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Abstract: Device-free localization (DFL) based on wireless sensor networks (WSNs) is expected to
detect and locate a person without the need for any wireless devices. Radio tomographic imaging
(RTI) has attracted wide attention from researchers as an emerging important technology in WSNs.
However, there is much room for improvement in localization estimation accuracy. In this paper,
we propose a geometry-based elliptical model and adopt the orthogonal matching pursuit (OMP)
algorithm. The new elliptical model uses not only line-of-sight information, but also non-line-of-sight
information, which divides one ellipse into several areas with different weights. Meanwhile the OMP,
which can eliminate extra bright spots in image reconstruction, is used to derive an image estimator.
The experimental results demonstrate that the proposed algorithm could improve the accuracy of
positioning by up to 23.8% for one person and 33.3% for two persons over some state-of-the-art
RTI methods.

Keywords: device-free localization; wireless sensor networks; radio tomographic imaging; elliptical
model; orthogonal matching pursuit

1. Introduction

Device-free localization (DFL) [1] has attracted a great deal of research attention and is a significant
technology in wireless sensor networks (WSNs) [2,3]. DFL is a technique crucial for detecting and
tracking human bodies in indoor and outdoor environments without the need for any physical devices
(e.g., sensors or tags) attached to them, which is useful for emergency or security personnel [4,5].

DFL uses three main measuring techniques: (1) ultrawideband (UWB) [5], (2) narrowband (NB) [6],
and (3) received signal strength (RSS) [7–11]. As described in [5], UWB usually uses a nanosecond pulse
to deliver information. UWB is a promising technology in DFL in unknown environments because
of its low power consumption, low cost, high data rate, and high positioning accuracy. Because the
center frequency of an NB signal is greater than its bandwidth, localization via signal delay is very
difficult [6]. The RSS-based method has the advantages of lower cost, simple hardware, and lower
power consumption.

There are six popular algorithms in DFL systems: (1) the fingerprint (FP) [12,13]; (2) the support
vector machine (SVM) [14,15]; (3) radio tomographic imaging (RTI) [11,16–19]; (4) the particle filter
(PF) [6,20]; (5) the Bayesian system [16,21]; and (6) compressed sensing (CS) [22,23]. Of these algorithms,
the RTI-based DFL system has seen much research in recent years and is the focus of this paper.

As for RTI, the authors in [24] examined correlations between the communication links. Then,
according to the principle of computed tomography (CT), for the first time an RTI algorithm was
proposed by [18] that could reveal the position of a person’s body within the network area by imaging
its attenuation.
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With the development of DFL, RTI has attracted more and more research. A robust, low-cost
Bayesian grid approach was proposed by [16]. Because of signal pollution and erroneous detection
by wireless links, a novel nonlinear optimization approach with outlier link rejection for RSS-based
DFL was proposed in [17]. As for RTI improvement, a new elliptical model could play a significant
role in the accuracy of localization, as described in [19,25]. As described in [19], a measurement-based
statistical elliptical model was proposed that could locate people in different environments. In [25],
the voxel was the key factor in considering an elliptical model, instead of the distance between the
sensors in each link, and a new elliptical model was proposed that was unlike existing RTI models.
One of the problems with RTI was the ill-posed inverse. To solve this problem, Tikhonov regularization
has been used for image reconstruction [18]. In addition, location accuracy was improved in another
approach named regularized least-squares, adopted in deriving an image estimator, which had a good
mean-square error (MSE) [19]. We have found that new elliptical models and solutions to the ill-posed
inverse problem in RTI have become popular research areas.

In this paper, we propose a new, geometry-based elliptical model that improves location accuracy.
In this model, ellipses representing communication links are divided into several different areas.
Weightings are different in the different areas. In addition, the wireless channels inside one ellipse
are divided into line-of-sight and non-line-of-sight paths, which is more consistent with the actual
situation [26]. As for the ill-posed inverse, the orthogonal matching pursuit (OMP) algorithm is
adopted for image reconstruction. The main contributions of this paper are the proposal of the new
elliptical model and the adoption of the OMP to improve RTI localization accuracy.

This paper is organized as follows: In Section 2 background information about RTI is provided.
In Section 3 we discuss the limitations of the RTI algorithm and introduce the new elliptical model.
OMP for image reconstruction is explained in Section 4, and results are presented in Section 5. Finally,
Section 6 draws conclusions.

2. Radio Tomographic Imaging

When entering a network area, a human body creates shadowing losses, which absorbs, diffracts,
reflects, or scatters some of the power of the electromagnetic waves [18]. The reason for this is that the
resonance frequency of water is 2.4 GHz, which most wireless sensor systems adopt, and 70% of the
composition of a human body is water [27]. Furthermore, as described in [24], shadowing losses on
different links are relevant. In other words, the most common cause of attenuation of different links
would be human bodies.

The objective of RTI is to locate a person without requiring them to wear or carry any electronic
device, which may be useful in security breaches and emergencies [18,19]. The RTI system can be
illustrated as in Figure 1a: N sensors are all around the monitoring area; the monitoring area can
be divided into voxels, and the voxels can be described as a matrix whose dimensions are M1 ×M2.
In Figure 1a two trees are in this area; the models of propagation of the electromagnetic waves are
represented as ellipses, which represent links of communication [28]. Each “Focus”, which is a sensor,
represents a focus of one ellipse. In [18], the change of each link in the RTI system is described in
the following:

∆yk =
M1

∑
i=1

M2

∑
j=1

Wk
ij∆xij + nk (1)

where i and j are the indices of voxels in the monitoring area, i = 1, 2, 3...M1, j = 1, 2, 3...M2,
M1 ∈ N+, M2 ∈ N+; k is the index of links, which are expressed as ellipses in the area; K is the
number of links, k = C2

N = 1, 2, 3...K, K ∈ N+; Wk
ij is the weighting of voxel Vij in link k; ∆xij is the

attenuation change of voxel Vij; ∆yk is the change of signal power in link k; and nk is the noise of link k.
The Equation (1) can be described in matrix form:

∆y = W∆x + n (2)
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Figure 1. (a) The monitoring environment used in the experiments; (b) The elliptical model which is
used in [18,19] representing one link in the monitoring area.

As described in [18], ∆y, ∆x, n and W can be defined in the following relationships:

∆y = [∆y1, ∆y2, ..., ∆yK]
T (3)

∆x =
[
∆x1, ∆x2, ..., ∆xM1×M2

]T (4)

n = [n1, n2, ..., nK]
T (5)

W =


W11 W12 ... W1(M1×M2)

W21 W22 ... W2(M1×M2)

... ... ... ...
WK1 Wi2 ... WK(M1×M2)

 (6)

where M1 ×M2 is the number of voxels in the network, M1 ∈ N+, M2 ∈ N+; ∆y is the vector of signal
power change in all links; ∆x is the attenuation of all voxels; n is the vector of noise; W is the weighting
model vector; and T represents transpose of a given matrix.

2.1. Elliptical Model

In [18], the elliptical model is described as:

Wk
ij =


1√
d

if dk
ij(1) + dk

ij(2) < d + λ

0 otherwise
(7)

where d is the distance between sensors A and B in link k, which is expressed as an ellipse in Figure 1b;
λ is a parameter that determines the width of the ellipse; dk

i,j(1) is the distance between Vij and sensor

A in link k; and dk
i,j(2) is the distance between voxel Vij and sensor B in link k.

2.2. Image Reconstruction

As for the image reconstruction, ∆x estimated in Equation (2) is the ultimate aim of RTI. In general,
the weighting matrix W is underdetermined, meaning that the same set of experiments can lead to
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multiple different images [19]. In other words, ∆x estimated in Equation (2) is not unique, which is an
ill-posed inverse problem. As presented in [18], the author used Tikhonov regularization:

f (x) =
1
2
‖W∆x− ∆y‖2 + α(‖Dxx‖2 +

∥∥Dyx
∥∥2
) (8)

∆x = (WTW + α(Dx
TDx + Dy

TDy))
−1WT (9)

where f (x) represents the objective function, Dx and Dy are the operators for horizontal and vertical
directions, and α is the weighting parameter. In [19], another method of regularized least-squares was
used in the solution to the ill-posed inverse problem.

3. Geometry-Based Elliptical Modeling

Existing methods for RTI concentrate mainly on elliptical models. To improve localization
accuracy, many new elliptical models have been exploited by researchers. A new level-based, spatial
elliptical model based on voxel links was proposed in [19]. However, there are some limitations to
elliptical models: the weightings of voxels inside one link are the same [18,19], which is not consistent
with the actual situation.

In fact, an ellipse, which represents the communication link in the monitoring area, can be
divided into several areas. The weightings of voxels in different areas inside an ellipse should be
different. In addition, communication channels inside one ellipse can be divided into line-of-sight
paths and non-line-of-sight paths [26]. When a person stands on a line-of-sight path, the influence
on the communication link is greater than when a person stands on a non-line-of-sight path inside
the same weighting area. In addition, when the distance between a person and sensors is smaller, the
interruption of the signal is greater. Hence, the elliptical model can be divided into different areas
representing different weightings.

Based on the above discussion, the contribution of this paper is to propose a new elliptical model
that concentrates on the insides of ellipses, which would be more in line with reality. As shown in
Figure 2, the communication channels inside one ellipse can be grouped into two main categories:
line-of-sight paths and non-line-of-sight paths [26]. Vij is the center of voxels in the ellipse. A and B
are sensors; i and j are the indices of voxels, i = 1, 2, 3...M1, j = 1, 2, 3...M2, M1 ∈ N+, M2 ∈ N+; k is
the index of links, which are expressed as ellipses in the area; d is the distance between A and B; dk

i,j(1)

is the distance between voxels A and Vij; and dk
i,j(2) is the distance between B and Vij. A new elliptical

model can be mathematically described as follows:

Wk
ij =



1
d (k1 + max(dk

i,j(1), dk
i,j(2)))

if dk
i,j(1) + dk

i,j(2) < d + λ, dk
i,j(1) + dk

i,j(2) 6= d
1
d (k2 + max(dk

i,j(1), dk
i,j(2)))

if dk
i,j(1) + dk

i,j(2) < d + λ, dk
i,j(1) + dk

i,j(2) = d

0

otherwise

(10)

where k1 is a coefficient representing the obstacle to communication on the non-line-of-sight
path, whose value is 2 by empirical experiments; k2 is a coefficient representing the obstacle to
communication on the line-of-sight path, whose value is 2.5 by empirical experiments. As for dk

i,j(1) and

dk
i,j(2), max(dk

i,j(1), dk
i,j(2)) represents the longer path. In Equation (10), the role of max(dk

i,j(1), dk
i,j(2)) is

that it could divide one ellipse, which represents a communication link, into different areas. Moreover,
weightings in different areas are different. We define k2 = k1 + β, and β is a parameter. The
relationships among k1, k2 and β are described as follows, where the experiment settings are the
same as in Section 5.
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Figure 2. The communication channels inside one ellipse.

To study the roles of k1 and k2 in Equation (10), first we set β as equal to zero. β = 0 means there
is no difference between line-of-sight paths and non-line-of-sight paths. As shown in Figure 3a, the
vertical axis represents the average of MSE in all positions, and the horizontal axis shows the value of
coefficient k1 in Equation (10). From the results, when k1 = 2 we achieve a better localization effect.
In other words, k1 = 2 is an optimization point. Second, we want to find the difference between the
line-of-sight and non-line-of-sight paths. The optimization point of β needs to be found. To study the
value of k2, we set k1 as equal to 2. As shown in Figure 3b, β = 0.5 is an optimization point. In other
words, when k2 = 2.5, Equation (10) would achieve the best effect.

Link 2 in Figure 1a is the longest communication link. We can describe the weighting W of link 2
in Figure 3c and Figure 3d, where the experiment settings are the same as in Section 5. As shown in
Figure 3c, the vertical axis represents the weighting of voxels; voxel 1 is on the line-of-sight path in the
link, voxels 2 and 3 are on the non-line-of-sight path, W1 represents the weighting of voxel 1, W2 is
the weighting of voxel 2, and W3 is the weighting of voxel 3. It has been shown that W1 was greater
than W2, and W2 was greater than W3. In other words, although voxel 2 was the closest to the nearest
sensor in this link, the weighting of voxel 1 was greater than that of voxel 2. The reason is that voxel 1
was on the line-of-sight path, while voxel 2 was on the non-line-of-sight path. Although voxels 2 and 3
were both on the non-line-of-sight path, voxel 2 was closer to the nearest sensor in the same link.
In addition, most voxel weightings were zero. The reason is that, compared to the number of voxels
in the monitoring area the number of voxels inside a single link was small. As for the voxels whose
weightings were not zero in the same link, the closer the voxels were to the sensors, the greater the
values of weightings. It has been shown that voxel 2 was the closest to the nearest sensor in the link.

Furthermore, we can divide this ellipse, which is shown in Figure 3c, into several areas. As shown
in Figure 3d, the ellipse, which represents the communication link, is divided into four areas. Voxels
in different areas had different weightings. It has been shown that the values of weightings in area 1
were greater than those in areas 2, 3, and 4. The values of weightings in area 2 were greater than voxels
in areas 3 and 4. Weightings of voxels in area 4 were smaller than those in other areas. The reason
was that in area 1 the distances between the voxels and the sensor, which represented the focus of
the ellipse, were smaller than those of voxels in other areas. In addition, the four areas (shown in
Figure 3d) representing the weightings of voxels are shown in Table 1, which lists the ranges of the
areas, where the experiment settings were the same as in Section 5. As a result, when voxels were on
non-line-of-sight paths, the less the distances were between voxels and the nearest sensors in the same
link, and the greater the weightings values.
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Figure 3. (a) When β = 0, the relationship between MSE and k1; (b) When k1 = 2, the relationship
between mean-square error (MSE) and β; (c) The weightings of voxels, which is shown as link 2 in
Figure 1a; (d) The division of the ellipse in Figure 3c.

Table 1. The division of link 2 in Figure 1a.

Areas The Range of Weightings

1 [1.12, 1.25]
2 [0.97, 1.08]
3 [0.75, 0.93]
4 [0.53, 0.70]

4. Sparse-Based Image Reconstruction

New solutions to the ill-posed problem in RTI have become another way of improving localization
accuracy. In [18], Tikhonov regularization was used for image reconstruction. In [19] an approach
named regularized least-squares was adopted to derive an image estimator. The above methods had
good results in localization. However, the number of bright spots, which represent the estimated
positions, was greater than the number of persons in the monitoring area. Moreover, to some extent,
the extra bright spots would increase the difficulty of localization.
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In this paper, sparse-based algorithms, which can remove the extra bright spots in image
reconstruction, are used in the solution to the ill-posed problem. Because compressed sensing can
recover the original signal by sparse optimization, it draws a lot of attention from industry and
academics [29]. The OMP, as a sparse representation algorithm, can recover a signal by finding optimal
atoms in a sparse dictionary, which may be easier and faster to implement [30–33]. Localization
accuracy can be improved at the same time. The procedure of the OMP algorithm used in image
reconstruction can be written as:

Step 1 To initialize the counter of iteration t = 1, the set of index Λ = Φ, the residual ∆yr = ∆y.
Step 2 Pointer to the atom it = arg max

j=1,...,M

∣∣〈yr, ϕj
〉∣∣ .

Step 3 To set the index Λ = Λ ∪ {it}.
Step 4 New estimation of signals xr = argmin ‖∆y−WΛ∆yr‖2.
Step 5 New residual signals ∆yr = ∆y−Wxr, t = t + 1.
Step 6 If t ≥ p, loop will be terminated. If t < p, Step 2 will restart.

where W and ∆y are consistent with Equation (1); p is the sparsity representing the number of persons.
When one person is in the system of network sensors, p can be set to 1, and there will be one bright
spot in the image. Similarly, for two persons in the monitoring area p can be set to 2.

5. Experiment Results

5.1. Description of Experiment

The IEEE 802.15.4 communication standard was used, while the 2.4 GHz band was used for signal
transmission. The MSE, which is used to measure the quality of algorithms, was defined as

ε =
‖xreal − xr‖2

M1 ×M2
(11)

where xreal is the actual position for a person, xr is the estimated position by use of the proposed
algorithm, and M1 ×M2 is the number of voxels in the monitoring sensor area.

The measured data of the experiment were the same as in [18]. Compared to the system in [18],
we used the same data set to derive the weighting parameters for the voxels before we used the same
data again to localize. The improved weighting values in Equation (10) were related to k1 and k2.
The optimal values of k1 and k2 were empirically determined by measured data, which were shown
in Figure 3a and Figure 3b. The experiment was done at the University of Utah, and the network
was placed in an outdoor environment where there were 35 locations within the network, so that the
persons’ locations were known for error analysis [18].

The monitoring area was 7 m × 7 m, and there were 35 positions to be located, which is shown
in Figure 4a. There, red rectangles represent the positions for the localizations of one person or
two persons. For the localization of one person, all 35 positions were used; i.e., one person was located
in every position. For the localization of two persons, six experiments were done. In other words,
12 positions were used at most. N, the number of sensors, was 28. M1 and M2, the dimensions of
voxels, were all 20. K, the number of links, was 378.
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Figure 4. (a) All positions (red rectangles) in the experiment field; (b) The difference between the
actual position (red rectangle), the estimated position (white voxel), and the experiment result in [18]
(blue rectangle), when a person stood at coordinate (3 m,3 m); (c) The experiment result in all
35 positions for the localization of one person; (d) As the number of voxels increased, the contrast
between two algorithms for the localization of one person; (e) The radio tomographic imaging (RTI)
algorithm in the first eight positions for the localization of one person; (f) The proposed algorithm in
the first eight positions for the localization of one person.
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5.2. Experiment Result and Discussion

As show in Figure 4b, the red rectangle represents the actual position, the white voxel represents
position estimated by the proposed algorithm, and the blue rectangle represents the experiment results
in [18]. Compared to the RTI algorithm in [18], there were some advantages to the proposed algorithm.
First, there were no extra bright spots that would affect the judgment of results during the process
of image reconstruction, and the number of bright spots equaled the number of positions via the
adjustment of sparse degrees. So the positions of persons could be confirmed as soon as possible.
Second, the localization accuracy was improved, which is shown in the following experiment.

In Figure 4c, the horizontal axis shows the position numbers for one person, the vertical axis
represents the average of the MSE, the red line displays the experiment results in [18], and the blue line
displays the effect of using the proposed weighting model, with the method of Tikhonov regularization.
The black points display the effect of using the OMP algorithm with the weight model in [18], and the
cyan line represents the advantages of the improved algorithm. As the number of positions increased
there was more noise, which came from fading loss, shadowing loss, and measurement noise in the
experiment, which affected localization accuracy [18]. Hence, in the first five or six positions the MSE
averages increased in the four algorithms. With a further increase in positions, the rise in the noise
would be less than the increase in the number of positions because of the function of the proposed
algorithm. So the MSE averages decreased in the next 8 or 10 positions. Finally, the increase in the
noise, the increase in the number of positions, and the function of the algorithm were in a dynamic
balance. The averages of MSE in the four algorithms tended toward stability. It was found that the
proposed algorithm functioned the best of the four algorithms.

When the value of the horizontal axis in Figure 4c was eight, eight positions were selected
randomly to be located for one person. As shown in Figure 4e and Figure 4f, the accuracy was better
than state-of-the-art RTI methods. Compared to the RTI in [18], the proposed algorithm had greater
localization accuracy, while the average of MSE in all places was reduced approximately 23.8%, which
is shown in Figure 4c. The average of MSE for the first eight places was reduced approximately 32.6%,
as shown in Figure 4e and Figure 4f.

In Figure 4d, the vertical axis shows the average of MSE in all 35 positions, the horizontal axis
represents the number of voxels in the monitoring area, the red line shows the experiment results
in [18], and the blue line shows the effect of the proposed algorithm. As the number of voxels increased,
the average of MSE in all 35 positions between the two algorithms decreased. Furthermore, compared
to state-of-the-art RTI methods, the proposed algorithm achieved a better localization effect. For the
localization of two persons, the experiment was done as follows.

As shown in Figure 5a, the white voxels represent the positions estimated by the proposed
algorithm, the red rectangles represent the actual positions, and the blue rectangles represent the
experiment results in [18]. Compared to the RTI algorithm in [18], the accuracy of the localization was
improved. For all six experiments for localizing two persons, the result is shown in Figure 5b.

As shown in Figure 5b, the horizontal axis shows the six experiments, the vertical axis represents
the average of the MSE; the red line displays the experiment results in [18]; the black points display
the effect of using the OMP algorithm, with the weight model in [18]; the blue line displays the effect
of using the proposed weight model, with the method of Tikhonov regularization; and the cyan line
represents the advantages of the proposed algorithm. Compared to the localization of one person, the
two-person accuracy was slightly low. The reason is that as the number of persons increased, more
noise came from fading loss, shadowing loss, and measurement noise, affecting accuracy [18]. As
shown in Figure 5b, the effect of the proposed algorithm was better than that of the experiment results
in [18]. In addition, the experiment results showed that the proposed algorithm could improve the
accuracy of positioning up to 33.3% compared to the state-of-the-art RTI method.
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Figure 5. (a) The differences between the actual positions (red rectangles), the estimated positions
(white voxels), and the experiment results in [18] (blue rectangles), when two persons stood
at coordinates (1 m,5 m) and (6 m,5 m); (b) The result of the experiment for the localizations
of two persons.

In addition, for the image reconstruction we adapted the OMP algorithm, which improved the
accuracy, as shown in Figures 4c and 5b. However, we needed to know the number of persons
beforehand, and RTI systems have no such limitation. In the future we will research ways to ameliorate
this limitation.

6. Conclusions

In this paper, we propose a new weight model and adopt OMP for image reconstruction to
enhance the accuracy of DFL. The new model concerns the insides of ellipses, which would be more
in accordance with reality. And as a sparse representation algorithm, OMP dealt with the ill-posed
inverse problem while preventing other bright spots in the image, which achieved a better accuracy.

In future work, on the one hand we will research a weight model with different geometry-based
methods, which would promote the development of state-of-the-art RTI. On the other hand, more
sparse-based methods could be utilized for image reconstruction.
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Abbreviations

The following abbreviations are used in this manuscript:

DFL Device-free localization
WSN Wireless sensor network
RTI Radio tomographic imaging
OMP Orthogonal matching pursuit
UWB Ultra-wideband
NB Narrow-band
RSS Received signal strength
FP Fingerprint
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SVM Support vector machine
PF Particle filter
CS Compressed sensing
CT Computed tomography
NOOLR Nonlinear optimization approach with outlier link rejection
MSE Mean-square error

References

1. Patwari, N.; Wilson, J. RF Sensor Networks for Device-Free Localization: Measurements, Models, and
Algorithms. IEEE Proc. 2010, 98, 1961–1973.

2. Lu, J.; Long, H.; Xu, Q.; Lei, Q. A New RSSI-based Centroid Localization Algorithm by Use of Virtual
Reference Tags. In Proceedings of the Third International Conference on Advanced Communications and
Computation, IARIA, Lisbon, Portugal, 17–22 November, 2013.

3. Wang, X.; Sun, X.; Bi, D. Collaborative target classification with multiagent system in wireless multimedia
sensor networks. In Proceedings of the IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), Graz, Austria, 13–16 May 2012; pp. 2010–2015.

4. Pirzada, N.; Nayan, M.Y.; Hassan, F.S.M.F.; Khan, M.A. Device-free localization technique for indoor
detection and tracking of human body: A survey. Procedia-Soc. Behav. Sci. 2014, 129, 422–429.

5. Kilic, Y.; Wymeersch, H.; Meijerink, A.; Bentum, M.; Scanlon, W. Device-Free Person Detection and Ranging
in UWB Networks. IEEE J. Sel. Top. Sign. Process. 2014, 8, 43–54.

6. Wilson, J.; Patwari, N. A Fade-Level Skew-Laplace Signal Strength Model for Device-Free Localization with
Wireless Networks. IEEE Trans. Mobile Comput. 2012, 11, 947–958.

7. Yang, Z.; Huang, K.; Guo, X.; Wang, G. A real-time device-free localization system using correlated RSS
measurements. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 1–12.

8. Barsocchi, P.; Potortì, F.; Nepa, P. Device-free indoor localization for AAL applications. In Wireless Mobile
Communication and Healthcare; Springer: Berlin, Germany, 2013; pp. 361–368.

9. Jiang, N.; Huang, K.; Guo, Y.; Wang, G.; Guo, X. A Diffraction Based Modified Exponential Model for
Device-Free Localization with RSS Measurements. In Intelligent Robotics and Applications; Springer: Berlin,
Germany, 2014; pp. 342–353.

10. Guo, Y.; Huang, K.; Jiang, N.; Guo, X.; Li, Y.; Wang, G. An Exponential-Rayleigh Model for RSS-Based
Device-Free Localization and Tracking. IEEE Trans. Mobile Comput. 2015, 14, 484–494.

11. Xiao, W.; Song, B. Sequential Geometric Approach for Device-Free Localization with Outlier Link Rejection.
Math. Probl. Eng. 2015, doi:10.1155/2015/619894.

12. Zhou, Z.; Yang, Z.; Wu, C.; Shangguan, L.; Liu, Y. Omnidirectional Coverage for Device-Free Passive Human
Detection. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1819–1829.

13. Hong, J.; Ohtsuki, T. Signal Eigenvector-Based Device-Free Passive Localization Using Array Sensor.
IEEE Trans. Veh. Technol. 2015, 64, 1354–1363.

14. Deak, G.; Curran, K.; Condell, J.; Deak, D.; Kiedrowski, P. Support Vector Machine Classification in a
Device-Free Passive Localisation (DFPL) Scenario. In Image Processing and Communications Challenges 4;
Springer: Berlin, Germany, 2013; pp. 253–260.

15. Yin, Z.; Cui, K.; Wu, Z.; Yin, L. Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in
UWB Ranging Systems. Sensors 2015, 15, 11701–11724.

16. Wang, J.; Gao, Q.; Cheng, P.; Yu, Y.; Xin, K.; Wang, H. Lightweight Robust Device-Free Localization in
Wireless Networks. IEEE Trans. Ind. Electron. 2014, 61, 5681–5689.

17. Xiao, W.; Song, B.; Yu, X.; Chen, P. Nonlinear Optimization-Based Device-Free Localization with Outlier
Link Rejection. Sensors 2015, 15, 8072–8087.

18. Wilson, J.; Patwari, N. Radio Tomographic Imaging with Wireless Networks. IEEE Trans. Mobile Comput.
2010, 9, 621–632.

19. Kaltiokallio, O.; Bocca, M.; Patwari, N. A Fade Level-Based Spatial Model for Radio Tomographic Imaging.
IEEE Trans. Mobile Comput. 2014, 13, 1159–1172.

20. Wang, J.; Gao, Q.; Yu, Y.; Cheng, P.; Wu, L.; Wang, H. Robust Device-Free Wireless Localization Based on
Differential RSS Measurements. IEEE Trans. Ind. Electron. 2013, 60, 5943–5952.

21. Savazzi, S.; Nicoli, M.; Carminati, F.; Riva, M. A Bayesian Approach to Device-Free Localization: Modeling
and Experimental Assessment. IEEE J. Sel. Top. Sign. Process. 2014, 8, 16–29.



Sensors 2016, 16, 577 12 of 12

22. Wang, J.; Chen, X.; Fang, D.; Wu, C.; Yang, Z.; Xing, T. Transferring Compressive-Sensing-Based Device-Free
Localization Across Target Diversity. IEEE Trans. Ind. Electron. 2015, 62, 2397–2409.

23. Wang, J.; Gao, Q.; Wang, H.; Cheng, P.; Xin, K. Device-Free Localization With Multidimensional Wireless
Link Information. IEEE Trans. Veh. Technol. 2015, 64, 356–366.

24. Patwari, N.; Agrawal, P. Effects of Correlated Shadowing: Connectivity, Localization, and RF Tomography.
In Proceedings of the International Conference on Information Processing in Sensor Networks, St. Louis,
Missouri, USA, 22–24 April 2008, pp. 82–93.

25. Kuang, R.; Song, H.; Wang, G. Target localization via correlated link inference. In Proceedings of the 2011
International Conference on Mechatronics and Automation (ICMA), Beijing, China, 7–10 August 2011,
pp. 1010–1014.

26. Rasool, I.; Kemp, A. Statistical analysis of wireless sensor network Gaussian range estimation errors.
Wirel. Sensor Syst. IET 2013, 3, 57–68.

27. Deak, G.; Curran, K.; Condell, J. Evaluation of smoothing algorithms for a RSSI-based device-free
passive localisation. In Image Processing and Communications Challenges 2; Springer: Berlin, Germany, 2010;
pp. 469–476.

28. El-Kafrawy, K.; Youssef, M.; El-Keyi, A. Impact of the human motion on the variance of the received signal
strength of wireless links. In Proceedings of the IEEE International Symposium on Personal Indoor and
Mobile Radio Communications (PIMRC), Toronto, Canada, 11–14 September 2011, pp. 1208–1212.

29. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306.
30. Tropp, J.; Gilbert, A. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit.

IEEE Trans. Inf. Theory 2007, 53, 4655–4666.
31. Davenport, M.A.; Wakin, M.B. Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry

Property. IEEE Trans. Inf. Theory 2010, 56, 4395–4401.
32. Zhang, T. Sparse Recovery With Orthogonal Matching Pursuit Under RIP. IEEE Trans. Inf. Theory 2011,

57, 6215–6221.
33. Cai, T.T.; Wang, L. Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise. IEEE Trans.

Inf. Theory 2011, 57, 4680–4688.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Radio Tomographic Imaging
	Elliptical Model
	Image Reconstruction

	Geometry-Based Elliptical Modeling
	Sparse-Based Image Reconstruction
	Experiment Results
	Description of Experiment
	Experiment Result and Discussion

	Conclusions

