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Abstract: In urban areas or space-constrained environments with obstacles, vehicle localization
using Global Navigation Satellite System (GNSS) data is hindered by Non-Line Of Sight (NLOS) and
multipath receptions. These phenomena induce faulty data that disrupt the precise localization of
the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR)
and/or Doppler measurements, and we evaluate how discarding them improves the localization.
We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset
between inliers and outliers. Then, only the inlier data are considered in the localization process
performed either through a classical Particle Filter (PF) or a Rao-Blackwellization (RB) approach. Both
localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements
are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results
show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust
to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results
achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best
localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

Keywords: Global Navigation Satellite Systems (GNSS); robust localization; a contrario decision;
particle filter; Rao-Blackwellization

1. Introduction

The Global Navigation Satellite Systems (GNSS), such as the Global Positioning Systems (GPS),
have been developed to provide an absolute location on an Earth-Centered Earth-Fixed (ECEF) [1].
These sensors became very popular for autonomous navigation [2] and applications of Intelligent
Transportation Systems (ITS) thanks to the worldwide coverage of these constellations and the rather
low cost of the receivers. Even if several works have proposed to combine GNSS data with other
information sources, either sensors (e.g., Inertial Measurement Unit (IMU) [3]) or prior information
(e.g., maps [4,5]), there is still a need to improve the performance of GNSS-only localization. Indeed,
even in the perspective of fusion with other data, the accuracy of the GNSS estimation will impact the
location result. Then, this study focuses on GNSS-only localization.

Early works estimated the receiver location based on GNSS Pseudo-Range (PR) data. Recently,
the estimation of the instantaneous velocity that may be derived from Doppler measurements has been
proposed. For instance, [6] introduces both the PR and Doppler measurements in the Extended Kalman
Filter (EKF). These Doppler measurements may be particularly helpful in constrained environments
where the number of usable observations may drop. Indeed, in space-constrained areas, the obstacles
(buildings, trees) reflect the signals sent by the satellites, inducing Non-Line Of Sight (NLOS) and
multipath receptions. The corrupted measurements are characterized by a positive bias that increases
the estimated satellite-receiver distance in a faulty way, which is difficult to model and to correct. The
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works in [7,8] have experimentally shown that Doppler measurements are affected, as well, although
to a lesser extent than PR measurements, by multipaths and NLOS.

To detect the faulty data, a first approach is to analyze the signal measurements. For instance, [9]
exploits the carrier to noise density measurement (C/N0) in order to partition the observation set
between LOS signals (C/N0 ' 45 dB) and NLOS signals (C/N0 ≤ 40 dB). However, in urban canyons,
the NLOS signals may be stronger than the LOS one [8]. A second approach is to look toward robust
estimation, i.e., methods that are able to cope with some faulty data. In GPS-based localization, we
can cite the Receiver Autonomous Integrity Monitoring (RAIM) [10] or q-relaxation technique used in
interval analysis [11]. Both approaches assume a bounded number of outliers. Assuming Gaussian
noise, [12] proposed an EKF with outlier detection. The Particle Filter (PF), which has been proposed
to resolve non-linear/non-Gaussian problems [13], was applied in [14] having discarded the outliers
from the set of observations, whereas in [15], it was used to estimate both the corrupted bias on PR
observations and the localization parameters. However, neither [15] nor [14] investigated the presence
of outliers in Doppler measurements. Besides, [15] only considers simulated data.

The main contribution of this work is to propose a robust localization process that uses both PR and
Doppler measurements. It is based on the adaptation of signal processing methods previously applied
to other problems or data. It involves two parts: (i) the inlier/outlier partitioning characterized by the
absence of a threshold; (ii) the filtering for a GPS-based localization characterized by its robustness to
noise and to intermittent satellite blockage. The first point is achieved by formulating the problem in
terms of minimization of a criterion, namely the Number of False Alarms (NFA). This criterion was
introduced by [16,17] to measure the degree of surprise or contradiction of a structured observation
relative to a noise (unstructured data) model, and it has been successfully applied to various problems
in image processing [18–22]. In a previous work [23], we have defined and compared two NFA
criteria, and we have shown that they are more efficient than classic statistical tests to partition the PR
measurements between a consistent dataset (the inliers) against an inconsistent dataset (the outliers).
However, in this first work, only PR measurements were considered. Then, this study develops the
ideas and first results presented in conference paper [24], where a rather simple implementation of
PF was considered. Based on temporal redundancy, the PF allows us to filter the noise present in the
inlier data. However, for practical reasons, it cannot handle the state vector of large dimensionality.
In this work, we propose to use a more sophisticated filter, namely the Rao–Blackwell Particle Filter
(RBPF) [25]. Its principle is to split the state system into two subsystems, a linear part and a non-linear
one, so that the linear part may be analytically solved, whereas the non-linear part is approximated
using the importance sampling technique (like in PF). RBPF has already been applied successfully
for navigation [26], tracking [27] and GPS multipath estimation [15]. In [26], RBPF was applied for
GPS-based localization in urban canyons. However, the authors only consider PR measurements,
whereas in this study, we propose to extend their filter to both PR and Doppler measurements and to
couple it with the outlier detection using NFA criterion based on a contrario modeling. Concerning the
application, we focus on land vehicle navigation in constrained environments. Then, to achieve similar
localization performance in such environments as in open areas, our algorithm should be robust until
about 40% of outliers. The “raw” data we consider (and among which outliers will be searched) are
the PR and the Doppler measurements provided by the GNSS receiver (L1 carrier). Even if they are
already estimations from the pseudo-random codes, we call them “raw” by contrast to positioning
values also provided by the GNSS receiver.

Section 2 introduces the notations and basic equations inherent to the localization problem using
GNSS data. Section 3 describes the proposed method that involves a detection of outlier measurements
in the dataset using the NFA criterion followed by the localization process using GPS raw data, either
based on PF or on the RBPF algorithm. The experiment and related results are discussed in Section 4.
Section 5 reports our conclusions and perspectives.
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2. Problem Formulation

2.1. Observation Model

In this study, we consider two pieces of information provided by GNSS satellite Sj. The first
one is the pseudo-range ρj that is related to the distance between the receiver and Sj. Denoting
by upper-script ᵀ the transpose operator, the receiver position is denoted xr = (er, nr, ur)

ᵀ in the

ENU (East, North, Up) coordinate local system, and the Sj position is denoted xSj =
(

eSj , nSj , uSj

)ᵀ
.

We choose the ENU frame for its wide use in land navigation (since it allows us to process the ‘up’
coordinates separately). Then, the pseudo-range depends on xr, xSj , δt the time bias (difference)
between the two unsynchronized clocks of the satellite and receiver, respectively, c the light velocity
and random noise εj:

ρj = ‖xr − xSj‖+ cδt + εj,

=

√(
er − eSj

)2
+
(

nr − nSj

)2
+
(

ur − uSj

)2
+ cδt + εj (1)

Equation (1) is the simplest version of the PR observation equation. It does not represent multipath
or NLOS receptions, so that they can be detected as deviations relatively to this model.

The second information piece is the Doppler measurement that is related to the receiver velocity

ẋr = (ėr, ṅr, u̇r)
ᵀ. Denoting ẋSj =

(
ėSj , ṅSj , u̇Sj

)ᵀ
, the Si satellite velocity that is determined using

broadcast ephemeris [28],
ρ̇j = (ẋr − ẋSj) · aj − cδ̇t + ε′j (2)

where ρ̇j, called the “PR rate”, is equal to c
Dj
f1

, with f1 = 1.575 GHz and Dj the Doppler observation
(in Hz) provided by Sj, aj is to the unit vector collinear to the straight line through the receiver and

satellite Sj (aj =
xSj−xr

‖xSj−xr‖ ), “·” denotes the dot product, δ̇t the clock drift and ε′j random noise.

2.2. Localization Problem

For location estimation, different systems of equations may be considered depending on the used
data: PR, Doppler measurements or both data.

Firstly, only using PR, at least four observations are required to estimate vector xr and time bias δt

by solving the system of Equation (1).
Secondly, only using Doppler measurements, theoretically vector ẋr, time drift δ̇t and vector xr

could be estimated, since they all appear in Equation (2). However, two hindrances to this approach
are: (i) per epoch, at least seven observations from different satellites would be required, which is
incompatible with robustness to satellite blockage in constrained environments; (ii) Equation (2)’s
sensitivity to xr is rather poor, since xr is involved only through aj. Thus, practically, PR measurements
are also used to derive an estimation of xr and then an estimation of aj, denoted ãj, which is introduced
in Equation (2):

ρ̇j + ẋSj · ãj = ẋr · ãj − cδ̇t + ε′j (3)

The third and last approach consist of considering simultaneously PR and Doppler measurements.
The vector ξ1 =

(
er, ėr, nr, ṅr, ur, u̇r, δt, δ̇t

)ᵀ gathers the parameters involved in Equations (1) and (2).
Having linearized Equations (1) and (2), the resolution of the derived system (having at least eight
equations) can be achieved using the Gauss–Newton iterative algorithm. Specifically, if XS and ẊS

denote the matrices gathering the vectors xSj and ẋSj , respectively, and the increment δξ̂1
(k)

to sum to

previous estimate ξ1
(k−1) (k being the iteration number) is:

δξ̂1
(k)

= arg min
δξ1

‖(z− z(k−1))− H(XS, ẊS, ξ1
(k−1))δξ1‖ (4)
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where z = (ρ1 · · · ρn,ρ̇1 · · · ρ̇n)ᵀ is the vector of observations, z(k−1) is the estimation of z
computed from previous (iteration k − 1) state vector ξ1

(k−1) and H is the Jacobian matrix of the
Equations (1) and (2) system (see [29] for more details).

2.3. Dynamic Model

In order to increase the robustness of the estimation, this latter may be done considering not
only one epoch, but several epochs. Then, the data acquired at the different epochs should be linked
through a model. In [30], the authors propose a polynomial dynamic model fitted on a time interval,
including multiple epochs. Limiting ourselves to the first order, PR measurements are related using a
dynamic model involving GNSS, the receiver location and speed, so that the ξ1 vector already defined
is suitable. However, considering also Doppler measurements, the acceleration should be introduced
in the dynamic model, and the considered state vector becomes ξ2 =

(
er, ėr, ër, nr, ṅr, n̈r, ur, u̇r, δt, δ̇t

)ᵀ.
State vectors, either ξ1 or ξ2, at different instants are linearly linked through transition matrices

Mi,dt of the considered dynamic models, defined as follows:

Cdt =

(
1 dt
0 1

)
, 02×2 =

(
0 0
0 0

)

Ddt =

dt2

2
0

dt 0

 I2×2 =

(
1 0
0 1

)

M1,dt =


Cdt 02×2 02×2 02×2

02×2 Cdt 02×2 02×2

02×2 02×2 Cdt 02×2

02×2 02×2 02×2 Cdt

 (5)

M2,dt =


Cdt Ddt 02×2 02×2 02×2

02×2 I2×2 Dτ
dt 02×2 02×2

02×2 02×2 Cdt 02×2 02×2

02×2 02×2 02×2 Cdt 02×2

02×2 02×2 02×2 02×2 Cdt

 (6)

where the superscript τ denotes the anti-diagonal transpose operator (the transpose of the matrix with
respect to the anti-diagonal). Denoting ξi,t, i ∈ {1, 2}, the state vector at t,

ξi,t+dt = Mi,dtξi,t + o
(

dti+1
)

(7)

where o
(
dti+1) is the error (approximation) of the considered dynamic model.

Using the dynamic Model Equation (7), we are now able to compute the expected measurements
(PR or Doppler) at different instants. Specifically, denoting T =

{
tk = t + kdt, k ∈

{
0, . . . , nep − 1

}}
the set of epochs considered for the estimation of the solution, XSi ,tk =

(
eSi,tk

, nSi,tk
, uSi,tk

)ᵀ
the satellite

Si location at instant tk and the expected pseudo-range ρ̃i (tk) from Si at tk may be derived from ξ1:

ρ̃i (tk |ξ1,t ) = ‖ [M1,kdt.ξ1,t ]1,3,5 − XSi ,tk‖+ c
(
δt − δ̇tkdt

)
(8)

where the subscript in matrix notation [ ]l1,l2,l3 denotes the restriction of the matrix or vector to rows l1,
l2 and l3 and ||v|| is the norm of vector v.

In a similar way, the Doppler measurement expected at tk from Si may be derived from ξ2:
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ai,tk = −
[M2,kdt.ξ2,t ]1,4,7 − XSi ,tk

‖ [M2,kdt.ξ2,t ]1,4,7 − XSi ,tk‖

˜̇ρi (tk |ξ2,t ) =
(
[M2,kdt.ξ2,t ]2,5,8 − ẊSi ,tk

)
· ai,tk − cδ̇t (9)

Then, using classical regression, the state vector optimal values ξ̂1,t and ξ̂2,t are those minimizing
the quadratic errors:

ξ̂1,t = arg min
ξ1,t

∑
tk∈T

∑
i∈I(tk)

[ρ̃i (tk |ξ1,t )− ρi (tk)]
2 (10)

ξ̂2,t = arg min
ξ2,t

∑
tk∈T

∑
i∈I(tk)

[
[ρ̃i (tk |ξ2,t )− ρi (tk)]

2 + β [ ˜̇ρi (tk |ξ2,t )− ρ̇i (tk)]
2
]

(11)

where I (tk) is the set of the indices of the satellites providing measurements at tk and β is a weighting
factor between the residues associated with PR and Doppler data, respectively.

In previous equations, the minimization is performed considering all of the measurements
(PR and/or Doppler ones) available for the considered set of epochs T . However, some of these
measurements may correspond to outliers, and might then bias the estimation. In the following part
the paper, in addition to the acronym PR, we use the abbreviations “Dp” for “Doppler measurement”
and “(PR,Dp)” for “both PR and Doppler measurements”.

3. Proposed Approach

In the presence of outliers, several strategies have been proposed. Robust methods aim at
automatically mitigating the weight of these outliers in the estimation. For instance, PF or its variants
belonging to the class of robust estimators can theoretically cope with outliers simply by giving a
very small weight to the generated particles. However, if this filter has proven its efficiency against
noise, we will see that too many outliers jeopardize the filter stability. Then, in the case of GPS
data processing, some statistical tests have been proposed to detect the outliers, e.g., [31]. The most
simple to cope with these outliers is simply to discard them from the data measurements (just as
if the corresponding satellites were blocked). This is the strategy of the standard Fault Detection
and Exclusion (FDE) technique implemented in the GPS receivers (even if they can only cope with
at most one erroneous measurement [32]). More sophisticated strategies have also been proposed,
e.g., [15,33], that aim at correcting the outliers. However, in this study, we do not consider such
strategies, because we focus on the following basic main questions:

• For the localization problem, are Doppler measurements less subject to outliers than PR measurements?
• Does the presence of outliers also impact robust localization algorithms, such as PF or the

Rao–Blackwell Particle Filter?
• In the affirmative case, is it worth detecting and discarding these outliers?

Then, in the localization algorithm, we add an outlier detection step that will select the data
(among those available) involved in the location estimation. Specifically, considering filtering
algorithms with two steps, prediction and estimation, the outlier detection step is inserted before the
estimation step.

Outliers are searched either only in the PR dataset or also in the Dp dataset, depending on the
assumption on Dp robustness:

• If Doppler measurements are assumed reliable like in [1], they are directly used to derive ẋr , and
the outlier detection is performed only within the PR set.

• Otherwise, we assume like [7] that, even if the Doppler measurements are less distorted by NLOS
reception than PR measurements (and thus, more reliable), both Doppler and PR observations are
contaminated by multipaths. Then, the outlier detection is applied for (PR,Dp), so that only Dp
inliers are used to derive ẋr (and only PR inliers are considered for the estimation step further).
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3.1. Outlier Detection

The outlier detection is performed using the a contrario approach that we proposed in [23] extended
to the case of (PR,Dp). The a contrario approach detects the inliers as observations that are “too regular
to occur by chance”. “Chance” is measured through the Number of False Alarms (NFA), based on
two items: a model, called the “naive” model, that represents the statistics of the outliers (the H0

hypotheses in statistical decision theory) and a measurement that will allow the distinction of inlier
and outlier sets under the “naive” model assumption. In [23], we have proposed and compared two
“naive” models leading to two NFA criteria for partitioning the data between inliers and outliers.
However, these models only deal with PR measurements. In this study, we extend to (PR,Dp) the first
NFA criterion that experimentally leads to slightly better results than the second NFA criterion.

Before presenting the extended algorithm, let us specify the equations used and the notations.
Assuming a value of ξi denoted ξ̃i and the satellite features (location and velocity), we are able to
compute using Equations (8) and (9) the expected value of PR or Doppler measurement. Then, we
can compare these expected ones to the actually observed ones. By definition, the residues are the
differences between computed measurements (under the ξ̃i hypothesis) and the observed ones: ri(tk)

associated with the PR observation at tk, ρi(tk), is:

ri(tk) = [ρ̃i(tk|ξi)− ρi(tk)] (12)

where ρ̃i(tk|ξi) is computed using Equation (8), and ṙi(tk) associated with Doppler observation at tk,
ρ̇i(tk), is:

ṙi(tk) = [ ˜̇ρi(tk|ξi)− ρ̇i(tk)] (13)

where ˜̇ρi(tk|ξi) is computed using Equation (9).
In order to give the same weight to both kinds of measurements, PR and Doppler ones, ri(tk)

and ṙi(tk) are normalized by their standard deviation, σPR and σDp, respectively, and gathered into
vector R:

R = (
r1(tnep−1)

σPR
, · · · ,

rm(t)
σPR

,
ṙm+1(tnep−1)

σDp
, · · · ,

ṙM(t)
σDp

) (14)

with M the cardinality of (PR,Dp) set.
As for Equations (10) and (11), several epochs are considered. This allows us to increase the

number of available data, as well as the quality of the estimation, provided that the dynamic model
(Equations (8) and (9)) used to ‘align’ the data acquired at different epochs is sufficiently accurate.
The number of considered epochs, nep, is then a compromise between data availability and dynamic
model approximation. In the following, SPR and SDp denote the sets of available observations (PR
and Doppler measurements, respectively) over the considered interval of epochs T .

Let us now consider a subset of measurements noted D in the whole set of observations{
SPR,SDp

}
. Given D and R (Equation (14)), δ2

D is defined as the sum of the squares of R components
for indices j belonging to D (indeed,

{
SPR,SDp

}
measurements being indexed, D also corresponds to

a set of indices). Then, according to [23], δ2
D allows us to quantify the consistency of D through the

NFA measure (associated with the Gaussian naive model N (0, σ)):

NFA1 (D) = η1
1

Γ
(
|D|
2

) ∫ δ2
D/2σ2

0
e−tt

|D|
2 −1dt (15)

where Γ is the Gamma function, |.| is the cardinality set operator and η1 is a normalization term that
allows us to control the average number of false alarms [17].

The χ2 test using the SSE (Sum of Squared Error) is used in the classical RAIM (Receiver
Autonomous Integrity Monitoring) method [10,34] to detect the presence of erroneous data. However,
it requires an a priori parameter, namely the probability of false alarm PFA, to threshold the values
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of SSE. Conversely, using the NFA criterion, we are free from the fitting of a threshold parameter,
since the solution is derived by optimization of the NFA function: the subset of inliers is the subset
of measurements that allows us to reach the minimal value of NFA. Let us underline the difference
between the parameter σ involved in the naive model and a threshold parameter: whereas a set of
inliers obtained by thresholding will be very sensitive to the used threshold value, we have shown [23]
that the subset D that minimizes the NFA value is very robust to naive model parameter σ.

Algorithm 1 presents the extended version of Algorithm 1 of [23] that allows us to find the subset
D minimizing the NFA criterion. Here, the input parameters are the observation sets SPR and SDp
(possibly empty if Doppler measurements are not considered), the number of iterations Ntest, the
parameter σ of naive modelM, the standard deviations, σPR and σDp, for the residue normalization
and the binary parameter IDp that is equal to zero or one, depending on the kind of processed data:
only PR data or (PR,Dp), respectively. The output parameters are the subset D of the inliers and the
estimation of ξ̃i.

Following the a contrario RANSAC principle (e.g., [35]), the algorithm performs different
estimations or tests (loop until Ntest) in order to select the best one according to the NFA criterion.
Then, for each test, it performs the three following steps. First, the data selection step consists of
randomly drawing d = 8 elements in SPR (the set of PR observations) or, if IDp, d = 10 elements in SPR
and SDp (the set of Doppler measurements). The numbers eight and 10 correspond to the minimum
number of observations to estimate ξ̃1 or ξ̃2 further. SPR and SDp include any available observations
performed during the considered interval of nep last epochs. According to [23], the random drawing
of observations is biased in order to favor the drawing of favorable configurations of satellites. Since
we use a sliding window over epochs, there is an overlapping between the sets of considered epochs
for the estimation at two successive instants. Therefore, from the processing of the previous instant,
we know the inliers corresponding to previous nep − 1 epochs. Then, like in [23], random drawing is
constrained, such that: (i) there is at least one measurement per epoch; (ii) for epochs before the last
one, the PR /Doppler measurements are chosen among the already detected inliers; (iii) the selection
of different satellites is favored.

These d observations are used to derive a preliminary solution ξ̃1 or ξ̃2 (depending on the
IDp value). To derive this solution, a regularization term may be added to Equation (8) or
Equation (9), allowing both better conditioning of the problem and the receiver trajectory being
smoother. Considering the regularization term, instead of Equation (10), we have to solve Equation (16):

ξ̃1 = arg min
ξ1

∑
i∈{1,...,d}

(õi (ξ1)− oi)
2 + λ1

ᵀ
[

abs
(

ξ1 − ξ1,t|t−1

)]
(16)

and instead of Equation (11), we have to solve Equation (17):

ξ̃2 = arg min
ξ2

∑
i∈{1,..., d

2}

[
(õi (ξ2)− oi)

2 + β ( ˜̇oi (ξ2)− ȯi)
2
]
+ λ2

ᵀ
[

abs
(

ξ2 − ξ2,t|t−1

)]
(17)

In Equation (16) and Equation (17), ξi,t|t−1 , i ∈ {1, 2}, is the predicted vector state according
to dynamic Model (7); abs (v) returns the vector of the absolute values of v components; and
λi, i ∈ {1, 2} , is the vector of the regularization parameters (λ weights the importance of the deviation
between estimated ξ̃i and predicted state vector ξi,t|t−1 ). The Appendix specifies the derivation of
ξi,t|t−1 , i ∈ {1, 2}.
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Algorithm 1: ξ̃i Estimation Based on the NFA Criterion with Inputs SPR, SDp, σ, σPR, σDp, IDp,
t, Ntest and Outputs ξ̃ and D.

1 if IDp 6= 0 then
2 d← 10; M← 2|SPR|;
3 else
4 d← 8; M← |SPR|;
5 end
6 Initialize the vectors δmin [i] and NFA [i] and the scalar NFAmin to +∞;
7 for 1 to Ntest do
8 if IDp 6= 0 then

9 From SPR and SDp, respectively, draw randomly d
2 observations

(
xSj , ySj , zSj , ρj

)
and d

2

observations
(

ẋSj , ẏSj , żSj , ρ̇j

)
denoted by

{
o1, ..., o d

2

}
and

{
ȯ1, ..., ȯ d

2

}
, respectively;

10 From
{

o1, ..., o d
2
, ȯ1, ..., ȯ d

2

}
, estimate ξ̃2 using Equation (11) or Equation (17) for a

regularized solution;
11 Using Equations (12), (13) and (14), compute the vector of normalized residues, denoted

R ;
12 else

13 From SPR, draw randomly d observations
(

xSj , ySj , zSj , ρj

)
, denoted by {o1, ..., od};

14 From {o1, ..., od}, estimate ξ̃1 using Equation (10) or Equation (16) for a regularized
solution;

15 Using Equation (12), compute the vector of residues, noted R;
16 end

17 Sort R by increasing values into a vector R′ =
(

r′j
)

j∈{1...M}
with π (.) the index

permutation function, such that ∀j ∈ {1...M} , r′j = Rπ(j);

18 Initialize δ2
D = 0;

19 for j = d + 1 to M do
20 δ2

D ← δ2
D + (r′j)

2;

21 if δ2
D < δmin [j] then

22 δmin [j] = δ2
D ;

23 Compute NFA [j] according to Equation (15);
24 if NFA [j] < NFAmin then
25 NFAmin = NFA [j]; D = {π (1) ...π (j)};
26 end
27 end
28 end
29 end
30 From the inlier set D, estimate ξ̂1 or ξ̂2 using Equation (18).

The second part of the algorithm computes the non-null residues for all of the other (not drawn)
observations, either only PR or (PR,Dp). Having increasingly sorted the vector of residues, the last
part of the algorithm computes the minimum NFA values by varying the cardinality of D (increasing
from d + 1 to M). δmin [i] is a vector that stores the values of the minimal quadratic errors (sum of the
squares of the residues) for every cardinality of subset D. Indeed, for a given cardinality of D, the
NFAvalue is minimum for minimum value of quadratic error d2

D that is achieved considering the |D|
lowest values of residues (hence, the sorting of R). Then, NFAmin [i] is a vector that stores the NFA
values corresponding to δmin [i]; NFAmin is the minimum among NFAmin [i] , ∀i ∈ {d + 1, . . . , M}. The
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inlier subset is the set D achieving the NFAmin value. Finally, state vector ξ̃1 or ξ̃2 is estimated from D
and Equation (18):

ξ̃i = arg min
ξi

∑
j∈D

Rj + λi
ᵀ
[

abs
(

ξi − ξi,t|t−1

)]
(18)

where Rj is the residue provided by Equation (14).
Algorithm 1 has a linear complexity with Ntest. For one iteration, the complexity mainly comes

from state vector estimation (Algorithm A1, Appendix). The complexity of this latter depends on d:
matrix inversion and matrix multiplication are in O(d3). Then, the complexity of the sorting of R is in
O(Mlog(M)). For NFA(PR,Dp), d = 10, and M varies in [12, 33] considering a temporal window of
three epochs. Therefore, to control the computation time, one should fit the parameter Ntest.

Finally, note that, even if Algorithm 1 provides estimations of GNSS receiver localization
parameters, the proposed coupling between Algorithm 1 and the robust localization algorithm
(PF/RBPF presented in the next section) is only done in terms of data selection. Indeed, in Algorithm 1,
the provided estimation only aims at evaluating the consistency of a subset of data, whereas PF/RBPF
allows for non-linear/non-Gaussian data filtering that exploits some classic a priori parameteron the
smoothness of the trajectories. Such an independence between the detection step (Algorithm 1) and
the filtering step (PF/RBPF) increases the robustness of the global localization algorithm.

3.2. Localization Algorithm

The particle filter, also called the Sequential Monte Carlo (SMC) method, is a numerical method
that consists of approximating the posterior probability p(xt |zt) (probability of the state xt given
the set of observations zt) using a sufficient number of particles xi

t. A particle represents a state
vector solution, and the associated weight wi

t represents its likelihood. Such a representation based
on samples/particles allows us to approximate and deal with any statistical distribution of error,
especially non-parametric ones and non-Gaussian ones.

3.2.1. SIR-PF

The Sequential Importance Resampling (SIR) particle filter [13], also known as the “bootstrap
filter”, is the most popular method to solve the non-linear filtering problem.

For SIR-PF, the number of the required particles is directly linked to the dimensionality of the state
vector. In order to keep a reasonable number of particles (bounded to a few thousands), we assume
that either the altitude is constant, as is often in urban environments, or it is known as in our case from
the output ξ̃ of Algorithm 1, so that it has not been introduced in the state vector. For the same reasons,
velocity is also excluded from the state vector (conversely to the RBPF state vector presented in the
next section). Then, the SIR-PF particles are xi

t = (ei
t, ni

t, δi
t)
ᵀ, where i denotes the particle index and t

is the epoch.
At each epoch, the SIR-PF iterates the three steps “prediction”, “estimation” and “resampling”.

Prediction Step

This step, sometimes called PF time update, aims at providing an estimation of the state vector at
the next time step. Note that if here, we place it at the beginning of iteration at time t, it can equivalently
be placed at the end of iteration at t− 1.

To predict the next position of the particle, we need an estimation of the velocity ẋr . Since, ẋr is
not part of the state vector, it should be provided by external data. Using GPS-only data, we consider
Doppler measurements to derive ẋr : Doppler measurements at time t− 1 provide PR rates from which
we derive the receiver velocity ẋr = (ėr, ṅr, u̇r) using Equation (3). In order to comply with common
notations in the transportation and navigation community, ẋr can be equivalently represented in terms
of norm and orientation: Vi

t−1 = sqrt(ė2
r + ṅ2

r ) and θi
t−1 = arctan ( ṅr

ėr
), respectively. Then, we predict

the next state at t of the i-th particle according to:
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
ei

t = ei
t−1 + Vi

t−1 cos(θi
t−1)dt + ν(σe)

ni
t = ni

t−1 + Vi
t−1 sin(θi

t−1)dt + ν(σn)

δi
t = δi

t−1 + δ̇t−1dt + ν(σδt)

(19)

where the time step dt is equal to one and ν is the prediction noise associated with each component of
the state vector. Indeed, as a stochastic approach, PF is based on stochastic simulations provided here
by the addition (to the deterministic predictions state vectors) of a Gaussian noise with zero mean and
standard deviation (σe, σn, σδt).

Note that in our case, the velocity used for prediction is estimated from (ėr, ṅr) at t− 1. Instead
of using Doppler measurements at t− 1, we could have used those acquired at t. However, since
the prediction is between t− 1 and t, it will not provide necessarily a more accurate prediction. In
comparison with the RBPF (presented in Section 3.2.2), let us underline that the velocity estimation is
performed as an external process to the SIR-PF itself, since velocity is not a part of the state vector.

Estimation Step

This step, sometimes called PF measurement update, aims at correcting the prediction step
estimate according to the observations. Since velocity is not represented in the state vector xi

t, the
posterior probability of our SIR-PF is only computed relatively to the PR measurements. It is denoted
p(ρt |xi

t) with ρt the vector of ρi observed at t.
The update process of weights wi

t is a weighting function of their previous values [36] by the
observation likelihood function p(ρt |xi

t): wi
t ∝ wi

t−1 p(ρt |xi
t). In most cases, because of computational

constraints, the likelihood function p(ρt |xi
t) is approximated by a multivariate Gaussian density.

Finally, normalization of the weights is performed so that ∑k
i=1 wi

t = 1.
Having updated the weights, the ‘optimal’ state vector x̂t is derived as the weighted sum of

all particles:

x̂t =
k

∑
i=1

wi
tx

i
t (20)

Resampling

This step aims at preventing the degeneracy of the algorithm, in particular to avoid that computer
resources are consumed by “unlikely” particles. During this step, a threshold is computed [36] to
partition the set of the particles according to their weight [13]. Having removed the particles that
present lower weight than the considered threshold, the remaining particles are duplicated in order
to keep a constant number of particles, and all of the weights are reinitialized to a constant value
(reciprocal of the total number of particles).

3.2.2. Rao-Blackwellised PF

In previous PF, the velocity was estimated directly from Doppler measurements (being ‘outside’
of the PF estimation step, it does not take into account previous estimations of the PF prediction step).
This boils down to assuming no noise on Doppler measurements. In order to avoid such an assumption
and to be more realistic, we extend the state vector from (e, n, δt)

ᵀ to
(
er, nr, δt, ėr, ṅr, δ̇t, ër, n̈r,

)ᵀ, i.e., its
dimensionality increases from three to eight.

However, standard PF would require a very important number of particles to explore the whole
space of solutions, and the PF would become intractable. On the other hand, the Rao-Blackwellization
approach [37,38] was proposed both to reduce the complexity and to better approximate the solution in
case of convex functions. It is based on the idea that splitting the state vector allows us to decrease the
approximate error by exploiting linear substructures [25]. A classic case corresponds to the splitting
of the initial state vector into two sub-vectors, one being estimated analytically and the other one by
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importance sampling (e.g., PF). Thus, the number of particles required for precise estimation remains
tractable thanks to the lower dimensionality of the non-linear subsystem [25,38].

Considering our problem, we split the system of eight components describing the prediction step
equations into two sub-systems, a linear and a non-linear one, as follows. The equations involving PR
observations (Equation (1)) are non-linear leading to a non-linear system for deriving GPS position.
On the other hand, the velocity estimation knowing the position of the receiver and the Doppler
measurements is achieved solving a linear system (Equation (3)). Thus, we define the two state vectors
xp f = (er, nr, δt)

ᵀ and xk f =
(
ėr, ṅr, δ̇t, ër, n̈r

)ᵀ.
The posterior probability of the RBPF is factorized:

p(xk f ,t, xp f ,t |zt) = p(xk f ,t |xp f ,t, zt)p(xp f ,t |zt) (21)

where zt still denotes the set of observations. The first term is solved analytically using EKF, and the
second term is estimated by Monte Carlo sampling using PF. Then, in RBPF, we can keep the same
number of particles as in Section 3.2.1, while considering also the receiver velocity in the state vector
and filtering it. The proposed model for RBPF is triangular:(

xp f ,t
xk f ,t

)
=

(
I3×3 Ap f ,dt
05×3 Ak f ,dt

)(
xp f ,t−1
xk f ,t−1

)
+

(
Qp f
Qk f

)
(22)

where In×n is the square identity matrix of dimensionality n, 0m×n is the rectangular zero matrix of
dimensionality m× n, Qp f and Qk f are the covariance matrices of the noise, which is assumed zero
mean Gaussian (for notation shortness, we omitted the time dependency for covariance matrices) and
Ap f ,dt and Ak f ,dt are the transition matrices defined as follows:

Ap f ,dt =

dt 0 0 dt2

2 0
0 dt 0 0 dt2

2
0 0 dt 0 0

 (23)

Ak f ,dt =


1 0 0 dt 0
0 1 0 0 dt
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (24)

The non-linear part is processed using the same PF presented in Section 3.2.1 to estimate the state
vector of each particle xp f (i),t and its associated weight wi

t. The linear part is processed using an EKF
applied to the state vector xk f (i),t of each particle recursively. EKF involves two main steps:

Prediction Step

This step occurs between the prediction step and the estimation step of the SIR-PF. We define
intermediate variables,

Nt = Ap f ,dtPt−1|t−1 Aᵀ
p f ,dt + Qp f (25)

Lt = Ak f ,dtPt−1|t−1 Aᵀ
p f ,dt N−1

t (26)

yt = xp f
t − xp f

t−1 (27)
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where yt is interpreted as an error measurement and Lt and Nt are intermediate matrices modeling
the impact of the non-linear system on the linear estimation. Then,

x̂k f ,t|t−1 = Ak f ,dt x̂k f ,t−1|t−1 + Lt(yt − Ap f ,dt x̂k f ,t−1|t−1) (28)

Pt|t−1 = Ak f ,dtPt−1|t−1 Aᵀ
k f ,dt + Qk f − Lt Nt Lt

ᵀ (29)

where Pt−1|t−1 is the covariance matrix of xk f
t . Note that if the Ap f

t matrix is null, previous equations
boil down to Kalman’s filter prediction step. Note that, since the prediction step presented in
Section 3.2.1 is involved in Equation (27), the current prediction step occurs after the prediction
of the non-linear part of RBPF.

Estimation Step

This step occurs between the estimation step and the resampling of the SIR-PF. It is the classical
correction step of the extended Kalman filter.

x̂k f ,t|t = x̂k f ,t|t−1 + Kt

(
ρ̇t − Ct x̂k f ,t|t−1

)
(30)

Pt|t = Pt|t−1 − KtCtPt|t−1 (31)

Kt = Pt|t−1Ct
ᵀ
(

CtPt|t−1Ct
ᵀ + Rt

)−1
(32)

where Ct is the observation matrix of Doppler measurements derived from Equation (3).
This analytical correction of the x̂k f ,t|t subvector is independent from the estimation of x̂p f ,t|t that

is performed according to the estimation step presented in Section 3.2.1 (Equation (20)).
One of the objectives of this study was to check the interest of removing outliers from the datasets,

either PR or (PR,Dp). This can be achieved by comparing the localization results obtained using outlier
detection coupled with PF or RBPF.

4. Experiment and Results

In order to test our localization method, we have acquired data in constrained environments: an
urban canyon and forest, characterized by NLOS reception. Figure 1b shows the receiver trajectory in
the South of Paris (France). It is 5 km long for an experiment duration of 11 min.

(a) (b) (c)

Figure 1. (a) Experimental platform with the three GPS visible on the roof of the car; (b,c) trajectory
of the experiment, either (b) plotted on Google Earth c© or (c) labeled in terms of the quality of the
Real-Time Kinematic (RTK) solution (“ground truth”).
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4.1. Platform and Parameters

Figure 1a shows the used experimental vehicle ZOE that is equipped with two low cost GPS
and one high cost GPS. The two low cost GPS are GARMIN 18x and UBLOX EVK-5T, which are
single-frequency receivers delivering the positioning solution at 1 Hz. The high cost GPS is an APS-3
multi-frequency and multi-constellation receiver (L1/L2/L2C GPS, GLONASS and satellite-based
augmentation system (SBAS)) that belongs to the GPS class RTK (Real-Time Kinematic). This latter
has a sampling frequency equal to 1 Hz, and its location accuracy is equal to 1 cm, according to
factory specifications in the case of the “fixed solution”. This solution was available during 41% of
the experiment (cf. Figure 1c), whereas the two other solutions, ‘RTK float’ and ‘differential’, whose
precision may drop until 40 cm, were available during 39% and 20%, respectively. APS-3 is used for
two purposes: to establish the ground truth and to get the raw data used in the localization algorithms.
However, the considered raw data are not post-processed by APS-3.

The GARMIN 18x has an accuracy (measured by the root mean square error) equal to 5 m
in location and 0.05 m/s in velocity. Finally, the UBLOX EVK-5T acquires only PR measurements
(no Doppler measurements) and is specified to have a location accuracy of 3 m in the static case and an
open area.

The configuration of the satellites during the experiment is shown in Figure 2. The number of
available satellites varies between four and 11 with an average equal to nine.

For the used algorithms, the parameters are:

• In Algorithm 1, nep = 3, λ1
ᵀ =

(
200 20 200 20 10000 20 0 0

)
and λ2

ᵀ =(
20 2 20 20 2 20 10000 10000 0 0

)
;

• In EKF, SIR-PF and RBPF, the PR precision is σPR = 5 m, and the Dp precision is σDp = 2 Hz;
• In SIR-PF and RBPF, the number of particles is set to 3000.

4.2. Localization Results

The global performance of the localization is represented in terms of the cumulative distribution
curve: the better the result, the greater the area below the cumulative distribution curve. In this
study, we consider eleven localization processes. Two of them are GPS solutions themselves: either
the UBLOX or the GARMIN GPS. The GARMIN and UBLOX EVK-5T solutions are plotted just as
references, since it would be unfair to compare high cost and low cost GPS. However, we note that
the GARMIN solution seems rather interesting, and even if the GARMIN algorithm is unknown, we
may guess that it uses preprocessing of the measurements. For instance, if it uses the satellite elevation
mask (discarding the satellites having an elevation lower than 15◦), according to Figure 2, the satellites
S4, S10, S11, S31 and S32 will not be used, which corresponds to frequent outliers, as we will see further.

The other processes correspond to different versions of the extended Kalman filter, the particle
filter and the Rao-Blackwellised PF: without removing any outliers, by coupling it with the PR outlier
detection or with the (PR,Dp) outlier detection. In the three filters (EKF, PF and RBPF), the initial
solution is provided either by the least mean square solution or by the output of Algorithm 1 when
there is an outlier detection step. For comparison, we also implement a recent robust outlier method
called ORKF (Outlier Robust Kalman Filter) [39]. It is similar to the EKF, except that the covariance of
the observation noise is estimated recursively inside the estimation step (releasing the assumption on
the measurement precision).

Figure 3 and Table 1 allow us to draw the following conclusions:

• Among the implemented algorithms, the Particle Filter (PF) provides rather disappointing results
with an error lower than 6 m in only 55% of cases. This relatively bad performance of PF, against
EKF for instance, is probably due to the fact that the velocity is not part of the state vector; it is not
at all filtered, conversely to the case of the EKF.

• The ORKF has better performance than the simplest version of PF and the classical EKF, and similar
performance to EKF + NFA (PR) and EKF + NFA (PR + Dp) when the errors are less than 6 m.
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• By removing the PR outliers at the entry of the filters, EKF + NFA (PR) and PF + NFA (PR) allow for
much better localization than the ‘all-data’ EKF, PF or even ORKF for errors lower than 6 m. Besides,
if EKF + NFA (PR) still performs better than PF + NFA (PR) for errors lower than 6 m, the gap has
narrowed, and in terms of errors lower than 3 m, PF + NFA (PR) outperforms EKF + NFA (PR).

• By removing also the Dp outliers, PF + NFA (PR,Dp) provides better results than the previous
methods. For instance, its 95th percentile corresponds to an error lower than 9 m, whereas
PF + NFA (PR) percentile error is 11.5 m. This clearly illustrates the interest of removing also the
Doppler outliers, especially as they are not filtered (by the estimation step of PF). Conversely, in
the case of the EKF where velocities are filtered, the effect of removing Dp outliers is less clear: it
appears just for errors lower than 9 m.

• By removing the PR outliers, RBPF + NFA (PR) has the same performance in localization as the
PF + NFA (PR,Dp) version (see Table 1). This can be explained by the fact that, by filtering the
velocity estimation, RBPF is rather robust to outliers in Doppler measurements. It also outperforms
EKF + NFA (PR).

• Finally, removing also the Dp outliers, RBPF + NFA(PR,Dp) outperforms all of the other results.
According to Table 1, if the performance for PR + NFA (PR,Dp) and the two RBPFs is close under 3 m,
a higher level of confidence is achieved by RBPF + NFA (PR,Dp) for errors lower than 6 m and 9 m.

Table 1. Percentiles of positioning errors. NFA, Number of False Alarms; PR, Pseudo-Range;
Dp, Doppler measurement; RBPF, Rao–Blackwell Particle Filter; ORKF, Outlier Robust Kalman Filter.

Localization Method % Error < 3 m % Error < 6 m % Erro r< 9 m

UBLOX 20.9% 47.15% 64.92%
GARMIN 28.6% 72.97% 90.72%

EKF 37.26% 71.66% 80.75%
EKF + NFA (PR) 40.94% 81.82% 91.73%
EKF + NFA (PR,Dp) 37.13% 74.88% 96.49%
ORKF 40.83% 74.77% 83.22%

PF 21.1% 55.02% 75.12%
PF + NFA (PR) 44.6% 77.19% 89.85%
PF + NFA (PR,Dp) 59.95% 87.05% 94.61%

RBPF + NFA (PR) 61% 85.78% 93.38%
RBPF + NFA (PR,Dp) 61.96% 90.11% 98.28%

Figure 2. Skyplot configuration during the experimental data acquisition in the urban area.
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Figure 3. Cumulative distribution function of errors achieved by the four versions of KF, the five
versions of particle filters and the two GPS solutions for our experiment of 11 min and 40 s.

Table 2 shows the global precision of the localization. Precision was evaluated through three
indicators: the Norm1 norm, the Norm2 and the mean and standard deviation of errors. Norm1 and
Norm2 can be computed on east and north coordinates: precisely, denoting εi the error of the position at

instant i along a given direction (east or north), Norm1 =
n
∑

i=1
|εi| is the average of the absolute value of

the errors, and Norm2 =

√
n
∑

i=1
ε2

i is the root of average of the squared errors. Denoting Ei the Euclidean

distance between estimated and ‘ground truth’ positions at instant i, µloc and σloc are the mean and the
standard deviation of Ei values. The results are consistent with Figure 3: Among the implemented
algorithms, when using all-data, EKF and ORKF show good performance, and when removing the
outliers (either PR or (PR,Dp)), RBPF outperforms the other approaches. The best results are obtained
for NFA (PR,Dp) coupled with RBPF, even if the interest of removing outliers can also be noticed in
the case of EKF or PF. Finally, to quantify the improvement due to the NFA outlier detection, we run
RBPF with an elevation mask removing satellites below 15◦ (as is usually done on most GNSS receiver
devices). The results are: Norm1 = (2.82, 3.10), Norm2 = (4.68, 4.38) and (µloc, σloc) = (4.64, 4.42).
As expected, localization is less accurate than RBPF + NFA (PR,Dp) or even RBPF + NFA (PR), showing
that the satellite elevation criterion does not exactly fit the outlier detection.

Table 2. Localization error (in m) on (east, north) coordinates, Norm1 and Norm2 of error, error mean
and standard deviation: comparison of the four versions of KF, the five versions of particle filters and
the two GPS solutions on our 11 min 40 s experiment.

Error Measure Localization Algorithm
Data

All-Data NFA (PR) Inliers NFA (PR,Dp) Inliers

L1

UBLOX (11.92,10.20) - -
GARMIN (3.35,2.76) - -
EKF (3.76,4.50) (2.63,3.18) (3.31,2.24)
ORKF (3.55,4.31) - -
PF (6.68,6.72) (2.61,2.83) (1.82,2.41)
RBPF - (1.84,2.69) (1.62,2.17)

L2

UBLOX (20.44,18.60) - -
GARMIN (4.73,3.35) - -
EKF (5.77,7.47) (3.43,5.00) (3.92,3.09)
ORKF (5.55,7.79) - -
PF (9.09,9.49) (3.48,3.86) (2.95,3.51)
RBPF - (3.37,3.53) (2.51,3.20)

(µloc, σloc)

UBLOX (16.72,22.02) - -
GARMIN (4.91,3.08) - -
EKF (6.40,6.96) (4.59,3.96) (4.37,2.42)
ORKF (6.13,7.36) - -
PF (10.43,7.99) (4.25,3.41) (3.37,3.11)
RBPF - (3.53,3.56) (2.96,2.25)
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Table 3 shows the localization error computed on the three subparts of the trajectory corresponding
to the three RTK solution qualities. The localization results are those obtained using RBPF with
removal of outliers, either in the PR dataset or in the (PR,Dp) one (we focus on the best results), and the
considered errors are computed as previously in terms of Norm1, Norm2 on east and north coordinates
and the mean and standard deviation of the distance between estimation and ground truth. From
Table 3, we observe a ‘correlation’ between the quality of the localization result and the RTK quality:
localization is more precise on the RTK fixed part than on the RTK float part, and the differential part
presents the worst localization results. There are two interpretations of such a fact: (i) the imprecision
of the ground truth in the case of RTK float or the differential solutions introduces a supplementary
error that slightly degrades the estimated precision of the localization; (ii) the RTK fixed solution occurs
mainly in open areas (whereas the RTK float solution also occurs in an urban environment and the
differential solution in the forest part; cf. Figure 1b and 1c) where localization is generally good.
Indeed, looking at the localization precision distribution versus the RTK solution for other methods ,
we also note that the results are more precise on the RTK fixed part of the trajectory.

Table 3. Proposed method localization error (in m) on (east, north) coordinates, Norm1 and Norm2 of
error, error mean and standard deviation versus the quality of RTK solution used as the ground truth.

Solution Quality RBPF + NFA (PR) RBPF + NFA (PR,Dp)

L1

RTK fixed (1.44,2.08) (1.27,1.74)
RTK float (2.21,3.03) (1.91,2.55)
Differential (2.16,4.16) (2.03,2.62)

L2

RTK fixed (2.56,3.14) (1.76,2.45)
RTK float (3.19,4.35) (2.56,3.26)
Differential (3.70,6.02) (2.75,3.85)

(µloc, σloc)
RTK fixed (2.74,2.99) (2.38,1.85)
RTK float (4.05,3.57) (3.44,2.31)
Differential (5.08,4.96) (3.68,3.00)

4.3. Validation of the Outlier Estimation

In this section, we aim at checking the efficiency of Algorithm 1 in terms of outlier detection. The
tricky part is the derivation of a ‘ground truth’ in terms of outliers. First of all, note that the definition
of an outlier itself depends on the adopted point of view: from the statistical point of view, an outlier is
a measurement considerably dissimilar or inconsistent with the remainder of the data [40], whereas from the
physical point of view and according to the considered application, an outlier is then a measurement
affected by multipath or NLOS reception. In this study, we adopt the statistical definition, and we
derive an estimation of the biases, like in [7], as follows.

Among the (PR,Dp) set, we want to derive the subset of observations that behave as outliers from
the statistical point of view. The only “ground truth” we have is the receiver position that is provided
by the APS-3 GPS + GLONASS RTK. The construction of a “ground truth” about outliers from this
ground truth about receiver localization proceeds in two steps: (i) firstly, estimation of the biases
between observed measurements and expected ones; (ii) secondly, analysis of the biases to classify
them as induced by outliers or by inliers.

4.3.1. Bias Estimation for Qualitative Analysis

For the first step, we have to estimate the ‘expected’ measurements from the receiver localization
ground truth. This latter allows us to derive the Euclidean distance between the satellite Sj and
the receiver position, dj. However, we still need to estimate the clock bias δ̃t. In [7], the equation

cδ̃t =
1
N

N
∑

j=1
(ρj − dj) was used. However, the mean estimator is not robust to outlier presence nor to
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the fact that the oscillator embedded on GPS receivers is not stable nor accurate. Then, we rather use
the M estimator [41] as a simple solution among robust estimator class:

Assuming e the vector of residues of clock bias estimation (ej = ρj − dj − cδ̃t), α(ej) is the weight
coefficient defined by α

(
ej
)
= 1
|ej| , and the optimal clock bias cδ̂t and the PR bias estimate ∆̃mj are:

cδ̂t =

N
∑

j=1
α(ej)(ρj−dj)

N
∑

j=1
α(ej)

∆̃mj = ρj − dj − cδ̂t

(33)

In a similar way, we derive the biases ∆̃ṁj on Doppler measurements knowing both the velocity
and location of the GPS receiver. Figures 4 and 5 allow us to check qualitatively the consistency between
the large biases (either in PR or Doppler measurements) and NFA detected outliers. Specifically, they
show the temporal variation of the estimated biases for PR and Doppler observations of each satellite,
and the values detected as outliers by the NFA algorithm are pointed out (by a red marker). We
also observe that the estimated signal in Equation (33) is probably affected by atmospheric and
electronic noises that differ from one satellite to another. This satellite specificity induces different
biases even between consistent curves (e.g., see the S17, S20 and S23 curves in Figure 4). In the Dp case,
the estimation is less affected by atmospheric noise, so that the peaks in Figure 5 corresponding to
potential NLOS reception or multipaths reception appear clearly.

Figure 4. ∆̃mj estimations on PR measurements acquired by the different satellites (numbered
between 1 and 32). Red markers point out PR outliers detected by NFA.

Figure 5. ∆̃ṁj estimations on Doppler measurements acquired by the different satellites (numbered
between 1 and 32). Red markers point out Dp outliers detected by NFA.
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4.3.2. Bias Classification for Quantitative Analysis

To evaluate quantitatively the efficiency of outlier detection, we have to label the previously
estimated biases either as (induced by) “outlier” or as “inlier”. Such a labeling was done only for the
∆̃mj (due to the objective difficulty of labeling the ∆̃ṁj) by a human operator as follows. For every
epoch t of the experiment, a bias ∆̃mj is labeled “outlier” if, at t, it appears neither consistent with the
average bias of the considered satellite nor with the other satellite biases. Practically, a thresholding
step relative to the median value of all ∆̃mj at t is first applied (the test of consistency with other
satellites), then followed by visual inspection of the selected biases. For instance, at time 351 s, even
if S23 presents a rather important ∆̃mj value, only S1 and S4 are labeled as outliers. Even if previous
labeling includes a subjective part, we assume that it is statistically unbiased, and we use it to analyze
statistically outlier detection results.

From previous bias labeling, on the one hand, and inlier set D provided by Algorithm 1, we
compute the numbers of True Positives (TP, PR ∈ D with bias label “inlier”), false alarms called
False Positives (FP, PR ∈ D with bias label “outlier”), misdetections called False Negatives (FN,
PR /∈ D with bias label “inlier”) and True Negatives (TN, PR /∈ D with bias label “outlier”). From
these statistics, the accuracy (TP+TN)

(TP+TN+FP+FN)
and precision (TP)

(TP+FP) are derived. The sample set
includes 3498 PR samples corresponding to a sub-part of the experiment (of 7 mn ) where biases
∆̃mj were labeled. Table 4 shows the obtained values. The two presented coupling ways between
particle filter and outlier detection either restricted to the PR measurements or for (PR,Dp) are called
“NFA (PR)” and “NFA (PR,Dp)”, respectively. By comparing these two approaches, we note that
the performance of both of them is very high. Besides, they appear very close given the statistical
imprecision and the labeling process.

Table 4. Performance of Algorithm 1 for outlier detection among PR measurements or (PR,Dp).

TP FP FN TN Accuracy Precision

NFA (PR) 3131 39 49 279 97.5 98.7
NFA (PR,Dp) 3112 91 45 250 96.1 97.2

4.3.3. Correlation between PR and Doppler Outliers

Having, at least qualitatively, positively assessed the outlier detection, we can interpret its result
also in terms of the occurrence of Doppler outliers.

In terms of global statistics and correlation between PR and Doppler outliers, during the
experiment, NFA (PR) excludes 9.83% of available PR observations, whereas NFA (PR,Dp) discards less
PR observations (8.37%), but discards 2.85% of available Doppler observations. Among the Doppler
outliers, 54% are also PR outliers. Thus, one can deduce that, according to these statistics, in constrained
environments, Doppler measurements present three-times less outliers than PR measurements, but
they, nevertheless, suffer from NLOS or multipath phenomena.

5. Conclusions

In this paper, a new approach able to cope with a significant number of outliers was presented
for GNSS positioning. Based on a contrario modeling, the Number of False Alarms (NFA) criterion
allows us to partition the pseudo-range and Doppler measurements between inliers and outliers. Then,
detected outliers are removed from the dataset to achieve robust estimation of receiver position and
velocity. Two models based on particle filtering have been considered for the localization process. The
first model (PF) only filters the receiver position, whereas the second model (RBPF) is a more complete
filter that handles receiver position and velocity and using both PR and Doppler observations in its
estimation step. Tests have been performed in the case of a receiver on board a vehicle traveling in
urban canyons and forest areas. Results show that, by excluding erroneous measurements and filtering
the noise of the observations, more accurate localization is achieved.
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Future work will deal with the optimization of the time processing and memory. The a contrario
approach may be parallelized, since the Ntest loop in Algorithm 1 may be run independently, and the
comparison of the results to get the solution minimizing NFA may be only done at the end of the
algorithm. Besides, the prediction part of the RBPF can also be processed simultaneously with the
outlier detection. We will also investigate a stronger coupling between particle filtering and a contrario
estimation. The proposed a contrario detection algorithm will not only provide the partition between
inliers and outliers, but it could also provide an estimate of the state vector (used to interpret the
measurements) that may be combined with the particle filter estimate in a fusion process. Finally, we
aim at using a more sophisticated observation model instead of basic Equation (1), e.g., including the
atmospheric effect, to analyze the detected outliers and, when possible, to correct them.

Appendix

Equation (18) is solved using Algorithm A1. It is presented in the case of ξ2 estimation, but the
case of ξ1 may be derived as a specific case. The input data are the observations, for the previous
solution ξ(2,t|t−1) and the regularization parameter vector λ. Like in most practical applications, the
regularization parameter is fitted (or learned) using a first set of data. In our case, we do not regularize
clock bias and clock drift, δt and δ̇t, so that the corresponding λ coefficients are set to zero. This
algorithm involves the computation of the Jacobian that is as follows.

Let us define two non-linear functions:

fi(X) =
√
(Er − eSi )

2 + (Nr − nSi )
2 + (Ur − uSi )

2 + c∆t (A1)

gi(X) = (Ėr − ėSi )aei + (Ṅr − ṅSi )ani + (U̇r − u̇Si )aui − cδ̇t (A2)

where Xᵀ = (er, nr, ur, δt, ėr, ṅr, u̇r, δ̇t, ër, n̈r) is the unknown state vector. Then:

Er = er + ėrdt + ër
dt2

2 ,
Nr = nr + ṅrdt + n̈r

dt2

2 ,
Ur = ur + u̇rdt,
Ėr = ėr + ërdt,
Ṅr = ṅr + n̈rdt,
∆t = δt + δ̇tdt,

aei =
eSi
−Er
Ri

,

ani =
nSi
−Nr
Ri

,

aui =
uSi
−Ur
Ri

Where dt is the time update and Ri =
√
(Er − eSi )

2 + (Nr − nSi )
2 + (Ur − uSi )

2 is the distance
receiver/satellite for all Si, i ∈ {1 . . . n}.

The Jacobian is:

J =



∂ f1(X)
∂er

∂ f1(X)
∂nr

· · · ∂ f1(X)
∂ n̈r

...
...

. . .
...

∂ fn(X)
∂er

∂ fn(X)
∂nr

· · · ∂ fn(X)
∂ n̈r

∂g1(X)
∂er

∂g1(X)
∂nr

· · · ∂g1(X)
∂ n̈r

...
...

. . .
...

∂gn(X)
∂er

∂gn(X)
∂nr

· · · ∂gn(X)
∂ n̈r


(A3)

where:



Sensors 2016, 16, 580 20 of 22



∂ fi(X)
∂er

=
Er−eSi

Ri
, ∂ fi(X)

∂nr
=

Nr−nSi
Ri

∂ fi(X)
∂ur

=
Ur−uSi

Ri
, ∂ fi(X)

∂δt = c
∂ fi(X)

∂ėr
= dt ∂ fi(X)

∂er
, ∂ fi(X)

∂ṅr
= dt ∂ fi(X)

∂nr
∂ fi(X)

∂u̇r
= dt ∂ fi(X)

∂ur
, ∂ fi(X)

∂δ̇t
= cdt,

∂ fi(X)
∂ër

= dt2

2
∂ fi(X)

∂er
, ∂ fi(X)

∂n̈r
= dt2

2
∂ fi(X)

∂nr

and: 

∂gi(X)
∂er

= (Ėr − ės)
∂aei
∂er

+ (Ṅr − ṅs)
∂ani
∂er

+ (U̇r − u̇s)
∂aui
∂er

∂gi(X)
∂nr

= (Ėr − ės)
∂aei
∂nr

+ (Ṅr − ṅs)
∂ani
∂nr

+ (U̇r − u̇s)
∂aui
∂nr

∂gi(X)
∂ur

= (Ėr − ės)
∂aei
∂ur

+ (Ṅr − ṅs)
∂ani
∂ur

+ (U̇r − u̇s)
∂aui
∂ur

∂gi(X)
∂δt = 0

∂gi(X)
∂ėr

= aei ,
∂gi(X)

∂ṅr
= ani

∂gi(X)
∂u̇r

= aui ,
∂gi(X)

∂δ̇t
= −cdt

∂gi(X)
∂ër

= aei dt, ∂gi(X)
∂n̈r

= ani dt

The derivatives of the unit vector are given by:

∂aei
∂er

=
(Er−es)2−R2

i
R3

i
∂ani
∂nr

=
(Nr−ns)2−R2

i
R3

i
∂aui
∂ur

=
(Ur−us)2−R2

i
R3

i
∂aei
∂nr

=
∂ani
∂er

= (Er−es)(Nr−ns)

R3
i

∂aei
∂ur

=
∂aui
∂er

= (Er−es)(Ur−us)

R3
i

∂aui
∂nr

=
∂ani
∂ur

= (Ur−us)(Nr−ns)

R3
i

The derivative of a relatively to the velocity and the acceleration are assumed null.

Algorithm A1: Estimation Based on the non-Linear Solver and Including the Regularization
Term, Inputs: Matrix S , Whose Lines are the Observations

(
xSi , ySi , zSi , ẋSi , ẏSi , żSi , ρ̇i

)
,

ξ(2,t|t−1), λ and Outputs ξ̃2; the Same Algorithm to Estimate ξ̃1 Omitting Dp Measurements ˜̇ρ.

1 Set ε to the precision threshold;
2 if λ2 = 0 then
3 Estimate ξ̃2 using the Gauss–Newton algorithm;
4 else
5 Initialize ξ2 and ξ̃2 to ξ(2,t|t−1);
6 Define φ, the vector of d

2 PR measurements and d
2 Dp measurements from S ;

7 while |ξ̃2 − ξ2| > ε do
8 ξ2 ← ξ̃2;φ̃← [ρ̃ ˜̇ρ]ᵀ;
9 Calculate the Jacobian J (ξ2,S);

10 ξ̃2 ← (Jᵀ J + λ2 I)−1 Jᵀ(φ̃ − φ) + ξ2;
11 end
12 end
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