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Abstract: To discuss the reset noise generated by slow subthreshold currents in image sensors,
intuitive and simple analytical forms are derived, in spite of the subthreshold current nonlinearity.
These solutions characterize the time evolution of the reset noise during the reset operation. With soft
reset, the reset noise tends to

a

mkT{2CPD when t Ñ8 , in full agreement with previously published
results. In this equation, CPD is the photodiode (PD) capacitance and m is a constant. The noise
has an asymptotic time dependence of t´ 1, even though the asymptotic time dependence of the
average (deterministic) PD voltage is as slow as logt. The flush reset method is effective because the
hard reset part eliminates image lag, and the soft reset part reduces the noise to soft reset level. The
feedback reset with reverse taper control method shows both a fast convergence and a good reset
noise reduction. When the feedback amplifier gain, A, is larger, even small value of capacitance, CP,
between the input and output of the feedback amplifier will drastically decrease the reset noise. If the

feedback is sufficiently fast, the reset noise limit when t Ñ8 , becomes mkTpCPD`CP1q
2

2q2 ApCPD`p1`AqCPq
in terms of

the number of electron in the PD. According to this simple model, if CPD = 10 fF, CP/CPD = 0.01, and
A = 2700 are assumed, deep sub-electron rms reset noise is possible.

Keywords: CMOS image sensor; 3-transistor scheme; reset noise; subthreshold current; hard reset;
soft reset; feedback reset; tapered reset

1. Introduction

Four-transistor (4-Tr) complementary metal-oxide-semiconductor (CMOS) image sensors [1] are
widely used in various applications, such as mobile phone cameras, digital still cameras, security,
industrial, medical equipment, etc. They have significant advantages compared with three-transistor
(3-Tr) CMOS image sensors. Firstly, the 4-Tr scheme can use pinned photodiodes (PPDs) [2–6] to
reduce the dark current. Secondly, the complete charge transfer by the PPD [2] realizes “first reset, later
signal” and correlated double sampling (CDS) [7], which eliminates both the reset noise at the floating
diffusion node and the low frequency noise at the source follower amplifier. Thirdly, the capacitance of
the floating diffusion can be decreased by fine processing technology and a large conversion gain can
be obtained, which increases the signal-to-noise ratio. Fourthly, the shared transistor technology [8,9]
reduces the number of transistors per pixel. The minimum reported transistor number per pixel is
1.375 transistors/pixel [10], which is much smaller than that of 3-Tr scheme.

The 3-Tr scheme is now being used for large pixel CMOS image sensors. One example is its use in
medical X-ray image sensors. The typical pixel size is around 100 µm. There are several reasons why
the 3-Tr scheme is being used. The first one is that it is difficult to achieve a complete charge transfer of
the PPD with such large pixels or PDs. Another one lies in the fact that X-ray image sensors usually
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suffer from photon shot noise and the readout noise of the 3-Tr scheme is acceptable. A third reason is
that the fabrication process for the 3-Tr scheme is simpler than that of the 4-Tr scheme. A fourth reason
is the fact that the 3-Tr scheme can be operated in non-destructive readout mode, and can realize dose
sensing during radiation or auto exposure control (AEC) using fast-frame-rate skip mode [11]. Finally,
a fifth reason is that the 3-Tr scheme can reach a higher number of saturation electrons at the PD than
that of the 4-Tr scheme.

If the 3-Tr scheme were able to achieve low readout noise, it could be used in more applications, in
particular, elevated image sensors, or photosensitive material hybrid image sensors, which cannot use
the PPD complete charge transfer scheme. Some organic photoconductive films have larger absorption
coefficients than that of silicon, and smaller photosensitive layer thicknesses can provide enough
sensitivity. Crosstalk could then be reduced even for small pixel size, and elevated image sensors
with organic photoconductive films would become candidates for small pixel image sensors [12,13].
Elevated image sensors can have sensitivities beyond the silicon sensitive wavelength range, well
within the ultraviolet (UV) and infrared (IR) range. For example, crystal selenium (c-Se) has a 1.74 eV
bandgap and is a good sensitive material for both UV and visible light [14]. Germanium (Ge) and
indium-gallium-arsenide (InGaAs) have 0.8 eV and 0.36–1.43 eV direct bandgaps, respectively, and are
good photosensitive materials for near IR [15,16]. These hybrid image sensor developments might be
accelerated by recent advances in 3D and hybrid technology.

A 3-Tr pixel consists of an N-type PD, a reset transistor (RST) to reset PD, a source follower
amplifier (SF) which picks up the PD voltage and sends the voltage signal to the column circuit, and a
select transistor (SEL) which activates the selected row, as shown in Figure 1. The reset noise of the
PD is the dominant noise source in the 3-Tr scheme. The original reset method is hard reset. Its noise
variance is calculated as kTC [17,18], where k is the Boltzmann constant, T the absolute temperature,
and C the detection capacitance. This noise is therefore called “kTC noise”. Various other reset methods
have been proposed to reduce the reset noise and will be discussed later soft reset [19,20], feedback
reset [21,22], feedback reset with taper control [13,23–26]. Feedback reset has realized a reset noise level
as small as 2.9 e´¨ rms (electrons rms) [13]. While those approaches aim to reduce the reset noise itself,
other approaches to the problem have been attempted; one of them is to reduce effective detection
capacitance, thus increasing signal voltage. For this purpose, a charge sensitive amplifier or capacitive
transimpedance amplifier is introduced [27,28]. Another approach is to introduce in-pixel CDS [29].
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In this paper, we will discuss the reset noise reduction itself. A fundamental time-domain analysis
of various reset methods is presented, and the reset noise is studied in detail. In the next section, our
reset noise analysis technique is introduced. In Sections 3–6 the hard reset, soft reset, tapered reset,
and feedback reset with reverse taper control methods will be analyzed. In Section 7, the possibility of
photon counting by the 3-Tr scheme is discussed.

2. Reset Noise Analysis Technique

To discuss the various reset methods, a reset noise analysis technique must be prepared, preferably
one capable of providing an intuitive and simple analytical solution without numerical or Monte Carlo
simulations in spite of the nonlinearity of the subthreshold current. The subthreshold current causes
a slow reset operation, therefore, the time dependence of the reset noise during the reset operation
period needs to be evaluated, from the initial condition to the final state.

A frequency domain analysis has previously been published, where the estimated reset noise
was compared with measurement result [26]. The steady-state noise (final stage noise) was calculated
using a resistor instead of the reset transistor. A time domain analysis was proposed, using
effectively-second-order differential equation [25]. To derive a closed form expression, a fixed resistance
was also used instead for the reset transistor. Another time domain method was proposed for soft reset
analysis, directly treating the subthreshold current nonlinearity and assuming the existence of a shot
noise in the subthreshold current [20]; it obtained a soft reset noise of kT/2C, which agrees well with
the measurements. However, it would be desirable that improved reset methods such as feedback
reset with taper control could also be analytically treated.

In the rest of this section, our reset noise analysis is introduced. The PD node voltage
VPD(t) is decomposed into a deterministic (or average) part VPDa(t) and a stochastic (or noise) part
vPD(t). Naturally:

VPD ptq “ VPDa ptq ` vPD ptq (1)

To derive the analytical form of the reset noise variance ă vPD ptq
2
ą three steps are needed in

this analysis:

Step 1: The equation for the average part VPDa(t) is derived, and the solution is obtained.
Step 2: The equation for the noise part vPD(t) is derived, and vPD(t) is obtained explicitly.
Step 3: The variance ă vPD ptq

2
ą is calculated.

This approach is straightforward and logically simple. In the following sections, this analysis is
applied to hard reset, soft reset, tapered reset and feedback reset with taper control.

3. Hard Reset

Hard reset is originally applied in the reset of the floating diffusion of CCD (Charge coupled
device), and is the original reset method of 3-Tr CMOS image sensor. Its timing diagram is shown in
Figure 2a. The hard reset noise variance was derived as kTC using frequency domain analysis [17] and
time domain analysis [18]. The same result will be derived here.
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With hard reset, the RST channel can be regarded as a pure resistance R, because the RST operates
in the linear region. Resistances generate Johnson noise or thermal noise, from which the reset noise
arises. To simplify the model, it is also assumed that there is no dark current or no incident light during
the reset phase. This assumption is also used in Sections 4–6. The continuity equation is:

CPD
dVPD ptq

dt
“

VRD0 ´VPD ptq
R

` in ptq (2)

where CPD is the PD capacitance, VRD0 is the reset transistor drain (RD) voltage, and in(t) is the thermal
noise associated with resistance R, whose autocorrelation is:

ă in pt1q in pt2q ą “
2kT

R
δ pt1 ´ t2q (3)

When applied at Step 1, the equation of continuity becomes:

CPD
dVPDa ptq

dt
“

VRD0 ´VPDa ptq
R

(4)

The solution is obtained as:

VPDa ptq “ VPDa p0q e´
t

τHR `VRD0

ˆ

1´ e´
t

τHR

˙

(5)

where time constant, τHR is given by:
τHR ” CPDR (6)

If the parameters of a typical RST are assumed, with a 0.4 µm channel width, 0.55 µm channel
length, 6 nm thick gate oxide, VGS “ 3.3 V, and VRD0 “ 3.3 V, we will have R « 10 kΩ. For CPD = 10 fF,
τHR becomes 100 ps, which is much smaller than the typical reset period, 1 µs. When t Ñ8 , VPDa ptq
converges to VRD0.

For Step 2, we substitute Equation (5) into Equation (2), to obtain the equation for vPD ptq as:

CPD
dvPD ptq

dt
“

vPD ptq
R

` in ptq (7)

The solution of this equation is:

vPD ptq “
1

CPD

ż t

o
dt1e

t1´t
τHR in pt1q ` e´

t
τHR vPD p0q (8)

Finally, for Step 3, we square Equation (8) to obtain:

vPD ptq
2
“ 1

CPD2

şt
o
şt

0 dt1dt2e
t1´t
τHR

`
t2´t
τHR in pt1q in pt2q `

2e
´ t

τHR vPDp0q
CPD

şt
o dt1e

t1´t
τHR in pt1q ` e´

2t
τHR vPD

2 p0q (9)

Averaging Equation (9) and using Equation (3), the hard reset noise variance is obtained as:

ă vPD ptq
2
ą“

kT
CPD

ˆ

1´ e´
2t

τHR

˙

` ă vPD p0q
2
ą e´

2t
τHR (10)

The first term is caused by thermal noise, and the second term comes from the initial condition.
Because of the exponential decay, the reset noise variance ă vPD ptq

2
ą is sufficiently settled within the

reset period. When t Ñ8 :

ă vPD p8q
2
ą“

kT
CPD

. (11)

The well-known kTC noise is therefore produced.
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4. Soft Reset

The soft reset method was introduced to reduce the reset noise. Even though the timing diagram
is the same as that of the hard reset, the RG (RST gate) on voltage is smaller. With the soft reset method,
the RST is operated first in the saturation region, and then in the subthreshold region. The signal
charge transfer from the PD to the RD in the saturation region is smooth and the period is as small
as a few nanoseconds, it does not substantially contribute to the reset noise, when compared with
the following subthreshold region period. The reset noise will therefore be calculated neglecting the
saturation period, using only subthreshold region period; t = 0 in this analysis corresponds to the
moment when RST enters this region.

The equation of continuity then becomes:

CPD
dVPD ptq

dt
“ Ia ptq ` in ptq “ I0e´βVPDptq ` in ptq (12)

where Ia ptq is the average drain current, I0 is a constant, β ” q{mkT, m ” 1` CD{CG , CD is the
depletion-layer capacitance and CG is the gate capacitance. Typically, m is slightly above 1. The
subthreshold current has shot noise with autocorrelation:

ă in pt1q in pt2q ą “ qIa ptq δ pt1 ´ t2q (13)

For Step 1, the continuity equation for the average voltage VPDa ptq is given by:

CPD
dVPDa ptq

dt
“ I0e´βVPDaptq (14)

Even though this equation is nonlinear, it has an analytical solution, which can be obtained with
the variation of parameters method. The solution [2] is:

VPDa ptq “
1
β

log
„

eβVPDap0q `
t
τ



(15)

where:
τ ” CPD{βI0 (16)

The existence of this analytical solution is essential for the subthreshold current reset noise
analyses. When t Ñ8 , VPDa ptq diverges slowly as a logarithmic function. The soft reset has no
finite limit, even though the hard reset has VRD0 as a limit. This is an important characteristic for the
soft reset.

For Step 2, we substitute Equation (15) into Equation (12) and obtain the equation for vPD ptq:

CPD
dvPD ptq

dt
“ ´I0e´βVPDap0q 1´ e´βvPDptq

1` t
τ e´βVPDap0q

` in ptq (17)

Considering that βvPD ptq ! 1, the approximation, e´βvPDptq « 1 ´ βvPD ptq can be used.
Equation (17) then becomes a linear equation:

CPD
dvPD ptq

dt
“ ´

βI0e´βVPDap0q

1` t
τ e´βVPDap0q

vPD ptq ` in ptq (18)

Its solution is given by:

vPD ptq “
1

CPD

ż t

o
dt1

1` t1
τ e´βVPDap0q

1` t
τ e´βVPDap0q

in pt1q `
1

1` t
τ e´βVPDap0q

vPD p0q (19)



Sensors 2016, 16, 663 6 of 17

For Step 3, squaring Equation (19), averaging and using Equation (13), the soft reset noise variance
can be obtained:

ă vPD ptq
2
ą“

mkT
2CPD

¨

˚

˝

1´
1

´

1` t
τ e´βVPDap0q

¯2

˛

‹

‚

` ă vPD p0q
2
ą

1
´

1` t
τ e´βVPDap0q

¯2 (20)

Using the fact that I p0q “ I0e´βVPDap0q, Equation (20) can be rewritten as:

ă vPD ptq
2
ą“

mkT
2CPD

¨

˚

˝

1´
1

´

1` qIap0qt
mkTCPD

¯2

˛

‹

‚

` ă vPD p0q
2
ą

1
´

1` qIap0qt
mkTCPD

¯2 (21)

The first term is caused by shot noise, and the second term results from the initial condition.
When tÑ8 , the asymptotic form and the limit are obtained as:

ă vPD ptq
2
ą«

mkT
2CPD

˜

1´
ˆ

mkTCPD
qIa p0q t

˙2
¸

` ă vPD p0q
2
ą

ˆ

mkTCPD
qIa p0q t

˙2
(22)

ă vPD ptq
2
ąÑ

mkT
2CPD

(23)

It should be noted that the asymptotic time dependence of the noise standard deviation
b

ă vPD ptq
2
ą behaves as t´ 1 although the asymptotic time dependence of the average PD voltage,

VPDa ptq behaves as logt (as shown in Equation (15)), which is much slower than t´1. In the hard reset

case, VPDa ptq and
b

ă vPD ptq
2
ą have the same exponential time dependence (with e´t{τHR ). The

determinant time constant in Equations (21) and (22), τSR ” mkTCPD{ qI p0q, is calculated for a typical
case, as follows. Assuming that CPD “ 10 fF, Ia p0q “ 0.5 µA, vth ” kT{q “ 26 mV pat 300 Kq , m “ 1,
we have that τSR “ 0.52 ns. It is small enough when compared with the typical reset period, 1 µs. The
limit at tÑ8 is mkT/2CPD, which fits the results obtained in previous works [19,20,30–33].

To alleviate the image lag problem of soft reset image sensors [2], the flushed reset method was
proposed [20,22,33]. In this method, during one reset period, a hard reset is first carried out to eliminate
vestige of the previous signal, and a soft reset is then performed to reduce the reset noise. The timing
chart for a simple case of the flushed reset method is shown in Figure 2b. The reset noise variance
after the hard reset is kT{CPD, as given as Equation (11), and this becomes the initial condition for the
soft rest period. Substituting ă vPD p0q

2
ą“ kT{CPD into Equation (21), the flushed reset noise can be

derived as:

ă vPD ptq
2
ą“

mkT
2CPD

¨

˚

˝

1`
ˆ

2
m
´ 1

˙

1
´

1` qIp0qt
mkTCPD

¯2

˛

‹

‚

(24)

If the reset period is enough long, ă vPD ptq
2
ą becomes:

ă vPD ptq
2
ąÑ

mkT
2CPD

(25)

The hard reset part eliminates image lag, and the soft reset part reduces the reset noise to the soft
reset level.
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5. Tapered Reset

To improve the convergence at the soft reset method, tapered reset is proposed. In this method,
the RST gate voltage is gradually decreased to 0 V during the soft reset period, as shown in Figure 2c.
The continuity equation becomes:

CPD
dVPD ptq

dt
“ Ia ptq ` in ptq “ I0e´βVPDptq´βat ` in ptq (26)

where a is a positive constant characterizing the slope of the RST taper, in unit of V/s.
For Step 1, the continuity equation for average voltage VPDa ptq is:

CPD
dVPDa ptq

dt
“ I0e´βVPDaptq´βat (27)

Its solution is:

VPDa ptq “
1
β

log
„

eβVPDap0q `
I0

CPDa

´

1´ e´βat
¯



(28)

When t Ñ8 , VPDa ptq converges to:

VPDa p8q “
1
β

log
„

eβVPDap0q `
I0

CPDa



(29)

As seen, while VPDa ptq for the soft reset diverges slowly as logarithmic function, that of the tapered
reset converges exponentially to a constant; this happens because the drain current is extinguished as
a consequent of the taper control.

For Step 2, substituting Equation (28) into Equation (26), the equation for vPD ptq can be
obtained as:

CPD
dvPD ptq

dt
“ ´I0e´βVPDap0q´βat 1´ e´βvPDptq

1` I0e´βVPDap0q

CPDa
`

1´ e´βat
˘

` in ptq (30)

Considering that βvPD ptq ! 1, the approximation e´βvPDptq « 1 ´ βvPD ptq can be used.
Equation (30) then becomes a linear equation:

CPD
dvPD ptq

dt
“ ´

βI0e´βVPDap0q´βat

1` I0e´βVPDap0q

CPDa
`

1´ e´βat
˘

vPD ptq ` in ptq (31)

Its solution is written as:

vPD ptq “
1

CPD

ż t

o
dt1

1` I0e´βVPDap0q

CPDa
`

1´ e´βat1˘

1` I0e´βVPDap0q

CPDa
`

1´ e´βat
˘

in pt1q `
1

1` I0e´βVPDap0q

CPDa
`

1´ e´βat
˘

vPD p0q (32)

For Step 3, squaring Equation (32), averaging and using Equation (13), the tapered reset noise
variance can be derived:

ă vPD ptq
2
ą“

mkT
2CPD

¨

˚

˝

1´
1

´

1` Iap0q
CPDa

`

1´ e´βat
˘

¯2

˛

‹

‚

` ă vPD p0q
2
ą

1
´

1` Iap0q
CPDa

`

1´ e´βat
˘

¯2 (33)

If a is so small that βat ! 1, e´βat « 1´ β at, Equation (33) then becomes identical to that of the soft
reset case, Equation (22). On the other hand, if a is enough large, e´βat decays so fast that the reset noise
variance ă vPD ptq

2
ą cannot reach the soft reset level. Therefore, the tapered reset shown in Figure 2c

is not useful for noise reduction, although the average voltage VPDa ptq, converges exponentially.
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6. Feedback Reset with Reverse Taper Control (FRRT)

The feedback reset method was also proposed as a mean to reduce the reset noise [13,20–26].
In this method, during the reset period, the noisy PD voltage is detected and the resulting negative
feedback forces the PD voltage to approach the reference level. A bidirectional current is needed at the
RST for effective feedback, even though the subthreshold current is essentially unidirectional [13,24].
The concept of an “unidirectional current” means, in this context, that if the feedback (relaxation) times
for upper and lower fluctuations are very different because of the current nonlinearity, the current
looks unidirectional from the feedback point of view. One solution to overcome this contradiction is to
constantly inject electrons into the PD; these injected electrons can then effectively play the role of a
current flowing in the opposite direction. There are a couple of methods to perform this injection; one is
to slowly ramp the RST gate toward the on-direction or positive direction [23,24], in contrast with what
is done in the tapered reset method discussed in Section 5. Another method is to ramp the RST source
voltage toward the on-direction or negative direction, as will be explained in detail in this section.
It should be noted that electrons flow from the RD to the PD in both cases, regardless of the name of
“drain”. Therefore, this method can be named feedback reset with reverse taper control (FRRT).

There is another important point to be considered when discussing reset noise reduction;
excrescent noise should not be generated when the RST is turned off at the end of the reset period.
If there are electrons at the RST channel just before it is turned off, these electrons are partitioned to
the PD and the RD. This partitioning has a stochastic nature, and generates the partition noise [34].
Subthreshold operation tends to reduce this effect, because the electron number at the RST channel is
smaller and unidirectional current is involved.

Figure 3a shows a schematic diagram of the pixel and the related column-based feedback circuits
for the FRRT to be analyzed in this section. The feedback is applied through the RD. The pixel structure
is the same as the conventional 3-Tr scheme, as shown in Figure 1. The exception is that the RD
wiring is prepared separately from the SF drain line. Other feedback circuits and ramp circuits are
column-based. The vertical signal line, transferring the SF output voltage, is connected to the negative
input of a column-based differential amplifier together with the load transistor and the following
signal circuits. The positive input is connected with a ramp generator, VRe f “ a0 ´ at. The output
of the amplifier is connected to the RD through the additional vertical RD line. Both the parasitic
capacitance between PD and RD, CP1, and the parasitic capacitance between the vertical signal line
and the RD line, CP2, are included in the analysis. It is assumed that CPD does not include CP1. The
timing chart for this structure is shown in Figure 4. After one row is selected by SEL, signal is read
out in a fashion similar to the one of the conventional 3-Tr scheme at first. During the reset period,
a hard reset is carried out in front to eliminate vestiges of previous signals, by setting Flush to ON.
Subsequently, FRRT is executed turning FB ON and gradually decreasing VRe f .

Figure 3b shows the simplified schematic diagram for noise modeling; the SF is merged with the
high-gain differential amplifier, of gain A. The amplifier is also assumed to be faster than the reset
motion. The parasitic capacitances and parasitic resistances (which delay the feedback) for both the
vertical signal line and the RD line are neglected because fast feedback is assumed. The parasitic
capacitances CP1 and CP2 are included because they have an important role in the feedback connecting
the amplifier’s input and output. Only reset noise or RST channel noise is considered here; noises from
the SF, the differential amplifier, SEL and wiring resistances are not included, because the reset noise
is dominant.
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The continuity equation becomes:

pCPD ` CP1 ` CP2q
dVPD ptq

dt
´ pCP1 ` CP2q

dVRD ptq
dt

“ ´Ia ptq ´ in ptq “ ´I0e´βVRDptq ´ in ptq (34)

VRD ptq “ A
´

VRe f ptq ´VPD ptq
¯

“ A pa0 ´ at´VPD ptqq (35)

Substituting Equation (35) into Equation (34), the equation for VPD ptq is obtained as:

CT
dVPD ptq

dt
“ ´ACPa´ I0e´βApa0´at´VPDptqq ´ in ptq (36)

where CT ” CPD ` p1` AqCP and CP ” CP1 ` CP2.
For Step 1, the continuity equation for average voltage VPDa ptq, is:

CT
dVPDa ptq

dt
“ ´ACPa´ I0e´βApa0´at´VPDaptqq (37)
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Equation (37) can be transformed to eliminate the constant term, as follows:

CT
dpVPDa ptq `

ACPa
CT

tq

dt
“ ´I0e´βApa0´a CPD`CP

CT
t´pVPDaptq`

ACPa
CT

tqq (38)

Its solution is:

VPDa ptq “ ´
ACPa

CT
t´

1
βA

log
„

e´βAVPDap0q `
I0e´βAa0

a pCPD ` CPq
pet{τFRRT ´ 1q



(39)

where:
τFRRT ”

1
βAa

CT
CPD ` CP

(40)

when t Ñ8 , VPDa ptq approaches the asymptotic form exponentially:

VPDa ptq Ñ ´at (41)

This divergence is reasonable because of the substantial charge injection to the PD.
For Step 2, substituting Equation (39) into Equation (36) we obtain the equation for vPD ptq as:

CT
dvPD ptq

dt
“

Ia p0q et{τFRRT
´

1´ eβAvPDptq
¯

1` Iap0q
apCPD`CPq

`

et{τFRRT ´ 1
˘

´ in ptq (42)

Assuming that βAvPD ptq ! 1, one can use the approximation:

eβAvPDptq « 1` βAvPD ptq (43)

The validity of this assumption will be discussed later. Equation (42) then becomes a linear
equation as:

CT
dvPD ptq

dt
“ ´

βAIa p0q et{τFRRT vPD ptq

1` Iap0q
apCPD`CPq

`

et{τFRRT ´ 1
˘

´ in ptq (44)

The solution can be written as:

vPD ptq “ ´
1

CT

ż t

o
dt1

1` Iap0q
apCPD`CPq

´

et1{τFRRT ´ 1
¯

1` Iap0q
apCPD`CPq

`

et{τFRRT ´ 1
˘

in
`

t1
˘

`
1

1` Iap0q
apCPD`CPq

`

et{τFRRT ´ 1
˘

vPD p0q (45)

For Step 3, squaring Equation (45), averaging and using Equation (13), the noise variance can be
obtained as:

ă vPD ptq
2
ą“ mkT

2ACT

¨

˚

˝

1´ 1
ˆ

1` Iap0q
apCPD`CPq

pet{τFRRT´1q

˙2

˛

‹

‚

` ă vPD p0q
2
ą 1

ˆ

1` Iap0q
apCPD`CPq

pet{τFRRT´1q

˙2 (46)

The first term is caused by shot noise, and the second term results from the initial condition.
When CP “ 0, the asymptotic form and the limit for tÑ8 are obtained as:

ă vPD ptq
2
ą«

mkT
2ACPD

p1´ e´2βAatq` ă vPD p0q
2
ą e´2βAat (47)

ă vPD p8q
2
ą“

mkT
2ACPD

(48)
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When CP ‰ 0, the asymptotic form and the limit for tÑ8 become:

ă vPD ptq
2
ą«

mkT
2A pCPD ` p1` AqCPq

p1´ e´2t{τFRRT q` ă vPD p0q
2
ą e´2t{τFRRT (49)

ă vPD p8q
2
ą“

mkT
2A pCPD ` p1` AqCPq

(50)

Considering that the detection capacitance is CPD ` CP1, the reset noise variance in electron
numbers at the PD, ă nPD p8q

2
ą, is derived as:

ă nPD p8q
2
ą“

mkT pCPD ` CP1q
2

2q2 A pCPD ` p1` AqCPq
(51)

where q denotes the electronic elementary charge.
When CP “ 0, the limit of the noise variance ă vPD p8q

2
ą is 1/A times smaller than the soft

reset noise variance, mkT{2CPD, according to Equation (48). The reset noise is therefore much reduced.
When CP ‰ 0, ă vPD p8q

2
ą becomes even smaller than that when CP “ 0, because CP couples the

output of the amplifier to the PD directly, which contributes as a capacitive feedback [21], in addition
to the feedback path through the RST. However, large values of CP have some drawbacks as well; if
the vertical signal line capacitance and the RD line capacitance are large, the feedback speed is limited.
If CP1 is large, the conversion gain is decreased. Figure 5a,b show the reset noises for CPD = 10 fF and
1 fF, respectively. The horizontal axis denotes the amplifier gain A, the left vertical axis represents the

reset noise voltage
b

ă vPD p8q
2
ą, and the right vertical axis represents the reset noise in number

of electrons,
b

ă nPD p8q
2
ą. The parameter for the curves is CP{CPD. Here, CP1 = 0 fF is assumed

for simplicity. According to this simple model, the reset noise decreases as A´1{2 when CP{CPD = 0.
When CP{CPD ‰ 0, the reset noise decreases also as A´1{2 for large values of A. It should be noted that
even small values of CP{CPD will drastically decrease the reset noise when A is larger. For example,
when CP{CPD “ 0.01, the reset noise is decreased to 30% at A = 1000. If CPD + CP1 is smaller, reset
noise in number of electrons becomes smaller while the reset noise in voltage becomes larger. It is
important to reduce the detection capacitance, CPD + CP1, as is also the case with the 4-Tr. scheme.Sensors 2016, 16, 663 11 of 16 
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Figure 5. FRRT reset noise, with CP1 = 1 fF. (a) CPD = 10 fF; (b) CPD = 1 fF. ă vPD p8q
2
ą is the reset

noise variance in voltage at the PD as expressed by (50), and ă nPD p8q
2
ą is the reset noise variance

in number of electrons at the PD as expressed by (51).

Even though FRRT uses a subthreshold current mode, ă vPD ptq
2
ą still converges with fast

exponential decay. Figure 6 shows the time constant, τFRRT{2. In the figure, the horizontal axis
represents the gain A, assuming that a “ 0.1 V/µs. When CP “ 0, the time constant decreases linearly
with 1/A. When CP ‰ 0, τFRRT{2 decreases linearly with 1/A at ACP << CPD, while it becomes a



Sensors 2016, 16, 663 12 of 17

constant with the value CP
2βapCPD`CPq

for ACP >> CPD. In the extremely unfavorable case of CP/CPD = 10,
τFRRT{2 is in practice sufficiently small (as small as 0.12 µs) for A > 20.
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Figure 6. Time constant of the FRRT process (τFRRT), for a “ 0.1 V{µs. τFRRT
2 ” 1

2βAa
CPD`p1`AqCP

CPD`CP
.

Using FRRT, the reset voltage is reduced by aTFRRT , where TFRRT is FRRT period. This decreases
the saturation of the PD. If a is increased τFRRT decreases as 1{a, and TFRRT can be decreased in the
same manner. If TFRRT is adjusted properly, a will not affect the reset voltage reduction, because the
reset voltage reduction dependence on a is given as aTFRRT „ a0.

According to this simple model, if A Ñ8, ă vPD p8q
2
ąÑ 0 . Limitations to this ideal case

should be discussed below.
Firstly, the approximation:

eβAvPDptq « 1`βAvPD ptq

is examined. If 30% of error is allowed, βAvPD ptq is limited by:

1 ď
eβAvPDptq

1`βAvPD ptq
ă 1.3 (52)

which is always larger than 1. This means that βAvPD ptq should be smaller than 0.91. Figure 7a,b

shows the exponent βA
b

ă vPD p8q
2
ą, substituting

b

ă vPD p8q
2
ą to vPD ptq and using m “ 1 and

1{β “ mkT{q “ 0.026 V. When CP “ 0, the upper limit of A is obtained as 2,700 for CPD = 10 fF and
as 270 for CPD = 1 fF, respectively. When CP ‰ 0, and because Equation (50) < Equation (48), the
range within which approximation Equation (43) can be used becomes larger. For example, when
CP{CPD “ 0.01, the upper limit becomes more than 10,000 for both CPD = 10 fF and CPD = 1 fF.

If the approximation Equation (43) becomes invalid, the quantitative discussion is difficult.
However, the feedback effect becomes rather larger because the first term of right hand side at
Equation (42) has larger negative value than that of Equation (44).

Secondly, the assumption that the feedback is faster than the reset motion should be discussed.
Both the differential and SF amplifiers have finite output impedances, and both the vertical signal and
RD lines have parasitic resistances and capacitances; this means that the feedback has a finite time
constant. It increases as A increases. If the feedback becomes slow compared with the reset motion, the
reset noise is increased in reverse. Therefore, the reset noise has a minimum at some value of A.

The dimensionless factor Ia p0q {a pCPD ` CPq, at Equation (46) represents the ratio between
the PD voltage change, Ia p0q { pCPD ` CPq, and the taper slope, a. Assuming typical parameters:
Ia p0q “ 0.5 µA, CPD “ 10 fF, CP{CPD “ 0.01, and a “ 0.1 V{µ s, we obtain Ia p0q {a pCPD ` CPq = 0.5,
which is in the order of 1 and does not affect the convergence.

As discussed above, it can be said that FRRT reduces both reset noise and the convergence time
constant. In fact, 2.5 e´¨rms reset noise and 2.9 e´ rms readout noise have been reported, using organic
photoconductive film CMOS image sensor with 3 µm pixel, 5 µs reset period and A = 100 [13].
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7. Electron Counting Possibility

Photon counting imaging is one of the grand targets for image sensor development. It requires
two conditions; electron counting and high quantum efficiency [35]. In this section, the possibility of
electron counting using FRRT is discussed, leveraging the good properties of the 3-Tr scheme discussed
in Section 1. Before that, the statuses of other approaches, such as single-photon avalanche diode
(SPAD) image sensors [36,37] and 4-Tr CMOS image sensors are reviewed.

The Geiger mode avalanche in SPADs creates a sharp spike signal from one original
photon-generated electron-hole pair. The spike signal is so large that the in-pixel circuitry detects it
as a digital signal and subsequent stages do not add any noises. The sharp spike also realizes time
stamp, which is important for various applications such as time of flight, or fluorescence lifetime
imaging microscopy (FLIM). Its weak points are the large dark count, the after pulse, and small fill
factor because of the necessity of a guardring.

The 4-Tr CMOS image sensor saw some progress in 2015 [38–42], obtained mainly by reducing
the detection capacitance or floating diffusion capacitance. It brings large conversion gain (as large
as 426 µV{e´) [41] and a readout noise as small as 0.27 e´¨ rms [42]. If the readout noise is less than
0.3 e´¨ rms, it can be said that elctron counting is possible with the 90% confidence level [35]. This
method has a rather small dark current and a lager fill factor—even for small pixels—than SPADs.
It also does not suffer from the after pulse. The 4-Tr scheme is not convenient for time stamping,
because the pixel has to wait for a photon after holding the reset level for CDS and a longer period
between reset sampling signal sampling makes the CDS 1/f noise reduction less effective. In contrast,
the 3-Tr scheme is operated in a “signal-first, reset-later” mode, which is suitable for time stamping.

With the FRRT simple model shown in the previous section, the reset noise,
b

ă nPD p8q
2
ą,

becomes 0.10 e´¨ rmsfor CPD “ 10 fF, CP{CPD “ 0.01, and A = 2,700, and becomes 0.29 e´¨ rms for
CPD “ 1 fF, CP{CPD “ 0.01, and A = 270. In those cases, the possibility of electron counting exists if
the other noises are small enough.

The readout noise for the 3-Tr scheme is constituted by the reset noise, SF thermal noise, SF 1/f
noise, column circuit noise, and ADC quantization noise. The most effective method to reduce these
noises is to reduce the detection capacitance and to increase the conversion gain as done in the 4-Tr
scheme; the noises will then be reduced in terms of the number of electrons at the PD. There is, however,
a sharp tradeoff between the reduction of the detection capacitance and sensitivity, because using a
smaller PD area to decrease the detection capacitance originates also a small sensitivity. Therefore, it is
much difficult to achieve an electron counting capability with a 3-Tr scheme than with a 4-Tr scheme.
One possible circuit-based approach is to combine a capacitive transimpedance amplifier [27,28] with
the FRRT.

Another possibility is to reduce the SF thermal noise, SF 1/f noise, column circuit noise, and ADC
quantization noise themselves. The SF thermal noise, column circuit noise, and ADC quantization
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noise could be reduced by circuit technologies. Although various methods have been reported to
reduce the SF 1/f noise, additional improvements are needed to perform the electron counting with a
3-Tr scheme.

8. Conclusions

To discuss the reset noise generated by a slow subthreshold current, intuitive and simple analytical
forms are derived in spite of the subthreshold current nonlinearity, which characterize the time
evolution of the reset noise during the reset operation.

For soft reset, the reset noise limit when t Ñ8 ,
b

ă vPD p8q
2
ą, is given by

a

mkT{2CPD, which

agrees with previous published works. The asymptotic time dependence of the noise,
b

ă vPD ptq
2
ą,

decreases with t´ 1, even though the asymptotic time dependence of the average PD voltage, VPDa ptq,
is as slow as logt. The flush reset method is effective because the hard reset part eliminates the image
lag, and soft reset part reduces the noise to the soft reset noise level.

The tapered reset method achieves exponential convergence, but the reset noise reduction
is insufficient.

Finally, the FRRT shows both a fast convergence and a good reset noise reduction. When A is large,
even small values of CP{CPD can drastically decrease the reset noise. If the feedback is sufficiently

fast, the reset noise limit when t Ñ8 ,
b

ă nPD p8q
2
ą, becomes mkTpCPD`CP1q

2

2q2 ApCPD`p1`AqCPq
. Assuming that

CPD “ 10 fF, CP{CPD “ 0.01 and A = 2700,
b

ă nPD p8q
2
ą becomes 0.10 e´¨rms according to this

simple model. Achieving an electron counting capability with this architecture requires a challenging
1/f noise reduction, even if the reset noise can be decreased.
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Abbreviations

The following abbreviations are used in this manuscript:

Tr Transistor
CMOS Complementary metal oxide semiconductor
PPD Pinned photodiode
CDS Correlated double sampling
AEC Auto exposure control
PD Photodiode
UV Ultraviolet
IR Infrared
Ge Germanium
InGaAs Indium-gallium-arsenide
RST Reset transistor
SF Source follower
SEL Row select transistor
k Boltzmann constant
T Absolute temperature
C Capacitance
e´ Electron
CCD Charge coupled devices
RD Reset transistor drain
FRRT Feedback reset with reverse taper control
FB Feedback
Ref Reference
SPAD Single photon avalanche diode
FLIM Fluorescence lifetime imaging microscopy
rms Root mean square
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