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Abstract: Unmanned Aerial Vehicles (UAV) can navigate with low risk in obstacle-free environments
using ground control stations that plan a series of GPS waypoints as a path to follow. This GPS
waypoint navigation does however become dangerous in environments where the GPS signal is
faulty or is only present in some places and when the airspace is filled with obstacles. UAV navigation
then becomes challenging because the UAV uses other sensors, which in turn generate uncertainty
about its localisation and motion systems, especially if the UAV is a low cost platform. Additional
uncertainty affects the mission when the UAV goal location is only partially known and can only
be discovered by exploring and detecting a target. This navigation problem is established in this
research as a Partially-Observable Markov Decision Process (POMDP), so as to produce a policy
that maps a set of motion commands to belief states and observations. The policy is calculated and
updated on-line while flying with a newly-developed system for UAV Uncertainty-Based Navigation
(UBNAV), to navigate in cluttered and GPS-denied environments using observations and executing
motion commands instead of waypoints. Experimental results in both simulation and real flight tests
show that the UAV finds a path on-line to a region where it can explore and detect a target without
colliding with obstacles. UBNAV provides a new method and an enabling technology for scientists to
implement and test UAV navigation missions with uncertainty where targets must be detected using
on-line POMDP in real flight scenarios.

Keywords: unmanned aircraft; UAV target detection; Partially-Observable Markov Decision Process
(POMDP); path planning; Robotic Operating System (ROS); uncertainty; robust navigation

1. Introduction

Ground, underwater and aerial robots are widely used for environmental monitoring and target
detection missions [1–5]. Among these robots, UAVs use ground control stations to plan a path to a
goal before flying, using Global Positioning System (GPS) sensors as their source of localisation [6–10].
However, reliable GPS localisation is not always available due to occlusions or the absence of the
satellite signal. The accuracy of such localisation systems also decreases for low cost UAVs. Flying in
GPS-denied environments and with only on-board sensors as the source of localisation is challenging,
particularly when there are obstacles in the airspace that need to be avoided or if there is uncertainty
in the goal location, which requires the UAV to fly and explore the area until the target is detected.

POMDP is a mathematical framework to model decision making problems with different sources
of uncertainty [11–14], which makes it useful for implementing UAV navigation in cluttered and
GPS-denied environments. The performance of POMDP solvers has improved, especially in the ability
to cope with larger numbers of states |S| > 2000 and observations |O| > 100 [15,16], which is the case
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in UAV navigation missions. UAV navigation has been formulated previously as a Partially-Observable
Markov Decision Process (POMDP) [17–19]. However, most of these studies only consider simulated
scenarios [20] and use off-line solvers to compute the policy [21]. Another research study [22] modelled
the uncertainty in target localisation using a belie state and planned a series of actions to solve the
mission; however, this study relied on accurate localisation of the UAV in its environment.

In a POMDP, it is desirable to calculate a large number of possible sequences of actions and
observations in order to increase the quality of the planning, but these must be done within a limited
time, which depends on the system dynamics. This paper presents a system in which the actions that
the UAV executes are designed based on the capabilities of the motion control system. This approach
provides a method that enables us to model the POMDP transition function using characteristic step
responses of four states in the UAV, and it also allows us to define a maximum computation time for
each iteration of the on-line POMDP algorithm.

We developed UAV Uncertainty-Based Navigation (UBNAV) for UAVs to navigate in GPS-denied
environments by executing a policy that takes into account different sources of uncertainty. This
policy is calculated on-line by a POMDP path planning algorithm. Two on-line POMDP solvers,
Partially-Observable Monte Carlo Planning (POMCP) [14] and Adaptive Belief Tree (ABT) [16], will be
compared and integrated into a modular system architecture along with a motion control module
and a perception module. The system uses a low cost multi-rotor UAV flying in a 3D indoor space
with no GPS signal available. UBNAV updates its motion plan on-line while flying based on sensor
observations taking into account motion and localisation uncertainties in both the UAV and the target.

UBNAV incorporates different sources of uncertainty into a UAV motion plan on-line in order
to navigate challenging scenarios using only on-board sensors. The system uses motion commands
instead of waypoints and updates a policy after receiving feedback from a perception module. This
approach provides ease in modelling the decoupled system dynamics by using time step responses for
a set of holonomic actions in four states of the UAV. The system also guides the UAV towards regions
where it can localise better in order to reduce the uncertainty in localisation of both the UAV and the
goal target. UBNAV enables researchers to implement and flight test on-line POMDP algorithms for
the purpose of UAV navigation in GPS-denied environments or where perception has high degrees
of uncertainty.

2. UAV Navigation as a Sequential Decision Problem

2.1. Markov Decision Processes and Partially-Observable Markov Decision Processes

A Markov Decision Process (MDP) is an effective mathematical framework to model sequential
decision problems affected by uncertainties [23]. When MDP is used for UAV or robotic missions,
the objective is to generate a policy that allows the UAV or robot to decide what sequence of actions
it should take, taking into account the uncertainties in motion, in order to maximise a return or
cost function.

MDPs assume that the robot states are completely observable. However, a UAV or robot that
has limitations in perception due to its sensors and the environment in which it is moving has
partial observability of its states. The perception of the UAV or robot is not completely accurate or is
insufficient, which means there are deviations from the real state, creating partial observability.

Partially-Observable Markov Decision Processes (POMDP) incorporate the uncertainties in
sensors and the partial observability of the UAV and target locations in the environment [24]. Formally,
a POMDP consists of the following elements (S, A, O, T, Z, R, γ). S represents the set of states in the
environment; A stands for the set of actions the UAV or robot can execute; O is the set of observations;
T is the transition function for the state after taking an action; Z is the distribution function describing
the probability of observing o from state s after taking action a; R is the set of rewards for every state;
and γ is the discount factor. POMDP relies on the concept of belief, b, or belief state, which is a
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probability distribution of the system over all of the possible states in its state-space representation at a
particular time.

POMDP enables us to represent the observations that a UAV or robot receives o ∈ O using
observation functions Z that map probability distributions to states and actions. A policy π : B → A
allocates an action a to each belief b ∈ B, which is the set of possible beliefs. Given the current belie f b,
the objective of a POMDP algorithm is to find an optimal policy that maximizes an accumulated
discounted return when following a sequence of actions suggested by the policy π. The accumulated
discounted return Rt is the sum of the discounted rewards after executing every action in the sequence
from time t onwards Rt = ∑∞

k=t γk−trk, where rk is the immediate reward received at particular time
step t for taking action at, and γ is a discount factor that models the importance of actions in the future.
Choosing a value lower than one for γ signifies that actions performed in short-term steps are more
important than those in long-term steps. The value function Vπ is the expected return from belief b
when following policy π, Vπ(b) = E[∑∞

t=0 γk−trk|b, π]. An optimal policy for solving the POMDP
problem maximizes the value function π∗(b) = arg maxπ Vπ(b).

Uncertainty in UAV localisation can be represented using an observation function Z. This
observation function models the UAV localisation according to the accuracy of the GPS signal in the
scenario and the precision of the onboard odometry system. The objectives of the UAV mission can be
represented using a reward function R, and the motion plan is the calculated policy π∗ that maximises
an expected discounted accumulated return for a sequence of motion commands or actions. The UAV
dynamics and the motion uncertainty are incorporated into the POMDP using the transition function
T, which enables one to predict the next state s′ of the UAV after an action a is executed.

2.2. POMCP and ABT

In this study, we implemented and tested two of the fastest on-line POMDP algorithms (to the
authors knowledge), Partially-Observable Monte Carlo Planning (POMCP) [14] and Adaptive Belief Tree
(ABT) [16], in hardware and software in order to test the system for UAV navigation missions.

POMCP [14] uses the Monte Carlo Tree Search (MCTS) algorithm [25] to produce a search tree
of possible subsequent belief states b and proved to be successful in problems with large domains.
The algorithm reduces the search domain by concentrating only on the states that can be reached by
the UAV or robot from its initial belief state b0 after performing actions and receiving observations.
In order to calculate the transition to the next states, the algorithm uses a black box simulator that has
the transition functions (T) for the UAV. In our case, the UAV dynamics are the transition function for
the UAV and are modelled as motion equations in four degrees of freedom using a continuous state
space. The POMCP algorithm samples states from an initial belief state and performs thousands of
Monte Carlo simulations applying the set of actions that the UAV can perform; see Table 1. POMCP
uses the MCTS algorithm to guide the search of the sequences of actions in the reachable belief
state space and builds a search tree according to the observations received after the UAV performs
the actions.

Table 1. Summary of actions in navigation and target finding problem.

Action a
Forward Velocity

V∗
f (m/s)

Lateral Velocity
V∗

l (m/s)
Altitude Change

∆z∗a (m)
Heading Angle

Ψ∗
a (deg)

Forward 0.6 0 0 90
Backward −0.6 0 0 90
Roll left 0 0.6 0 90

Roll right 0 −0.6 0 90
Up 0 0 0.3 90

Down 0 0 −0.3 90
Hover 0 0 0 90
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POMCP initially runs a planning stage, where it generates a policy π that is stored as a tree with
nodes containing belie states that are represented by particles. The algorithm then outputs the action
a that maximises an expected accumulated return. Afterwards, this action a is executed, and then,
an observation o is received. With this observation, POMCP performs an update of the belief state
b by updating the tree and selects the node that matches the observation received in the tree search.
The algorithm incorporates new particles to avoid particle deprivation and initiates a new search
round from the matched node. The search depth of the planning stage is controlled by the planning
horizon h parameter. The longer the planning horizon, the more time the algorithm will take to build
the search tree.

ABT is an on-line POMDP solver that also uses Monte Carlo simulations to predict future belief
states and a set of state particles to represent the belief state [16]. Both algorithms, POMCP and ABT,
generate a search tree to store the policy. The root of the tree is a node containing the state particles
representing the initial belief of the environment. The tree branches out according to the probability of
selecting actions and receiving observations.

ABT updates the policy π after receiving an observation o by keeping the search tree without
deleting it, which increases the number of possible sampling states in the tree search. On the other
hand, POMCP only keeps the belief node that matches the received observation. The rest of the
search tree is deleted, and a new round of calculations for building the policy takes place after
every iteration.

3. System Architecture

UBNAV is developed as a modular system that consists of four modules that interact with a
multi-copter UAV. A diagram with the system architecture is shown in Figure 1. The system contains
an on-line POMDP module that runs the POMDP on-line solver and outputs actions that are executed
by the motion control module. It also includes a formulation of the navigation mission as a POMDP.
The on-line POMDP module updates the belief state b according to received observations o. We use
existing open-source code for the POMCP [14] and ABT algorithms [26] as the base code and modified
the codes to integrate all of the modules using the Robotic Operating System (ROS) [27]. The motion
control module controls four states in the UAV using PID controllers. Actions in the formulated
POMDP are a combination of reference values for each of the four controllers. The observation module
uses the on-board sensors information and calculates and updates the UAV position. The final module
is the AR Drone Autonomy Lab driver for ROS [28], which reads multiple UAV sensors and receives
commands to control the roll, pitch, yaw and thrust of the UAV.

All modules execute in parallel in different threads with different update rates. The motion
control module, the observation module and the AR Drone driver module execute at 100 Hz in order
to control the dynamics of the UAV and to compute the odometry and estimate the location of the UAV.
On the other hand, the POMDP solver executes at 1 Hz in order to guarantee that the UAV reaches
a steady state after executing actions and to have a policy that enables the UAV to accomplish the
mission. The system source code is written in C++, is available as ROS packages and can be provided
as open-source code upon request.

3.1. On-Line POMDP Module

We did several modifications and additions to the POMDP solvers’ source code in order to
allow them to work as ROS nodes and to integrate them into the modular system. We also created a
visualisation scenario in order to examine the performance of the solvers in simulation.

The on-line POMDP module runs the on-line POMDP planning algorithms. This module
initialises the parameters for planning horizon h, the map of the environment, target location,
odometry uncertainty and an initial belief state b0. This module produces a policy π based
on the initial belie state b0 and outputs the action a to be executed according to the calculated
policy. The action a is then executed by the motion control module, and the observation module
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calculates the UAV position using the on-board sensed velocity, altitude and heading angle. The
observation module also checks whether the target is detected by the downward-looking camera
and detects obstacles located within approximately 1 m in front of the UAV with an on-board
front-looking camera.

Once the observation is received, the POMDP node updates the belie state b, to match the received
observation and replenishing particles until a time-out is reached. Based on the current belie state b,
the POMDP solver calculates a new policy π (POMCP) or updates the policy π (ABT) and outputs the
subsequent action a based on the updated policy π.

  

Online POMDP module Motion Control module

Observation module AR Drone Autonomy Lab Driver
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Figure 1. POMDP ROS system architecture.

3.2. Motion Control Module

The UAV motion control module is composed of four independent controllers that actuate on the
following states of the UAV: Forward velocity Vf , lateral velocity Vl , yaw angle (heading angle) Ψa

and altitude za. The motion control module receives reference states a = {V∗f , V∗l , Ψ∗a , z∗a} from the
POMDP solver (see Table 1) and subtracts the actual states ā = {Vf , Vl , Ψa, za} from the references
sates a to generate error signals that are used by each of the PID controllers.

The output of the PIDs is a control vector u = {θ̇a, φ̇a, ψ̇a, ża}, where θ̇a, φ̇a and ψ̇a are pitch,
roll and yaw rates, respectively, and ża is the rate of climb. These outputs are sent to the AR Drone
Autonomy lab driver, which transforms them into control signals that are sent to the UAV.

The UAV on-board navigation system calculates forward Vf and lateral Vl velocities using optical
flow obtained from the downward-looking camera. The UAV obtains the yaw angle Ψa from the IMU
and magnetometer readings and the altitude za from on-board ultrasonic and barometric pressure
sensors that are fused using a proprietary Kalman filter.

The duration of an action execution Ta is chosen to guarantee that the PID controller reaches a
steady state when transitioning from different actions for all states, as shown in Figure 2. Therefore,
we set the POMDP solver time to to be equal to the action duration, that is TP = Ta.
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Figure 2. PID time responses to a unit step input for Vf and Vl (dashed line), Ψ (dash-dot line) and
z (solid line). All PID controllers reach steady state within 1 s.

3.3. Observation Module

The observation module calculates the current multi-rotor position and heading angle based on
the sensed forward and lateral velocities, accelerations and the measured yaw angle Ψa. The forward
and lateral velocities in the UAV’s frame are transformed to the fixed world frame and are integrated
to calculate the UAV coordinates xa and ya in the world frame. The UAV altitude za is also read from
the AR Drone ROS driver and is calculated on-board.

The UAV position Pa = {xa, ya, za, Ψa} is calculated based on the actual states ā obtained from the
on-board sensors from the AR Drone ROS driver. The POMDP solver calculates and updates the policy
based on the position and heading angle that the UAV will have by the time the previous action is
finished, i.e., t− Ta. Thus, a prediction of the UAV position and heading angle Pat+1 is calculated based
on the current UAV position and yaw angle in the world frame, the action currently being executed
and the action duration time Ta. This prediction is calculated using the characteristic step responses
for the four degrees of freedom shown in Figure 2, the commanded state reference values a and the
actual state values ā.

The observation module also detects and calculates the target position Pt by using a specific
tag figure and the AR Drone Autonomy Lab driver to determine whether the tag is present in the
downward looking camera image and its position within the image. The last type of observation in the
module identifies obstacles. In this case, we use Augmented Reality (AR) tags that are placed on the
obstacles and which can be detected with the front camera using the ROS package Arsys for reading
Aruco-type tags [29].

The use of the AR tags enables the system to have a global source of localisation since the tags
can give an accurate indication of the UAV camera pose with respect to the world frame by using
coordinate frame transformations. However, these tags can only be detected when the AR tag is
located within the UAV front camera Field Of View (FOV) and within a distance of approximately
1 m. The model of the downward looking camera FOV is described in Section 4.5.

4. Navigation and Target Detection

4.1. Problem Description and Formulation

Consider a multi-rotor UAV flying in a 3D space in a GPS-denied environment filled with obstacles.
An example of such an environment is the indoor scenario shown in Figure 3. The UAV has the mission
to navigate within a limited region of the airspace with boundaries xlim, ylim and zlim in the x, y and z
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coordinates, respectively. The UAV’s task is to fly from the initial hovering position to a region where
the target is believed to be located in order to explore and detect it using an onboard downward-looking
camera, avoiding obstacles whose location is known by the UAV navigation system. After taking
off, the UAV hovers for five seconds before starting the mission. This initial hovering incorporates
uncertainty into the UAV position due to the UAV drifting around the take off position. The target is
stationary, and its location is known by the system with uncertainty.

  

Obstacles

UAV

Target

Flying area 
limits

  

UAV

Obstacles
Target

(a) (b)

Figure 3. Two typical scenarios for the navigation and target detection problem. (a) Scenario with five
obstacles; (b) scenario with four obstacles with Augmented Reality (AR) tags.

The navigation and target detection must be done using only on-board sensors, whilst overcoming
uncertainties in the UAV states information and uncertainty in target location. We use continuous state
representation to model the transition function and a discrete set of observations O as described in
Section 4.5.

The problem is formulated as a POMDP with the following elements: the state of the aircraft in
the environment (S), the set of actions that the multi-rotor can execute (A), the transition function
describing the state transition after applying a specific action (T), the observation model (O) that
represents the sensed state and uncertainty of the UAV after taking an action and the reward
function (R).

4.2. State Variables (S)

The state variables considered in the POMDP formulation are the position and yaw (heading)
angle of the UAV in the world frame Pa = (xa, ya, za, Ψa), the target’s position Pt = (xt, yt, zt) and the
UAV’s forward Vf and lateral velocity Vl .

4.3. Actions (A)

There are seven possible actions a ∈ A that the UAV can execute: an action to go forward at speed
Vf , an action to go backwards at speed −Vf , an action to roll left at speed Vl and an action to roll right
at speed −Vl . Actions up and down increase or decrease the altitude by 0.3 m, with UAV’s forward
Vf =0 m/s and lateral velocity Vl = 0 m/s. The hover action maintains the UAV’s velocity at zero. The
set of actions is summarised in Table 1.

4.4. Transition Functions (T)

In order to represent the system dynamics, a kinematic model is described as in Equation (2) to
Equation (3). The position of the aircraft is determined by calculating the change in position due to its
current velocity, which is controlled by the motion control module and is selected according to the
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commanded action. A transformation from the UAV’s frame to the world frame is also calculated in
these equations.

A normal probability distribution with mean value and standard deviation <1 m around the take
off position, as shown in Equation (1), is used to model this uncertainty on the UAV initial position.

The orientation of the UAV is determined by its heading angle Ψa. The uncertainty in motion is
incorporated in the system by adding a small deviation to the heading angle σa using a normal
distribution with mean value equal to the desired heading angle and restricted to the range
−2.0◦ < σa < 2.0◦, which represents the uncertainty on the yaw angle control system.

A discrete table with the characteristic values of a step input response was obtained experimentally
for each of the controllers for every degree of freedom in the motion controller module. These step
responses (see Figure 2) are included in the transition function in order to incorporate the transient
changes in the UAV speed when it transitions from action to action after receiving the command
from the on-line planner. The uncertainty in UAV position due to the initial hovering is modelled
as a Gaussian probability distribution, described by Equation (1), with mean value µ and standard
deviation σ < 1 m.

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

(1)


∆xat

∆yat

∆zat

 =


cos(Ψat + σat) − sin(Ψat + σat) 0

sin(Ψat + σat) cos(Ψat + σat) 0

0 0 1




Va ft
∆t

Valt
∆t

∆za

 (2)


xat+1

yat+1

zat+1

 =


xat

yat

zat

+


∆xat

∆yat

∆zat

 (3)

where xat , yat and zat are the x, y and z aircraft coordinates at time t, Va ft
and Valt

are forward and
lateral velocities in the multi-rotor’s frame at time t and Ψat and σat are heading and heading deviation
at time t.

4.5. Observation Model (O)

An observation for the POMDP model is composed of: (1) the UAV position in the world frame
with onboard odometry as the source; (2) the UAV position with reduced uncertainty in the world
frame if obstacles are detected; and (3) the target location if it is detected by the downward-looking
camera. The UAV odometry calculation has an uncertainty that is approximated using a Gaussian
distribution, as in Equation (1). The mean value of this distribution is the UAV position calculated by
the odometry system, and the variance is equal to the error in the odometry calculation. This error is
bigger for UAV positions calculated based only on optical flow sensor and smaller if the AR tags are
detected in any of the obstacles by the front camera.

Equation (4) is used to calculate the xa and ya positions of the UAV.[
xat+1

yat+1

]
=

[
xat

yat

]
+

[
cos(Ψat) − sin(Ψat)

sin(Ψat) cos(Ψat)

] [
Va ft

Valt

]
∆t (4)

If the target is detected by the onboard downward-looking camera, the AR Drone ROS driver
provides the target position within the image. This position is transformed to a position in the
world frame.

The FOV of the downward-looking camera, shown in Figure 4, is modelled and defined
experimentally as follows: the image width depends on the UAV altitude and is defined as wc = zaαw;
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the image height is defined as hc = zaαh; and there is a shift from the UAV frame to camera frame that
is defined as shi f t = zaαs, where αh = 0.56, αw = 0.96 and αs = 0.2256 are intrinsic parameters of the
camera and are obtained by camera calibration and experimental tests.

  

w
c

h
c shift

x
w

y
w

y
a

x
a

P
a

P
T

y
c

x
c

FOV

Target

Figure 4. Field of view parameters for the UAV onboard camera, target and world frames.

4.6. Reward Function (R)

The objectives of the UAV navigation mission can be represented in the POMDP using a reward
function. The UAV receives a high reward of 300 if it detects the target within the downward-looking
camera FOV. Hitting an obstacle or going out of the scenario incurs a penalty of −70, and every other
movement carries a cost of −2. The values of the reward and penalties were selected based on existing
test cases of POMDP problems. These values were tuned by experimentation on a large number of
simulations (≈500) and flight tests (≈50). A summary of the reward function values is shown in
Table 2.

Table 2. Summary of rewards and costs in the UAV navigation problem.

Reward/Cost Value

Detecting the target 300
Hitting an obstacle −70

Out of region −70
Movement −2

4.7. Discount Factor (γ)

A discount factor γ of 0.97 was selected by experimentation on a large number of simulations
(≈500) and flight tests (≈50) and taking into account the distance travelled by the UAV in every step at
the selected speed and the size of the flying area.

5. Results and Discussion

We conducted simulation and real flight experiments for four tests cases to compare the
performance of ABT and POMCP.

5.1. Simulation

We tested the UAV navigation formulation in simulation with both solvers, POMCP and ABT,
by running each algorithm, using the model dynamics presented in Sections 4.4 and 4.5. We used
boost C++ library random generators in order to have high quality normal distributions as described
in Section 4.1.
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The target was placed at four different locations inside the flying area, and the UAV was initially
located around (3.0, 0.55, 0.7), with uncertainty in each of the locations, as described by Equation (1).
Each target location was tested in simulation by running POMCP and ABT 100 times. We created
a simulated 3D model of the environment to visualise the UAV path in the scenario to inspect the
evolution of the belief state of the system and for visualising the UAV position and the target location
as clouds of white and red particles, respectively (Figure 5). Initially, the UAV position, represented by
the white particle cloud in Figure 5a, has an uncertainty around the starting position at the bottom of
the image. The spread of the particles represents the drift caused by UAV take off and initial hovering.
This uncertainty increases as the UAV flies towards the goal (Figure 5b). As the UAV gets closer to one
of the obstacles and detects the AR tag attached to the obstacle with the front camera, the uncertainty
in the UAV position is reduced, as seen in Figure 5c. The UAV then flies towards the target until it
detects it, shown in Figure 5d, and the uncertainty in its position is reduced by the knowledge that it
acquires from the position of the target in the image taken by the downward-looking camera.

  

UAV

Target

  

UAV

Target

(a) (b)

  

UAV

Target

  

Target

UAV

(c) (d)

Figure 5. Belief evolution for the navigation problem using the POMCP solver. Target’s position (red);
UAV position (white). (a) Initial belief, UAV location (white particles) and target location (red particles);
(b) belief after some steps; (c) UAV in front of obstacle; uncertainty is reduced; (d) target within UAV
downward camera FOV.

A summary of the results for the discounted return and the time to detect the target for each test
in simulation and in real flight is shown in Table 3.
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Table 3. Simulation and real flight results for Adaptive Belief Tree (ABT) and POMCP.

Solver
Number of

Obstacles in
Scenario

Target Location (x, y, z)
Flight Time to

Target (s)
(Simulation)

Flight Time to
Target (s)

(Real Flight)

Success
(No Collision)
% (Real Flight)

POMCP 5 (5.0, 6.0, 0.15) 14 25 100
4 (2.65,−2.33, 0.15) 20 21 100

ABT 5 (5.0, 6.0, 0.15) 16 25 90
4 (2.65,−2.33, 0.15) 19 27 80

The results indicate that for all cases in the simulation, both POMDP solvers were able to reach
and detect the target in less than 20 s. Results also show that paths produced by ABT are shorter than
the ones produced by POMCP (Figures 6 and 7). This can also be seen in the flight time to detect the
target, which is shorter for ABT in three of the four cases; see Table 3. In the case of the target located
at (5, 6, 0.15), the path computed by ABT shows that the UAV takes a trajectory flying between the
obstacles, whereas with POMCP, the UAV flies over the obstacles to avoid the risk of collision.
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Figure 6. Example of trajectories to four different target locations produced by ABT (black), and
POMCP (red) in simulation. (a) Target located at (1.0, 3.0, 0.15); (b) target located at (1.0, 6.5, 0.15);
(c) target located at (5.0, 1.0, 0.15); (d) target located at (5.0, 6.0, 0.15).
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Figure 7. Example of trajectories to four different target locations produced by ABT (black) and POMCP
(red) in simulation. (a) Target located at (1.0, 3.0, 0.15); (b) target located at (1.0, 6.5, 0.15); (c) target
located at (5.0, 1.0, 0.15); (d) target located at (5.0, 6.0, 0.15).

5.2. Real Flight Tests

We conducted experiments in real flight scenarios with the target located at different positions.
We ran the system 10 times for each location of the target for both solvers to compare their performance.
We also compare two scenarios, one with five obstacles and another with four taller obstacles with AR
tags on each of the obstacles, which enable the UAV to correct the uncertainty in the onboard odometry
once the tags are in the FOV of the front camera.

The UAV has to take off from an initial position and hover for 4 s to initialise its on-board sensors.
The forward (pitch) and lateral (roll) velocity controllers start to actuate when taking off, and the
altitude controller sets an initial value for the UAV to hover at 0.7 m above the ground.



Sensors 2016, 16, 666 13 of 17

The initial POMDP navigation policy is computed once the UAV is airborne, and the POMDP
module outputs an action after 4 s of hovering. The system computes a new policy at each step of 1 s
of duration.

Figure 8a shows a comparison of the UAV position estimation performed by the observation
node and using the VICON positioning system. Even though there is an error in the estimated path,
the system is robust enough to account for this drift, is able to find a path using the UAV on-board
odometry and finds the target without colliding with the obstacles.
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Figure 8. Comparison of onboard computed position (red) vs. the VICON positioning system (black).
(a) Without resetting position error; (b) resetting position error with AR tags.

The system was also tested incorporating the detection of the obstacles by the UAV, using AR tags
that allow for a more reliable source of positioning in places where the UAV is closer to the obstacles
than the onboard odometry. A comparison of the UAV position estimation against the VICON system
using the AR tags to reduce the uncertainty is shown in Figure 8b. Results indicate that the system is
able to reduce the uncertainty and the error in the position estimation using AR tags as beacons in
the environment.

Results in Table 3 indicate that the performance of both POMDP solvers is affected by real flight
conditions, and the flight time to detect the target increases in all of the cases. The UAV can accomplish
the mission in 100% of the cases using POMCP for both scenarios and 85% of the cases using ABT in
real flight, as show in Table 3. A comparison of the paths flown by the UAV to four different target
locations produced by POMCP and ABT algorithms are shown in Figures 9 and 10.

Figure 9a–c show the trajectories taken by the UAV in a scenario with five obstacles. In this
case, both solvers show that it is safer to fly over the obstacles to reach the target. On the other hand,
Figure 9d shows that the algorithms find a safe route to the target by flying between obstacles in the
scenario with four obstacles. However, in the last case, the UAV flies close to the obstacle first in
order to reduce its uncertainty by detecting the beacon or landmark represented by the AR tag on the
obstacle and then continues flying towards the target.
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Figure 9. Example of trajectories to four different target locations produced by ABT (black) and POMCP
(red). (a) Target located at (1.0, 3.0, 0.15); (b) target located at (1.0, 6.5, 0.15); (c) target located at (5.0, 6.0,
0.15); (d) target located at (2.65, −2.33, 0.15).
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Figure 10. Example of trajectories to four different target locations produced by ABT (black) and
POMCP (red) in simulation. (a) Target located at (1.0, 3.0, 0.15); (b) target located at (1.0, 6.5, 0.15);
(c) target located at (5.0, 6.0, 0.15); (d) target located at (2.65, −2.33, 0.15).
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5.3. Recommendations for Implementation of UAV Navigation Using On-Line POMDP in a Real Flight

Implementation of UAV navigation in cluttered and GPS-denied environments formulated as a
POMDP is a complex task. Some considerations should be taken into account for the implementation
of the system for real flights.

The first consideration is to perform a thorough analysis of the dynamic capabilities of the UAV
and, in our case, the design of motion controllers on four decoupled states. The design and tuning of
these motion controllers takes time, repeated flight testing and varies according to UAV specifications.
This step is indispensable and enables us to model the characteristic response of the UAV, which
facilitates modelling the POMDP transition function based on the set of actions chosen.

The next consideration is to characterise the controllers’ time response by using system
identification software and the data collected from the real flight tests. The transition function uses this
characteristic time response to calculate the next state of the UAV after performing an action, and it is
also used to simulate the performance of UBNAV. This step is also required for the implementation of
navigation in other path planning algorithms, which require low level motion control that outputs a
series of waypoints [3,4,10] or velocity commands that a lower level motion controller executes [30].

A third important consideration for a POMDP implementation is the observation function, which
models the characteristics, ranges, accuracy, disturbances and noise measurements. Having an exact
knowledge of all of these characteristics is not always possible, but some approximations can be made.
If a camera is used as one of the sensors, then camera calibration and a model for the FOV that depends
on the UAV altitude is needed. Several flight tests measuring the drift in the initial hovering and the
yaw angle measurements are needed in order to approximate the model using Gaussian distributions.

A fourth consideration is the discount factor γ that is used to balance the importance of actions
during the planning stage. Selecting a discount factor of one means that there is no discount applied to
the return received after performing an action, which in turn gives the same importance to actions
that are executed in the short term and in the long term. Conversely, assigning a value much lower
than one discounts the return for actions executed in the long term and in turn gives more importance
to short-term actions. In this study, the discount factor was selected by testing in 100 Monte Carlo
simulations with values for the discount factor ranging from 0.95–1, taking into account that the
UAV should not collide with obstacles (short-term goal) and should also reach and detect the target
(long-term goal).

Finally, the reward function (R) was tuned by performing multiple Monte Carlo simulations.
Values of the reward and penalties were tuned focusing first on reaching the primary goal, which is
to detect the target. Afterwards, values of penalties for colliding with obstacles and going out of the
flying area were tuned by fixing the reward for reaching the goal and running multiple simulations
with different values for the penalty. Finally, in order for the UAV to choose shorter paths, values in
the interval [0,20] for the motion penalty were tested running multiple simulations.

6. Conclusions

This study developed and tested UBNAV for UAV navigation in GPS-denied and cluttered
environments where there is uncertainty in sensor perception and target localisation. UBNAV
performed full navigation and target detecting missions using a low cost platform with only on-board
sensors in GPS-denied environments and in the presence of obstacles. UBNAV allows researchers to
implement, simulate and test different on-line POMDP algorithms for navigation with uncertainty
and also permits the implementation of different motion controllers and perception modules into
the system.

The system executes a set of holonomic actions instead of a classic waypoint approach. This
approach facilitates the execution of the motion planning by modelling the UAV dynamics as a
decoupled system with a set of actions that execute in four states of the UAV. It models the uncertainties
in the motion and perception by including deviations in the states using Gaussian distributions.
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The system also allows for selecting the planning time in an on-line POMDP solver for a UAV
navigation mission, taking into account the duration of the actions. These actions are based on the
time response of the motion controllers of the UAV.

Experimental results show that the system is robust enough to overcome uncertainties that are
present during a flight mission in a GPS-denied and cluttered environment. UBNAV guides the UAV
towards regions where it can localise better in order to reduce the uncertainty in the localisation of
both the UAV and the goal target. Results indicate that the system successfully finds a path on-line for
the UAV to navigate to a location where it could detect a target with its onboard downward-looking
camera without colliding with obstacles for 100% of the time for the simulation and 96.25% of the time
in 80 different real flight experiments.

The system has also the potential to be used in an outdoor environment with additional perception
information by modelling a Global Positioning System (GPS) where the uncertainty can be introduced
depending on the resolution and the quality of the GPS module. Adding the GPS module uncertainty
and the wind disturbances as another source of uncertainty into the POMDP model along with real
flight testing is currently being explored.
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