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Abstract: The effect of the sensitive area of the two-port resonator configuration on the mass
sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and
verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM)
approach was established to extract the coupling-of-modes (COM) parameters in the absence and
presence of mass loading covering the electrode structures. The COM model was used to simulate
the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the
P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was
obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed
by the measured responses from the silicon dioxide (SiO2) deposited on different sensitive areas of
R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas,
and the optimal sensitive area lies towards the center of the device.

Keywords: mass sensitivity; Rayleigh surface acoustic wave (R-SAW) resonator; finite element
method (FEM); coupling-of-modes (COM); sensitive areas

1. Introduction

Since first reported by Venema in 1986 [1], the surface acoustic wave (SAW) resonator
configuration for mass sensor applications has long been studied. The mass sensor was operated by
applying a perturbation on SAW propagation using the mass loading effect [2]. Compared with the
delay-line configuration used in SAW sensors, the resonator attracts more interest because it offers low
loss and high Q-value, which benefits the improvement of the detection limit in mass sensing [3,4].
The mass sensitivity was investigated by analyzing the acoustic wave propagation in a layered structure
consisting of a homogeneous thin film over a semi-infinite piezoelectric substrate [5,6]. Obviously, the
design of the resonator plays a significant role in the improvement of the mass sensitivity, especially
the sensitive area, which provides a lower detection limit when optimal design was performed in SAW
gas chromatogram (SAW-GC) sensors [7], and larger sensitivity and cost reductions for SAW chemical
sensors. However, it is a gap in the studies of the mass sensitivity associated with the sensitive areas of
the SAW devices.

In 2001, Harding et al. presented a detailed experimental study of the mass sensitivity for
Love-wave delay-line devices [8], which indicated the relative mass sensitivity was located at the
IDT electrodes and the ‘sweet spot’ (between the IDTs) strongly depended on the guiding layer
thickness, but, only qualitative results were obtained. Afterwards, further research on the spatial
sensitivity distribution for Love-wave resonator devices was pursued by Powell et al. [9]. A rigorous
boundary element method (BEM) and coupling-of-modes (COM) model was utilized to study the
layered structure with embedded electrodes, quantifying the spatial sensitivity distribution effect.
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Their results demonstrated that the mass sensitivity of location variation is much greater than described
in Harding’s previous report. Although Powell’s approach provides a good way to analyse the spatial
sensitivity distribution, a very complicated derivation was needed to extract the COM parameters from
BEM and the matrix eigenoperator. Owing to the fact it provides an easy way of analyzing complicated
geometries, the finite element method (FEM) has proved to be a good tool to derive the influence
of geometrical variations of the electrode shape and the surface perturbation of the sensors [10,11].
Therefore, the FEM with the commercial software COMSOL MULTIPHYSICS was utilized in our work
to model the structures in the absence and presence of mass loading covering the electrodes to extract
the COM parameters.

In this contribution, a two-port Rayleigh SAW (R-SAW) resonator structure with three IDTs
was used to analysis the mass sensitivity. The schematic of the resonator is depicted in Figure 1.
The resonator cavity is determined by three IDTs and two identical shorted grating reflectors, in
which the lateral IDTs are symmetrically arranged with respect to the center IDT [12]. Here, the
resonator structure was assumed to be symmetric, and the common electrical port of IDT2 and IDT3

was designated as an input port and the electrical port of IDT1 as an output port. The SAW generated
by the input port at a particular frequency is constructively reflected by the reflectors close to the same
period of the IDTs, forming a resonator cavity. The two-port resonator will only excite the first and the
third SAW longitudinal modes, realizing the characteristics of low insertion loss and narrow-band.
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Figure 1. The schematic of a two-port R-SAW resonator with three IDTs.

Then, the effect of the position of the sensitive areas in the resonator on mass sensitivity was
analyzed by using the theoretical layered structure approach and verified by experiments. In the
theoretical model, the COM parameters in the structures with or without mass loading covering the
electrodes were extracted by 3-D FEM using COMSOL MULTIPHYSICS. Then the frequency responses
of the resonator with mass loading at various sensitive areas were simulated by using the COM model.
By computing the frequency shift of the resonator, the mass sensitivity variation dependence on the
sensitive areas was studied, and hence an optimal design of the resonator for mass sensor applications
was obtained. The corresponding experiments were implemented to validate the theoretical results.

2. Theoretical Analysis

2.1. COM Equations for SAW Resonator

COM provides an effective approach for modeling and simulating SAW devices with different
structures [13]. The schematic diagram of the COM model for a typical resonator configuration is
shown in Figure 2.
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An alternating driven voltage V connected to the bus bar excites acoustic waves. The waves are
described by R(x) and S(x), representing modes propagating in the positive and negative x-directions,
respectively. In reverse, the waves propagating under the electrodes cause a flow of the current I. λ0 is
the electrical period, namely, the wavelength. For a uniform structure, λ0 equals to 2p, where p is the
structural period and W is the acoustic aperture. By introducing the slowly varying scalar fields R0(x)
and S0(x) as follows:

#

R pxq “ R0 pxq exp pjωt´ jkxq
S pxq “ S0 pxq exp pjωt` jkxq

the COM equations of IDT assume the form:
$

’

&

’

%

dR0
dx “ jκS0exp p2j∆xq ` jαVexp pj∆xq

dS0
dx “ ´jκ˚R0exp p´2j∆xq ´ jα˚Vexp p´j∆xq
dI
dx “ ´2jα˚R0exp p´j∆xq ´ 2jαS0exp pj∆xq ` jωCV

(1)

where ∆ is the detuning parameter:

∆ “ k´ k0 “ kr ´ k0 ´ jγ “
ω

v
´ k0 ´ jγ

k is the complex wave number, k = kr ´ jγ, and k0 is the synchronous wave number. The independent
parameters of the model are velocity v, reflectivity κ, transduction coefficient α, static capacitance
per unit length C and propagation attenuation γ (superscript * denotes the complex conjugate).
Usually, κ and α are complex numbers. However, for bidirectional uniform structures, the κ and α are
chosen real-valued. Additionally, when the R-SAW is considered, γ is ignored as lossless propagation.

Considering the case of periodic shorted-grating, the excitation source is omitted, namely
V = 0 [14]. The homogeneous form of the COM Equation (1) is obtained:

#

dR0
dx “ jκS0exp p2j∆xq

dS0
dx “ ´jκ˚R0exp p´2j∆xq

(2)

The general solutions of the Equation (2) are:

#

R0 “ A`exp rj p∆`Dq xs ` A´exp rj p∆´Dq xs
S0 “

1
κ tA` p∆`Dq exp r´j p∆´Dq xs ` A´ p∆´Dq exp r´j p∆`Dq xsu

where A` and A´ are undetermined coefficients, identified by the boundary conditions. Here, D is
the dispersion relation for a eigenwave in shorted-grating:

D “

b

∆2 ´ |κ|2

It is nondispersive for a surface acoustic wave propagating on both free and metallized
surface of piezoelectric crystals. However, in periodic electrodes structures, the surface impedance
becomes discontinuous as the alternation of free and metallized areas, causing the dispersive
phenomenon. For the R-SAW case (∆ = (ω/v) – k0) the stopband appears in the frequency domain of
f0

´

1´ |κ|
k0

¯

ă f ă f0

´

1` |κ|
k0

¯

with serious attenuation, where D is purely imaginary. The lower and
upper edges of the stopband are found when D is zero as follows:

$

&

%

fsc´ “ f0

´

1´ |κ|
k0

¯

fsc` “ f0

´

1` |κ|
k0

¯ (3)
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Considering the case of periodic open-grating, the electrode current is zero, namely I = 0. The COM
equations derived in the similar form as Equation (2) are:

$

’

’

&

’

’

%

dR0
dx “ j

´

κ` 2α2

ωC

¯

S0exp
„

2j
ˆ

∆´ 2|α|2

ωC

˙

x


dS0
dx “ ´j

´

κ˚ ` 2α˚2

ωC

¯

R0exp
„

´2j
ˆ

∆´ 2|α|2

ωC

˙

x


Introducing the equivalent detuning parameter ∆oc and equivalent reflectivity κoc:

#

∆oc “ ∆´ 2|α|2

ωC
κoc “ κ` 2α2

ωC

the corresponding dispersion relation Doc in open-grating is:

Doc “

b

∆2
oc ´ |κoc|

2

Accordingly, the lower and upper edges of the stopband in open-grating for the R-SAW are:
$

’

’

&

’

’

%

foc´ “ f0

ˆ

1` 2|α|2{ωC´|κoc|
k0

˙

foc` “ f0

ˆ

1` 2|α|2{ωC`|κoc|
k0

˙ (4)

Thus, the four band-edge frequency Equations (3) and (4) are closely related with the COM
parameters (v, κ, α and C).

2.2. FEM Simulation of Periodic Structures

Usually, the 2-D FEM with COMSOL for SAW devices is implemented on the assumption of plane
strain condition, which requires the out-of-plane strain component to be zero. Thus, all the transverse
wave solutions are omitted and inaccuracies occur in many piezoelectric structures. Here, we adopted
the 3-D FEM model instead. The 3-D FEM models in the study were prepared in COMSOL by two steps.
First, a SAW device of the periodic electrodes covering a piezoelectric substrate in the absence of mass
loading was modeled. Second, a mass loading layer deposited on the SAW device in the first step was
studied for the mass loading effect. The periodic structures were modeled as infinite gratings and
only one period was created for simulation purposes. Attention was paid to finding the band-edge
frequencies both before and after a mass loading layer deposited on the SAW devices to obtain the
COM parameters, respectively.

FEM was used to provide numerical solutions defined by associated differential equations.
Propagation of surface acoustic wave in the piezoelectric substrate governed by the coupled wave
equations for particle displacements ui and the potential Φ are [15]:

$

&

%

ρ B
2ui
Bt2 ´ cE

ijkl
B2uk
BxlBxj

´ ekij
B2Φ
BxkBxj

“ 0

ejkl
B2uk
BxlBxj

´ εS
jk
B2Φ
BxkBxj

“ 0

pi, j, k, l “ 1, 2, 3q

where ρ, cE
ijkl , ekij and εS

jk are the density, elastic stiffness tensor, piezoelectric tensor and dielectric
permittivity tensor of the substrate, respectively.

First, the schematic of the periodic electrodes on a piezoelectric substrate is described in Figure 3.
The x-direction is taken parallel to the propagation vector and z is normal to the interface. There is
no variation of the amplitudes in the y-direction perpendicular to the sagittal plane (x, z), which is
assumed to be infinitely uniform. The structure mentioned in Figure 3 consists of one pair of aluminum
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IDT fingers at the surface of a ST-X quartz piezoelectric substrate with the wavelength λ0 of 10 µm.
The depth of the substrate is limited to 4λ0 and the acoustic aperture W is set to 0.5λ0 to reduce the
size of the problem. The metallization ratio (2a/λ0) is 0.5 and the relative thickness of the Al-electrode
(h/λ0) is set to 1.6%, where a and h are the electrode width and height, respectively. As reported
by Hofer et al., the charge on the electrode-air interfaces on a quartz substrate (a material with low
dielectric constant) has to be taken into account [16], so an air layer with the dielectric constant
of 8.854 ˆ 10´12 F/m in 0.5λ0 height was added on the substrate surface of the structure. The material
constants of quartz and Al are listed in Table 1 in abbreviated subscript notation [17]. The detailed
mechanical and electrical boundary conditions of the modal are listed in Table 2, where the periodic
continuity boundary condition stands for all the variables satisfying the Bloch periodic theorem with
phase set to zero.
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Figure 3. The schematic of the periodic electrodes covering a piezoelectric substrate model.

Table 1. Material constants for quartz and Al.

Material Density
(kg/m3)

Elastic Stiffness
Constant (1010 N/m2)

Piezoelectric Stress
Constant (C/m2)

Dielectric Constant
(10´12 F/m)

Quartz 2651 c11 = 8.674 e11 = 0.171 ε11 = 39.843
c12 = 0.699 e14 = ´0.0436 ε33 = 40.7284
c13 = 1.191

c14 = ´1.791
c33 = 10.72
c44 = 5.794

c66 = 3.9875
Al 2700 c12 = 5.11

c44 = 2.63

Table 2. Boundary conditions of the model.

Boundary Mechanical Boundary Conditions Electrical Boundary Conditions

ΓT (top of air) Zero charge
ΓC (air-solid interfaces) Free Continuity
ΓB (bottom of substrate) Fixed Ground

ΓL, ΓR (left and right boundaries) Periodic continuity boundary condition
ΓF, ΓE (front and back boundaries) Periodic continuity boundary condition
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The developed model was meshed with the element shape of cube throughout. Since the SAW
displacements are largest near the substrate surface, the domain was discretized to higher density
near the surface than near the bottom. Besides, the electrodes were meshed to high degree of density.
The maximum element size is 1 µm and the complete mesh consists of 2496 domain elements, shown
in Figure 4.

Sensors 2016, 16, 562 6 of 14 

 

Table 2. Boundary conditions of the model. 

Boundary Mechanical Boundary Conditions Electrical Boundary Conditions
ΓT (top of air)  Zero charge 

ΓC (air-solid interfaces) Free Continuity 
ΓB (bottom of substrate) Fixed Ground 

ΓL, ΓR (left and right boundaries) Periodic continuity boundary condition 
ΓF, ΓE (front and back boundaries) Periodic continuity boundary condition 

The developed model was meshed with the element shape of cube throughout. Since the SAW 
displacements are largest near the substrate surface, the domain was discretized to higher density 
near the surface than near the bottom. Besides, the electrodes were meshed to high degree of density. 
The maximum element size is 1 μm and the complete mesh consists of 2496 domain elements, shown 
in Figure 4. 

 
Figure 4. Meshed periodic structure in Figure 3. 

The modal analysis was adopted to extract the vibration modes at two eigenfrequencies (fsc− and 
fsc+), which contribute the edges of the stopband in a periodic shorted-grating [10]. The electrical 
condition of IDT is set to ground. Actually, the potential is automatically set to zero at the electrodes 
regardless of the applied values for linear eigenfrequency problems in COMSOL. Figure 5 shows the 
displacement profiles of the periodic structure.  

(a) (b)

Figure 5. Displacement profiles of periodic shorted-grating on ST-X Quartz: (a) eigenfrequency  
fsc− = 312.539 (MHz); (b) eigenfrequency fsc+ = 314.528 (MHz). 

Figure 4. Meshed periodic structure in Figure 3.

The modal analysis was adopted to extract the vibration modes at two eigenfrequencies
(f sc´ and f sc+), which contribute the edges of the stopband in a periodic shorted-grating [10].
The electrical condition of IDT is set to ground. Actually, the potential is automatically set to zero at the
electrodes regardless of the applied values for linear eigenfrequency problems in COMSOL. Figure 5
shows the displacement profiles of the periodic structure.
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At the resonant frequency f sc´, a zero displacement component in the x-direction was observed
at both ends. At the anti-resonant frequency f sc+, the mode has a zero displacement component in the
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z-direction at both ends. Figuring out the two eigenfrequencies, the COM parameters velocity v and
the amplitude of normalized reflectivity κλ0 can be extracted by Equation (3), namely:

#

v “ λ0
p fsc`` fsc´q

2
|κ|λ0 “ 2π

fsc`´ fsc´

fsc`` fsc´

(5)

The harmonic frequency response was adopted to extract the harmonic admittance Y(β, ω),
where β is the wavenumber and ω is the operating frequency. The harmonic admittance Y(β, ω)
for fixed β = 2π/λ0 corresponds to two times the input admittance Yin(ω) per period for infinite
IDT with the period λ0 [18]. Searching the poles and zeros of the input admittance Yin = jωQ/∆V,
the edges of stopband in periodic shorted-grating and open-grating can be obtained, respectively.
Applying alternating voltage drop ∆V = 1 V to IDT patterned on the piezoelectric substrate generates
the surface acoustic waves. The logarithmic magnitude of the normalized input admittance Yin/W is
shown in Figure 6. In this bidirectional structure, only one pair of maximum and minimum values
appears, namely another pair of extrema is cancelled out by lack of directivity. The cancelled extrema
can be found by adding a tiny directivity to the substrate [18]. Figure 7 gives the input admittance
of ST-2˝X quartz piezoelectric substrate. Here, the two resonance frequencies present the edges of
stopband f sc´ and f sc+ in the shorted-grating, which can be demonstrated by the modal analysis
described before. The two anti-resonance frequencies present the edges of stopband f oc´ and f oc+

in the open-grating. The area enclosed by a red dashed box is the counteracted extrema in Figure 6.
The calculated results are consistent with the conclusions in [18].
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Based on the Equations (3) and (4), the amplitude of normalized transduction coefficient

αn “ αλ0{
b

W
λ0

and the cosine angle between the square of α and κ can be extracted, namely:

$

’

&

’

%

|αn| “

c

ωCnλπ
´

foc`` foc´

fsc`` fsc´
´ 1

¯

cosφ “ cos
`

α2{κ
˘

“
p foc`´ foc´q

2
´p fsc`´ fsc´q

2
´rp foc`` foc´q´p fsc`` fsc´qs

2

2p fsc`´ fsc´qrp foc`` foc´q´p fsc`` fsc´qs

(6)

Besides, the upper edge of the shorted-grating equals the upper edge in the open-grating as
shown in Figure 6, namely f sc+ = f oc+. Thus, ´κ = |κ|, namely κ is negative. From Equation (6), the
positive or negative sign of α can be determined.

The stationary analysis was adopted to extract the static capacitance. The electrostatic field energy
We equals to the energy required for the charge Q of a capacitor, namely:

We “
Q2

2Cλ0

Besides:
Cλ0 “

Q
∆V

where ∆V is the voltage drop. Thus, the normalized static capacitance Cn “ Cλ0{W is:

Cn “
2We

p∆Vq2 W
(7)

In conclusion, all the COM parameters in R-SAW periodic structure shown in Figure 3 were
extracted by the FEM.

Additionally, when a mass loading layer is deposited onto the SAW device surface in the first
step, the corresponding model of this periodic structure is presented in Figure 8.
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Here, the mass loading layer is assumed to be isotropic SiO2 with a height of 0.3 µm, the
corresponding material constants are a mass density of 2200 kg/m3, Poisson's ratio of 0.17 and
the dielectric constant is 36.7 ˆ 10´12 F/m [19]. In the same way as the first step, all the COM
parameters in a layered R-SAW periodic structure can be obtained easily. The edges of stopband
f1sc´ and f1sc+ in a layered shorted-grating can be derived from the displacement profiles by the modal
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analysis, as shown in Figure 9. The edges of stopband f1oc´ and f1oc+ in a layered open-grating can be
extracted from the normalized input admittance by the harmonic frequency response, which is shown
in Figure 10. Finally, using the stationary analysis, the normalized static capacitance can be obtained.
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Thus, the layered periodic structure shown in Figure 8 can be simulated easily by using COMSOL.
All the COM parameters in the mass loaded periodic structure were extracted in the same way as
the first step without complicated operations. The extracted COM parameters are listed in Table 3.
Based on the COM parameters in the absence and presence of a mass loading layer covering the
electrode structures, the frequency responses of the R-SAW resonators without and with mass loading
are studied in the following section.

Table 3. COM parameters extracted by FEM for the structures without and with mass loading.

COM-Parameter Value (without Mass Loading) Value (with Mass Loading)

SAW Velocity (m/s) 3149.1 3134.4
Normalized reflectivity κλ0 ´0.020 ´0.008

Normalized transduction coefficient α (Ω´1/2) 2.573 ˆ 10´5 2.186 ˆ 10´5

Normalized static capacitance Cn (F/m) 5.52 ˆ 10´11 5.74 ˆ 10´11
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2.3. Frequency Responses of R-SAW Resonators

To cascade the uniform transducer elements, solutions of the COM equations can be derived in
the P-matrix [13]. Figure 11 shows the schematic diagram of the P-matrix in the IDT element. In the
P-matrix, the two acoustic ports’ relationship is described by the scattering matrix and the electrical
port relationship is described by the admittance matrix as follows:

¨

˚

˝

b1

b2

I

˛

‹

‚

“

¨

˚

˝

P11 P12 P13

P21 P22 P23

P31 P32 P33

˛

‹

‚

¨

˚

˝

a1

a2

V

˛

‹

‚

(8)
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P11 “
jκ˚sinpDLq

DcospDLq`j∆sinpDLq

P12 “ P21 “
p´1q2N D

DcospDLq`j∆sinpDLq

P13 “ ´
1
2 P31 “ jL sinpDL{2q

DL{2
jp∆α˚`κ˚αqsinpDL{2q`α˚DcospDL{2q

DcospDLq`j∆sinpDLq

P22 “
jκsinpDLq

DcospDLq`j∆sinpDLq

P23 “ ´
1
2 P32 “ p´1q2N jL sinpDL{2q

DL{2
jp∆α`κα˚qsinpDL{2q`αDcospDL{2q

DcospDLq`j∆sinpDLq

P33 “´
4

D3

”´

∆2`|κ|2
¯

|α|2`2∆Repκ˚α2q
ı

r1´cospDLqs

DcospDLq`j∆sinpDLq

`j 4
D2

”

∆|α|2`Repκ˚α2q
ı

sinpDLq

DcospDLq`j∆sinpDLq ´ jL 4
∆2´|κ|2

”

∆ |α|2 `Re
`

κ˚α2˘
ı

` jωLC

L is the device length and N is the pair number of electrodes, namely L = Nλ0. Re is the real part
of the extraction operator. Substituting the COM parameters (v, κ, α and C) extracted by FEM into
Equation (8), the values of P-matrix elements are given. More detailed derivation of the P-matrix was
presented in reference [13].
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loaded IDT′ is considered as shown in Figure 12, the P-matrix in IDT′ is determined by using the 
COM parameters from the layered structure in step 2. The cascading relationships of different 
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Figure 11. The schematic of the P-matrix in the IDT section.

Omitting the source item in Equation (8), that is only the scattering matrix of the two acoustic
ports relationship is considered, the P-matrixes of the gratings and gaps are obtained. When the mass
loaded IDT1 is considered as shown in Figure 12, the P-matrix in IDT1 is determined by using the COM
parameters from the layered structure in step 2. The cascading relationships of different elements are
the acoustic ports cascaded and the electrical ports in parallel, which complete the analysis of the SAW
resonator with mass loaded on different sensitive areas.
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Utilizing the P-matrix model, the frequency response S21 of a two-port R-SAW resonator structure
was calculated. When the mass covers different sensitive areas from A to F, shown in Figure 13, the
corresponding center frequency perturbations are determined by finding the maximum amplitude
of S21. As the resonator structure is symmetrical, only half of the surface was chosen for the analysis.
The rectangular frames of different size are just schematic. Deposited areas are all the same in practice,
namely 20λ0 in the x-direction, 150λ0 in the y-direction and 3000 Å high. Figure 14 shows the frequency
responses S21 around the center frequency (311.6 MHz) for non-loaded device and different sensitive
areas with mass loaded shown in various colour and line styles. The electrode number of IDT1, IDT2

and IDT3 are 90, 45 and 45, respectively. The center frequencies are reduced for the mass loading effect.
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Using the mass sensitivity Sm equation defined by [9] as:

Sm “
fm ´ f0

m
(9)

where f m is the perturbed center frequency, f 0 is the unperturbed center frequency and m is the total
mass of the perturbing material. The method proposed in the paper can be implemented to calculate
the mass sensitivity changes in different sensitive areas of an R-SAW resonator for sensor applications.
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3. Technique Realization

3.1. R-SAW Resonator Preparation

The two-port R-SAW resonator was fabricated on the ST-X quartz substrate by a standard
photolithographic technique, on which 1600 Å aluminum IDTs and adjacent shorted grating reflectors
were deposited. The operation frequency of the resonator was designed as 311.6 MHz, thus the
corresponding wavelength λ0 was 10 µm. The number of electrodes of the launching transducers
IDT2, IDT3, and the reading transducer IDT1 are 45, 45 and 90, respectively. The number of electrodes
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of the reflectors are both set to 400. The acoustic aperture is 150λ0. The cavity between the IDT
and adjacent reflectors is 1.25λ0, and the cavity between the IDTs is 20.25λ0, which provide lower
insertion loss and high Q-value. The frequency response S21 of the two-port resonator was measured
by using an Agilent E5071B Network Analyzer. Figure 15 shows the fabricated SAW device and
the corresponding frequency response S21. A low insertion loss of 4 dB and center frequency of
311.625 MHz device was obtained in accordance with the simulated result (insertion loss of 3 dB and
center frequency of 311.625 MHz).
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3.2. Regional Mass Loading

SiO2 was chosen as the added mass material, whose influence on the SAW device is mainly a mass
loading effect rather than any viscoelasticity effect. Combining the photolithographic technique to
determine the deposited position and RF magnetron sputtering to deposit SiO2, the different mass
loaded areas across the surface were guaranteed by a lift-off procedure. The deposited SiO2 area is 20λ0

in the x-direction, 150λ0 in the y-direction and 3000 Å high, which was measured by an Alpha-Step IQ
Surface Profiler. Each deposited position was repetitively fabricated on twenty different devices in the
same layout.

Figure 16a,b exhibit the influence of SiO2 deposited on areas B and F on similar devices, measured
by the network analyzer. The frequency changes caused by mass loading areas B and F are 62 KHz
and 166 KHz, respectively.
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4. Results and Discussion

Then, all the measurements were implemented in the air environment by using the network
analyzer and RF probes. Figure 17 gives the measured mass sensitivity for different surface areas of
the R-SAW resonator. The horizontal axis presents the length of the device covering the area from
A to F, corresponding to the schematic of Figure 13. The values on the vertical axis are negative as the
frequencies are reduced by the mass loading effect. The circles are the simulated results, which are
decorated with short solid lines for clearness. The crosses are the measured results.
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Figure 17. The simulated and measured mass sensitivity for different surface areas, each position being
demonstrated by repeated measurements.

It is shown that the optimal sensitive area is focused on the center IDT, which just occupies 8% of
the whole surface. The sensitivity variation for different areas D–F in the center IDT seems slight, but
their sensitivities are more than two times that in the lateral IDT (B). The reflector (A) contributes little
to the mass sensitivity. Thus, we need pay great attention to the optimal sensitive area instead of the
whole surface in practice. The results show a similar variation as described by Powell, due to the
energy concentration towards the center area by the resonators.

In the paper, FEM has provided an easy way to extract COM parameters. A computer with
an i5 CPU and 16 GB memory was used to simulate FEM models with COMSOL. The whole COM
parameter extraction process in a fixed structure will take two hours, which is acceptable for practical
applications. However, the extraction using FEM has limitations. It doesn’t work if the SAW under
consideration is very lossy or dispersive, such as leaky wave and STW wave devices. The resonances
of the periodic structures won’t be given simply as Equations (3) and (4).

5. Conclusions

This paper provides the theory and experimental analysis of the mass sensitivity variation for
different sensitive areas of an R-SAW resonator. By using the FEM with COMSOL, an easy and fast way
for COM parameter extraction was proposed, even for layered structures. The theoretical results were
obtained to determine the optimal sensitivity area and verified by the measured responses. The optimal
sensitivity area of a two-port R-SAW resonator with three IDTs is the center IDT. The sensitivity
variation is strong across the surface. The results in this paper can guide the detection position choice
for SAW sensors.
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