAI remote sensing data derived from GLASS, this study used the
S-G filter and second-order difference method to effectively extract MCIs in the NCP over nearly
30 years. In addition, we analyzed its temporal and spatial change characteristics combined with a GIS
(geographic information system) approach. The conclusions follow:

(1) The MCIs in the NCP were successfully extracted over nearly 30 years because the GLASS LAI
data exhibited temporal-continuity and spatial-integrity. Additionally, given its advantage of
less noise and further by de-noising (through the S-G filtering and smoothing method) and the
reconstruction of crop growth LAI curves, it was feasible to retain the original information and
extract the number of curve peaks efficiently.
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(2) The MCIs in the NCP retained a stable pattern of growth overall, ranging from 100% to 155% over
nearly 30 years. The MCI of dry land in 1982, 107.57%, was minimal, but the value of 152.15%
in 2002 was maximal. The MCIs of this region had obvious geographical characteristics that
they were high in the southern part of the study area but low in the north. Also, the MCIs in
flat terrain were higher than that of mountainous and foothill areas. In addition, the dynamic
variation magnitude of the MCIs also had obvious regional characteristics in that the MCI in
Henan Province had a largest variation over nearly 30 years while the MCIs of Beijing and Tianjin
remained relatively stable.

(3) The results were not only very accurate compared with the statistics, but also had a good
agreement with several previous studies based on point experiments [10,65]. Thus, they could
supplement and detail the regional spatial-temporal characteristics modes of the multiple
cropping systems of dry land in the NCP to serve scientific decision making and effective
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