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Abstract: Nitrogen-doped carbon dots are introduced as a novel substrate suitable for enzyme
immobilization in electrochemical detection metods. Nitrogen-doped carbon dots are easily
synthesised from polyacrylamide in just one step. With the help of the amino group on chitosan,
glucose oxidase is immobilized on nitrogen-doped carbon dots-modified carbon glassy electrodes by
amino-carboxyl reactions. The nitrogen-induced charge delocalization at nitrogen-doped carbon dots
can enhance the electrocatalytic activity toward the reduction of O2. The specific amino-carboxyl
reaction provides strong and stable immobilization of GOx on electrodes. The developed biosensor
responds efficiently to the presence of glucose in serum samples over the concentration range from
1 to 12 mM with a detection limit of 0.25 mM. This novel biosensor has good reproducibility and
stability, and is highly selective for glucose determination under physiological conditions. These
results indicate that N-doped quantum dots represent a novel candidate material for the construction
of electrochemical biosensors.

Keywords: nitrogen-doped carbon dot; glucose oxidase; enzyme immobilization; biosensor;
electrochemical detection

1. Introduction

Carbon dots (CDs), a relatively new member of the carbon nanomaterial family, were first obtained
during purification of single-walled carbon nanotubes in 2004 [1]. They are generally oxygenous carbon
nanoparticles with a size of less than 10 nm. CDs have subsequently attracted considerable attention
due to their simple synthesis procedure combined with fascinating physical properties [2]. Just like
heavy-metal-based quantum dots (QDs), they exhibit several promising advantages over organic
fluorescence dyes, such as tunable luminescence emission, high stability against photobleaching and
blinking. In addition, CDs are biocompatible and small dots with low molecular weight and low
toxicity, which makes them superior to metal quantum dots [3–5]. Applications of CDs in cellular
bioimaging, drug delivery and sensing based on their optical characteristics have been successfully
demonstrated by several groups [6–11]. Zhu and co-workers reported a facile and high-output method
for the fabrication of CDs with a quantum yield as high as 80%. CDs have been applied both as
printing inks and detection of Fe3+ in biosystems [12]. Yu and co-workers displayed a new type of CDs
which could form a fluorescence resonance energy transfer (FRET) system with an organic dye. This
FRET system could serve as a ratiometric sensor for H2S in aqueous solution, biological fluids and
living cells [13]. However, most of the applications of CDs are based on their optical characteristics.
Electrochemical applications of the CDs are underreported, especially in the detection of biomolecules
such as glucose.
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On the other hand, a simple, fast, and long-term stationary method for glucose detection with
high sensitivity and selectivity is a great demand in a variety of fields ranging from biomedical
applications to ecological approaches [14]. Glucose biosensors, which utilize immobilized enzymes
for the conversion of the target analytes into electrochemically detectable products, have been one of
the most widely used electrochemical detection methods up to now [15]. Especially, screen printed
electrodes (SPEs) have been widely used to fabricate disposable and economical electrochemical
sensors, which has helped establish the route from ‘lab-to-market’ for a plethora of sensors [16].
For its high bioactivity and stability as well as relatively low in price, glucose oxidase (GOx) has
been commonly used in glucose biosensors [17]. With the selectivity and sensitivity provided by
GOx, the remaining most important goal is to make the whole detection process simple, fast, and
cheap. For this purpose, different approaches have been developed, among which the use of functional
nanomaterials has attracted great attention because nanomaterials can efficiently facilitate electron
transfer between enzymes and electrodes, while allowing the detection to occur at low potential. A lot
of nanomaterials, such as gold nanoparticles, graphene, carbon nanotubes, etc. have been widely
used in the fabrication of glucose biosensors [18–30]. Nitrogen-doped (N-doped) carbon materials in
particular have emerged as a powerful tool in glucose enzymatic biosensor development. N-doped
graphene and carbon nanotubes have been successfully developed in glucose sensing [31,32]. However,
most of these N-doped materials need to dope the N on the pre-synthesis carbon material, which
makes the synthesis procedure time-consuming and increases the cost of the whole procedure. As a
new carbon material, N-doped CDs have not been widely used yet in electrochemical biosensors.
Compared with other N-doped carbon materials, it is easier and more convenient to dope the nitrogen
on the carbon materials by using a nitrogen-containing reactant. Therefore, N-doped CDs could be the
promising materials to develop a simple, fast and cheap glucose detection method. Chitin is a widely
available biomass source, and its main current application is in the production of its water-soluble
derivative chitosan [33]. Because of its exceptional biological properties (bioactive, biocompatible, and
bioresorbable), excellent film forming ability, nontoxicity, high mechanical strength, cheapness and
a susceptibility to chemical modifications, chitosan can be used for immobilization of enzymes and
constructing the electrochemistry biosensors by cross-linking with enzymes or other substances [34,35].
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Figure 1. Schematic of the N-doped CDs based electrochemical glucose biosensor.

Recently our group has demonstrated a self-passivized fluorescent N-doped CD which is
produced by hydrothermal carbonization of polyacrylamide in one step [36]. The carbonization,
surface functionalization and doping occur simultaneously during the hydrothermal treatment, which
leads to the formation of the N-doped structure. The resulting N-doped CDs show an excellent
electrocatalytic activity in the reduction of O2 due to their diatomic side-on adsorption on the N-doped
carbon structure. With the one step synthetic N-doped CDs in hand, herein, we construct a novel
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enzyme immobilization matrix to combine the abovementioned benefits of N-doped CDs and chitosan
(Figure 1). The as-prepared composites show obvious electrocatalysis activity toward O2. Further,
when glucose oxidase (GOx) is immobilized on CDs—chitosan composite film, the resulting electrodes
demonstrate a favourable linear response to glucose.

2. Materials and Methods

Polyacrylamide solution (average Mw = 10,000, 50 wt % in H2O) and Nafion (product No.
274704) were purchased from Aldrich (Shang Hai, China). All aqueous solutions were prepared
with deionized water (18 MΩ¨ cm´1) from a Millipore system. GOx and chitosan were purchased
from Alfa Aesar (Shang Hai, China). . D-(+)-Glucose was bought from Sinopharm Chemical
Reagent Co., Ltd. (Shang Hai, China). 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride
(EDC) and N-hydroxysuccinimide (NHS) were obtained from J&K Scientific (Shang Hai, China).
We used commercial compressed air from a cylinder to maintain the oxygen concentration during
electrochemical experiments. All other reagents were analytical grade and used without further
purification. All chemicals were stored in a 4 ˝C refrigerator until used.

2.1. Apparatus

Transmission electron microscopy (TEM) images were taken with a JEM-1011 electron microscope
(JEOL, Tokyo„ Japan) at an accelerating voltage of 100 kV. Ultraviolet-visible (UV-vis) absorption of the
obtained CNPs solution was carried on a UV-1800(PC) UV-vis spectrophotometer (Mapada, Shang Hai,
China). X-ray photoelectron spectroscopy (XPS) analysis was carried on a PHI 5000 Versa-probe X-ray
photoelectron spectrometer (JEOL, Tokyo, Japan). All fluorescence spectra of the CDs were measured
with a FluoroMax-4 spectrofluorometer (Horiba Scientific, Kyoto, Japan) with a slit width of 5 nm for
both excitation and emission.

2.2. Preparation and Purification of the N-Doped CDs

In a typical experiment, 8 g of polyacrylamide solution were diluted with 40 mL of deionized
water and stirred for 10 min until homogeneous and clear. Then the mixture was transferred to a
100 mL Teflon equipped stainless steel autoclave and sealed. The autoclave was placed in an oven at
260 ˝C for 24 h to complete the hydrothermal treatment with the heating rate set at 5 ˝C¨ min´1. When
the reaction was complete, the autoclave was cooled down to room temperature. The obtained brown
solution without any deposits was neutralized and dialyzed for 3 days (MWCO = 3.5 kD) to precipitate
out small molecules. Finally, the yellow solution was freeze dried to obtain the pure N-doped CDs.

2.3. Preparation and Purification of the Pure Glucose-Based CDs

In a typical experiment, 2 g of glucose solution were diluted in 20 mL of deionized water and
stirred for 10 min until homogeneous and clear. Then the mixture was transferred to a 100 mL Teflon
equipped stainless steel autoclave and sealed. The autoclave was placed in an oven at 200 ˝C for 24 h
to complete the hydrothermal treatment at a heating rate of 5 ˝C¨ min´1. After purified as described
for the N-doped CDs, the non N-doped CDs (pure glucose CDs) were obtained.

2.4. Preparation of N-Doped CDs/Chitosan/GOx Modified GCE

The GCE was successively polished to a mirror finish using 0.3 and 0.05 µm alumina
slurry (Beuhler, Lake Bluff, IL, USA) followed by rinsing thoroughly with double-distilled water.
After successive sonication in ethanol and double-distilled water, the electrode was rinsed with
double-distilled water and allowed to dry at room temperature. A mixture of 3 mg¨ mL´1 N-doped
CDs and 3 mg¨ mL´1 chitosan (3.5 µL) was dropped on the pretreated GCE surface and dried at
room temperature to form the N-doped CDs/chitosan modified GCE. Then the as-prepared GCE was
immersed into freshly 0.1 M PBS containing 2 mg¨ mL´1 GOx and 3 mg¨ mL´1 EDC reagent (EDC
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and NHS) for 1 h at 4 ˝C in refrigerator. The resulting N-doped CDs/chitosan/GOx modified GCE
was then rinsed throughout with double-distilled water to wash away any loosely adsorbed enzyme
molecules and EDC reagent. To maintain the stability of the modified GCE, a drop of 4.0 µL of 0.5%
Nafion solution was cast on the membrane before electrochemical measurements. All enzyme-modified
electrodes were stored in 0.1 M PBS (pH 7.0) at a 4 ˝C in refrigerator before use.

2.5. Detection of Glucose with N-Doped CDs/Chitosan/GOx Modified GCE

Cyclic voltammetric experiments were performed on a CHI 812B electrochemical workstation
(CH Instruments Inc., Austin, TX, USA). To maintain the oxygen concentration in the solution, all the
electrochemical measurements were carried out in air saturated phosphate buffer solution (PBS, 0.1 M,
pH 7.0) containing 10% human blood serum at room temperature (20 ˘ 2 ˝C) with a conventional
three-electrode cell consisting of a glassy carbon electrode (GCE, 3.0 mm diameter) as working
electrode, a saturated calomel electrode (SCE) as reference and platinum wire as counter electrodes.

3. Results and Discussion

3.1. Characterization of N-Doped CDs

N-doped CDs are synthesized by the method which our group recently reported. Figure 2a
displays the UV-vis absorption spectrum of the CDs. The absorption band near 300 nm represents
the typical absorption of CDs prepared by hydrothermal carbonization of small molecules containing
amide functions. The successful synthesis of N-doped CDs could be observed in the high-resolution
transmission electron microscopic (HRTEM) images, in which a uniform size distribution of about
5 nm in diameter is observed (Figure 2b).
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N-doped CDs, inset is XPS N 1s spectrum of the N-doped CDs.

Figure 2c shows the photoluminescence (PL) emission spectrum of the carbon dots with excitation
at 400 nm. We can observe a visible emission peak at 480 nm. When the excitation wavelength varies
from 340 to 460 nm, the wavelength of the maximum emission would shift from 440 to 520 nm, which
is common in fluorescent carbon materials [6]. Figure 2d shows the X-ray photoelectron spectroscopy
(XPS) full scan spectrum. It confirms the formation of N-doping in the CDs. The peaks located at
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284.5, 398.5, and 531.5 eV correspond to C1s of sp2 C, N1s of the doped N, and O1s of the oxygen
functional groups, respectively, and the percentage of atomic N in the sample is about 10.46 wt%.
The inset picture of Figure 2d shows the partial XPS spectrum of N1s. The appearance of the N1s
peak is postulated to indicate the formation of the nitrogen-containing functional groups during
hydrothermal treatment. The hydrothermal treatment forces the surface passivation of N-doped CDs,
imparting them with excellent electrochemical properties for immediate biosensing. In summary,
luminant N-doped CDs with sizes near 5 nm were successfully synthesized based on hydrothermal
treatment of polyacrylamide.

3.2. Electrocatalysis of O2 Reduction at N-Doped CDs Modified GCE

What is more, we also compared the electrochemical performances of non-N-doped CDs and
N-doped CDs in air saturated PBS (Figure 3A). Two different kinds of CDs were prepared by
hydrothermal carbonization: non-N-doped CDs from pure glucose (black line of Figure 3A) and
N-doped CDs from polyacrylamide (red line of Figure 3A). Both electrodes show a reduction peak
near ´0.5 V, which is attributed to reduction of oxygen. However, the reduction peak of non-N-doped
CDs is at ´0.59 V, which is lower than the reduction peak of N-doped CDs at about ´0.47 V. What
is more, the current of non-N-doped CDS is also lower than that of the N-doped CDs (Figure 3B).
These results show that compared to the N-doped CDs from polyacrylamide, the non-N-doped CDs
from glucose show less electrocatalysis toward the reduction of O2, which is due to the different
chemisorption modes of O2. On non-N-doped CDs modified electrode, the chemisorption mode of
O2 is an usual monoatomic end-on adsorption, while, in the N-doped CDs modified electrode, the
chemisorption mode of O2 changes to a diatomic side-on adsorption, which could effectively weaken
the O-O bonding to facilitate the reduction of O2 [37]. As a result, we chose the N-doped CDs from
polyacrylamide for further application.
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Figure 3. (A): Cyclic voltammograms of (a) non-N-doped CDs modified electrode and (b) N-doped
CDs modified electrode in air-saturated 0.1 M pH 7.0 PBS. Scan rate: 100 m¨ Vs´1 (B): Electrochemical
response for two types of CDs (a: non-N-doped CDs and b: N-doped CDs); (C) the picture of
modified electrode.

3.3. Detection of Glucose Based on the N-Doped CDs Modified GCE

Due to the better electrocatalytical activity of N-doped CDs modified electrodes to O2, a N-doped
CDs-based biosensor was further developed. The GOx is immobilized into the carbon dot/chitosan
nanocomposite matrix prepared through casting the mixed solution containing GOx and EDC
reagents for 1 h. The GOx can be directly immobilized on the electrode substrate by amino-carboxyl
reactions (Figure 3C). To verify the feasibility of the N-doped CDs-modified biosensor in practical
analysis, the biosensor was employed to measure glucose in air-saturated PBS solution containing
10% human blood serum. Figure 4 shows the cyclic voltammograms of the resulting N-doped
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CDs/chitosan/GOx modified electrode for various concentrations of glucose. With the increase
of glucose concentration, the reduction current at negative potential near ´0.47 V was decreased.
It is well known that the GOx-catalysed oxidation of glucose will consume O2 and produce H2O2.
The N-doped CDs/chitosan/GOx modified electrode can catalyze the reaction of O2, as imagined
for a glucose biosensor-based GOx modified electrode (Figure 4). The decrease at negative potential
originates from the consumption of O2. Although the reduction of produced H2O2 will result in an
increase in the current at negatively applied potentials, this would be entirely counteracted due to
the consumption of O2. Moreover, the calibration curve corresponding to electrochemical response
is linear against the concentrations of glucose over the rangse from 1 to 12 mM (R = 0.99) at ´0.47 V.
The detection limit of glucose was estimated to be 0.25 mM with a signal-to-noise ratio of 3. This
sensitive detection could be attributed to the catalyzed reduction of O2 by the N-doped structure and
the strong attachment of GOx achieved by the amino-carboxyl reaction. As known, the blood glucose
level of a normal person ranges from 4 to 6 mM, so the linear glucose response from 1 to 12 mM
based on N-doped CDs/chitosan/GOx modified electrode is suitable for its practical application.
This result is better than that using graphene [32], and is still competitive with the result of N-doped
CNTs [31]. In addition, compared with other N-doped carbon materials [25,31], it is easier to dope the
nitrogen on the carbon materials by using nitrogen-containing raw materials in one step, which makes
these N-doped CDs- based glucose biosensors simple and convenient. The successful application in
human serum assays indicates that this N-doped CDs based biosensor is promising for the practical
application of detecting glucose.
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glucose; (b) Electrochemical response curve for different concentration of glucose.

3.4. Analytical Performance

The novel biosensor has good reproducibility. We tested the reproducibility in air-saturated
PBS containing 10% serum samples (Figure 5). The relative standard deviations (RSD) of the current
response to 1 mM (Figure 5a) and 5 mM (Figure 5b) glucose at ´0.47 V are 1.23% and 1.04%, respectively,
for five successive measurements of different N-doped CDs/chitosan/GOx modified electrodes in
air-saturated PBS containing 10% serum samples. The result shows that the designed biosensor has
good reproducibility in practical analysis.

The stability of the resulting biosensor was also investigated in air-saturated PBS containing
10% serum samples. The storage stability of the developed N-doped CDs/chitosan/GOx modified
electrode is determined from the current response pertaining to the detection of 1 mM glucose each
day for a period of 14 days (Figure 6). When stored at room temperature under ambient conditions,
there is only a 5.58% decrease in the current response of the developed N-doped CDs/chitosan/GOx
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modified electrodes for air-saturated PBS containing 10% serum samples. The minor decrease in the
functional activity may be due to the spreading of GOx and its conformational change under ambient
conditions [32]. This storage stability is good enough for demonstrating the developed laboratory
prototype of glucose biosensors under ambient conditions. Compared with other glucose biosensors
based on enzymes immobilized on metal nanomaterials [38–40], this biosensor shows better storage
stability and reproducibility. In addition, compared to other N-doped carbon material-based glucose
sensors, this result is also competitive [31,32].Sensors 2016, 16, 630 7 of 10 
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3.5. Interference Study

The other important analytical factor for an electrochemical biosensor is the selectivity of the
sensor to the target analyte. In this study, interferences of some substances that exist in biological
liquids were investigated. The interference tests are carried out by the cyclic voltammograms technique
in the presence of 5 mM glucose and the same concentrations of uric acid, ascorbic acid, dopamine and
some amino acids such as L-tryptophan, L-tyrosine, and L-cysteine. Compared to the signal change
after the addition of pure glucose, there is little signal change after the addition of those interfering
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substances individually (uric acid 2.32%, ascorbic acid 3.01%, dopamine 3.23%, L-tryptophan 1.54%,
L-tyrosine 2.35%, L-cysteine 3.76%). The results show negligible response to the injection of interfering
species at their physiological concentration levels, and validate that our N-doped CDs modified
biosensors are highly selective towards glucose determination and suitable for the selective glucose
determination under physiological conditions.

4. Conclusions

A new, simple and cheap glucose biosensor based on enzyme immobilization on N-doped CDs
was developed. The high stability, sensitivity and accuracy of this biosensor in the determination
of glucose results from the strong attachment of GOx by amino-carboxyl reactions for enzyme
immobilization and the nitrogen-induced charge delocalization at N-doped CDs which enhances
the electrocatalytic activity toward the reduction of O2. It shows great potential application in practical
and routine analyses. What is more, the easy and convenient synthesis of N-doped CDs makes the
whole experiment fast and cheap, which opens a new promising field of use for N-doped CDs and
could also be extended to the immobilization of some other biomolecules.
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