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Abstract:

 A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram[image: there is no content]r–Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.
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1. Introduction


Direction of arrival (DoA) estimation using acoustic sensor arrays has attracted significant interest due to its wide applications [1,2,3,4]. Traditionally, DoA is realized using sensor arrays, such as passive towed-array sonar systems, where all sensors are wire-connected to a fusion center (FC) [5]. For wireless sensor array networks (WSAN) [6,7], arrays (locally wire/wireless-connected clusters) of dispersed sensors are deployed over large sensor fields and communicate wirelessly to the FC. However, remote sensor arrays often suffer from restricted resources, such as local power supply, local computational capacity and wireless transmission bandwidth. Therefore, data samples at remote sensor arrays need to be compressed before transmitting to the FC. On the other hand, executing sophisticated data compression algorithms on remote sensors is also restricted by local power consumption and computational ability.



To meet those resource requirements of the WSAN, the newly-emerged compressive sensing (CS) technology [8,9,10] has great potential because of its ability to reconstruct the raw signal from only a small number of random measurements. In this work, we propose a novel DoA estimation approach that accomplishes low power, robust DoA estimation over a WSAN platform, which reduces the volume of transmitted data without complicated local data compression operations. Incorporating a CS-based formulation, this approach is able to directly estimate the incident angles of acoustic sources from randomly-sampled acoustic signals. This is made possible by fully exploiting the joint spatial and spectral sparse structure of the acoustic signals acquired by the sensor array. Hence, we refer to this approach as compressive sensing joint sparse representation direction of arrival (CSJSR-DoA) estimation method.



Existing CS-based source DoA estimation methods can be categorized into two different approaches: compressive bearing estimation (COBE) [11,12,13] and compressive sensing array DoA estimation (CSA-DoA) [14]. With COBE, the incident angles (DoAs) are modeled as a sparse angle vector, with non-zero entries indicating the presence of (a few well separated) acoustic sources. The acoustic signals received at each sensor can then be represented as the product of a redundant steering matrix and a sparse angle vector. The steering matrix, consisting of steering vectors of all possible incident angles, must be estimated using the received noisy acoustic signal at a reference node. Thus, the raw data at the reference node and randomly-projected measurements of the non-reference nodes need to be transmitted to the remote FC. This imposes a heavy communication cost and excessive energy consumption at remote sensor arrays. With CSJSR-DoA, individual sensor nodes only perform data acquisition and random subsampling, while the DoA estimation is performed at the FC. Therefore, no local computation is required at the remote sensor nodes, and the CSJSR-DoA approach is more suitable for a resource-restricted WSAN system.



With the CSA-DoA [15,16,17] method, analog sensor array data are randomly projected onto a lower dimensional subspace in the analog domain before being converted into digital samples using an analog to digital converter (ADC). As such, fewer ADCs are required. This approach is similar to the CS-camera projection and was originally proposed in [18]. The steering vectors of different incident angles at a certain frequency are used to form the reconstruction dictionary. Further work extends this type of array processing method to broadband scenarios [19,20]. Since the data volume reduction is realized in the analog domain, special analog electronic circuits are required to implement the CSA-DoA approach. The proposed CSJSR-DoA approach, on the other hand, requires no special-purpose analog hardware. Some similar work [21] uses the angle domain sparsity of sources and formulates the narrow band signal of an antenna array within the BCS [22,23] framework. However, it is utilized as an alternative DoA estimation approach, and no data compression is considered.



Another distinction between the proposed CSJSR-DoA approach and these existing CS-based DoA estimation approaches is that the CSJSR-DoA approach exploits both the spatial and spectral domain structure of the acoustic sensor array signals. We argue that many practical broadband acoustic signals can be characterized by a few dominant frequency entries. With the purpose of DoA estimation, it would be sufficient to focus on these few dominant frequency entries and to exploit their frequency sparsity to enhance the performance. For example, Figure 1 shows the spectrograms of two types of broadband sources: an engine sound of a Porsche vehicle and a bird chirping [24]. It is clear that these broadband acoustic signals are dominated by multiple dominant frequency entries. The frequency domain sparse structure [25] illustrated in these figures may be utilized to realize efficient compressive sensing.


Figure 1. Spectrogram of (a) a Porsche engine and (b) a bird chirping.
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The main contributions are:

	
A joint sparse representation-based DoA estimation approach is proposed, that exposes the joint spatial and spectral domain sparse structure of array signals and incorporates the multiple measurement vector [26] approach to solve the DoA estimation problem;



	
A theoretical mutual coherence bound of a uniform linear sensor array is provided, which defines the minimum angular separation of the sources that are required for the CSJSR-DoA approach to yield a reliable solution with a high probability;



	
The Cram[image: there is no content]r–Rao bound of the CSJSR-DoA estimator is derived to quantify the theoretical DoA estimation performance;



	
A prototype acoustic WSAN platform is developed to validate the effectiveness of the proposed CSJSR-DoA approach.








The remainder of this paper is organized as follows. In Section 2, the array signal model, the sparsity model of narrowband array processing and the CS theory are briefly reviewed. The CSJSR-DoA approach is derived in Section 3. In Section 4, the theoretical analysis of the DoA estimation performance, as well as the Cram[image: there is no content]r–Rao bound are derived. In Section 5, the performance of the CSJSR-DoA approach is evaluated by simulations and field experiments using a prototype wireless sensor array platform. At last, the conclusion is summarized in Section 6.




2. Background


In this paper, the transposition and complex-conjugate transposition operations are denoted by superscripts [image: there is no content] and [image: there is no content], respectively. Lowercase and uppercase bold symbols denote vectors and matrices, respectively. The major symbols used in this paper are summarized in Table 1.



Table 1. Symbols and notations. CSJSR, compressive sensing joint sparse representation.



	
Symbol

	
Explanation






	
H

	
number of sensors within an array




	
Q

	
number of sources




	
[image: there is no content]

	
sparsity of the q-th source signal




	
[image: there is no content]

	
the q-th source signal in the time domain




	
[image: there is no content]

	
dominant sparse vector in the frequency domain with [image: there is no content]-sparsity




	
[image: there is no content]

	
less prominent components of [image: there is no content] in the frequency domain




	
[image: there is no content]

	
time delay of the q-th source between the h-th sensor and the array centroid




	
[image: there is no content]

	
received time domain signal in the h-th array




	
Ψ

	
[image: there is no content] inverse DFT matrix




	
[image: there is no content]

	
received time domain signal at the h-th sensor, [image: there is no content]




	
[image: there is no content]

	
signal spectrum of [image: there is no content], [image: there is no content]




	
[image: there is no content]

	
array data spectrum at the k-th frequency, [image: there is no content]




	
[image: there is no content]

	
steering vector of [image: there is no content] at the k-th frequency,




	

	
[image: there is no content]




	
[image: there is no content]

	
source signal vector of L directions, [image: there is no content]




	
[image: there is no content]

	
steering matrix of L directions at the k-th frequency




	
[image: there is no content]




	
[image: there is no content]

	
array data spectrum matrix




	
[image: there is no content]

	
permutation matrix




	
[image: there is no content]

	
wideband array data spectrum, [image: there is no content]




	
[image: there is no content]

	
array spectrum of H sensors, [image: there is no content]




	
[image: there is no content]

	
sample intervals, [image: there is no content]




	
[image: there is no content]

	
rounding operation




	
Φ

	
random sub-sampling matrix




	
[image: there is no content]

	
channel loss matrix




	
[image: there is no content]

	
received measurement of the h-th sensor in the fusion center




	
[image: there is no content]

	
joint measurement vector of H sensors, [image: there is no content]




	
[image: there is no content]

	
joint noise vector of N frequencies, [image: there is no content]




	
Θ

	
joint measurement matrix of H sensors, [image: there is no content]




	
[image: there is no content]

	
block diagonal matrix operation




	
Υ

	
joint sparse matrix




	
[image: there is no content]

	
direction indicative vector, [image: there is no content]




	
[image: there is no content]

	
nonzero index of a vector, [image: there is no content]




	
[image: there is no content]

	
pruned joint sparse matrix, [image: there is no content]




	
[image: there is no content]

	
Fisher information matrix of parameter Λ




	
[image: there is no content]

	
Cram[image: there is no content]r–Rao bound of the CSJSR algorithm










2.1. Signal Model and Joint Spatial-Spectral Sparse Structure


A WSAN consists of one or more sensor arrays and one FC. Sensors within the same sensor array are arbitrarily deployed and connected to the FC via wireless channels. Sensor arrays are battery powered and have limited processing capabilities. The FC is connected to the infrastructure and has stronger processing capabilities. To conserve energy at remote sensor arrays, it is desirable to reduce the volume of data to be transmitted via wireless channels and to move as much of the processing tasks to the FC as possible.



For simplicity of notation, in this work, we assume a single sensor array consisting of H acoustic sensor nodes, and it communicates wirelessly via radio channels to a single FC. Each sensor node is equipped with an omni-directional microphone. The received acoustic signals will be sampled at a sampling frequency of [image: there is no content] Hz. N samples will be grouped into a frame (a snapshot) from which a DoA estimate will be made. We assume that state-of-the-art wireless synchronization protocols, such as Reference Broadcast Synchronization (RBS) [7], are applied so that clocks at sensor nodes can be synchronized at a precision in the order of micro-seconds, which is sufficiently accurate for acoustic DoA estimation.



We assume there are Q targets. The q-th source emits an acoustic signal and contains no more than [image: there is no content] ([image: there is no content]) dominant frequency entries. Denote [image: there is no content] to be a [image: there is no content] frame vector of the q-th source received at the reference node of the sensor array. Its N-point DFT (discrete Fourier transform) may be decomposed into two components:


[image: there is no content]



(1)




where Ψ is an [image: there is no content] inverse DFT matrix, [image: there is no content] is an [image: there is no content] and [image: there is no content]-sparse vector, containing no more than [image: there is no content] DFT coefficients with larger magnitude, and [image: there is no content] contains the remaining smaller DFT coefficients.



The h-th sensor node of the same sensor array will receive the same [image: there is no content] with a relative delay [image: there is no content]. Thus, the data received at the h-th sensor are the time-delayed summation of Q sources. That is:


[image: there is no content]



(2)




where [image: there is no content] is the zero mean white Gaussian noise at the h-th sensor.



Figure 2 is the time delay model of a sensor array. Define [image: there is no content] as the incident angle of the q-th source, c as the speed of acoustic signal and [image: there is no content] as the position of the h-th sensor with respect to the array centroid ([image: there is no content]). The time delay [image: there is no content] is given by:


[image: there is no content]



(3)




where [image: there is no content] is the direction of the h-th sensor with respect to the array centroid. After exploiting N-point DFT to [image: there is no content], its frequency domain expression is given by:


[image: there is no content]



(4)




where [image: there is no content], and each component [image: there is no content] is equivalent to multiplying the k-th entry of the acoustic spectrum [image: there is no content] by a phase shift [image: there is no content]. That is:


[image: there is no content]



(5)




where [image: there is no content] is the frequency domain expression of [image: there is no content]. Since [image: there is no content] consists of all acoustic signals, the [image: there is no content] vector [image: there is no content] will be R-sparse ([image: there is no content]). This is because the dominant components of Q sources may fall within overlapped or different spectrum bands.


Figure 2. Array time delay model.
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Consider the array data spectrum [image: there is no content] of H sensors at the k-th frequency; one may write:


[image: there is no content]



(6)




where [image: there is no content] is the steering vector of the q-th source, [image: there is no content][image: there is no content], [image: there is no content].



The relative delay [image: there is no content] is the time for the acoustic wave of the q-th source traveling from the array centroid to the h-th node in the array along the incident angle [image: there is no content]. Suppose that the entire range of incident angles is divided into [image: there is no content] divisions with each division corresponding to a quantized incident angle [image: there is no content], [image: there is no content]. We can construct a redundant [image: there is no content]steering matrix [image: there is no content] that includes L steering vectors. Here, [image: there is no content] is defined as the steering vector corresponding to an incident angle [image: there is no content]. Furthermore, define a [image: there is no content], Q-sparse source energy vector [image: there is no content] such that:


[image: there is no content]



(7)







If L is sufficiently large, it is safe to assume that different [image: there is no content] will fall into different angle bins. With this change of notation, Equation (6) can be rewritten as:


[image: there is no content]



(8)




where [image: there is no content]. With Equations (4) and (6), one may construct an [image: there is no content] matrix:


[image: there is no content]



(9)







By performing row-vectorization of matrix [image: there is no content], we have an [image: there is no content] vector:


[image: there is no content]



(10)







Similarly, by performing column-vectorization of matrix [image: there is no content], we have another [image: there is no content] vector:


[image: there is no content]



(11)







Since the entries of both [image: there is no content] and [image: there is no content] are associated with the same [image: there is no content] matrix, there exists an [image: there is no content] permutation matrix [image: there is no content] such that:


[image: there is no content]



(12)







Equation (12) provides a link between [image: there is no content], which exhibits the R-sparsity in the frequency domain, and [image: there is no content], which exploits the Q-sparsity in the spatial (incident angle) domain. In other words, the array samples, as summarized in matrix [image: there is no content], exhibit a joint frequency and spatial (angle) domain sparsity that will be exploited later in this paper.




2.2. Compressive Sensing and Random Sub-Sampled Measurements


The presence of sparsity, as described in the models above, promises great potential for introducing CS to reduce the amount of transmitted sensor data.



The compressive sensing theory [27] states that a signal [image: there is no content] may be reconstructed perfectly from a dimension reduced measurement [image: there is no content] through a linear measurement system [image: there is no content] when [image: there is no content] is a K-sparse vector. This is often accomplished by solving a constrained optimization problem:


min||α||1s.t.||y-ΦΨα||<σ



(13)




where [image: there is no content] is the [image: there is no content] norm of vector [image: there is no content], Φ is the measurement matrix, Ψ is the sparse matrix and σ is a noise threshold. To confirm stable reconstruction, the measurement matrix Φ is usually chosen to be a random Gaussian matrix or a random binary matrix.



The measurement vector in traditional compressive sensing problem settings is often computed as a weighted linear combination of the observed high dimensional signals. For example, in COBE [13], the [image: there is no content] sensor data vector in a frame will be multiplied to an [image: there is no content] measurement matrix (M<N) digitally to yield a measurement vector y and then transmitted via a wireless channel to the FC. This obviously requires much computation and is likely to further deplete the energy reserve on sensor nodes. In CSA-DoA [15], an analog filter needs to be inserted before the ADC to realize the measurement operation. This approach requires special-purpose hardware and can be quite expensive.



In this work, time domain sensor data will be purposely discarded and will not be transmitted to the FC. By doing so, data reduction may be achieved without incurring expensive compression computations on the sensor nodes. Specifically, we will use a random sub-sampling matrix [28] defined on a set of non-uniform, yet known random sampling intervals [image: there is no content]. Let a sequence be [image: there is no content] such that [image: there is no content], and:


u(m)=u(m-1)+r(τm),2≤m≤M



(14)




where [image: there is no content] is the rounding operation. Then, the [image: there is no content]-th element of this proposed random subsampling matrix is given by:


[image: there is no content]



(15)







The selection of the proposed random subsampling matrix is because the product of [image: there is no content] is a partial Fourier matrix, which has been proven to satisfy the restricted isometry property (RIP) property with a high probability [29].



Furthermore, in this work, the lossy nature of wireless channels will be exploited by modeling the packet loss during wireless transmission over noisy channels as a form of (involuntary) random data sub-sampling. It is well known that due to different link types (amplify forward and direct link) [30], power allocation [31] and time-varying channel conditions, wireless transmissions are likely to suffer from packet loss, and the identities of lost data packets are known at the FC. Hence, this type of packet loss can be modeled as another form of random sub-sampling. In our recent work [32], the data packet loss is modeled with a random selection matrix.



In this work, both the random sub-sampling matrix and the random selection matrix will be incorporated as a combined measurement matrix that requires no computation on the sensor nodes while achieving the desired data reduction. Denote the random sampling matrix at the h-th sensor node as [image: there is no content] and the random selection matrix over the wireless channels between the h-th sensor node and the FC as [image: there is no content]. The combined equivalent measurement matrix may then be obtained as:


[image: there is no content]



(16)









3. CSJSR-DoA Formulation


The proposed CSJSR-DoA algorithm consists of three major steps: (1) at the h-th wireless sensor node, the received and digitized acoustic signal [image: there is no content] will be sub-sampled using random compressive sampling as described in Equation (15) to yield a node measurement vector [image: there is no content]; (2) these node measurement vectors will then be transmitted through lossy wireless channels to the FC; (3) The FC will receive an overall measurement vector [image: there is no content], which will then be processed by the CSJSR-DoA approach to directly estimate a sparse DoA indicator vector. The schematic diagram of the proposed CSJSR-DOA approach is summarized in Figure 3.


Figure 3. Schematic diagram of the CSJSR-DoA approach.
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Note that at the FC, the received compressive measurement of the h-th sensor node may be expressed as:


[image: there is no content]



(17)







Hence, the overall measurement vector [image: there is no content] may be expressed as:


y1y2⋮yH=Φe1ΨΦe2Ψ⋱ΦeHΨd˜1d˜2⋮d˜H



(18)




or in matrix form,


[image: there is no content]



(19)




where [image: there is no content] is the joint sparse representation matrix. As discussed earlier, [image: there is no content] shares a common R-sparse structure, since the signal measured at one sensor node would be a time-delayed version of those at other sensors.



Next, from Equations (8) and (11), one may write:


[image: there is no content]



(20)




where [image: there is no content], [image: there is no content], [image: there is no content] is the [image: there is no content] joint steering matrix:


AL=AL(0)AL(1)⋱AL(N-1)











Substituting Equations (12) and (20) into Equation (19) leads to:


y=Θd˜=ΘMd¯=ΘM(ALrL+w)=ΥrL+wc



(21)




where [image: there is no content] is the subsampled Gaussian white noise received in the FC. Here, [image: there is no content] is the joint sparse representation matrix that combines the joint sparse matrices Θ and [image: there is no content]. The details of this joint sparse representation matrix are:


Υ=ϕe,11aL,1T(0)ϕe,12aL,2T(0)⋮ϕe,1HaL,HT(0)︸Υ[1]ϕe,21aL,1T(1)ϕe,22aL,2T(1)⋮ϕe,2HaL,HT(1)︸Υ[2]⋱ϕe,N1aL,1T(N-1)ϕe,N2aL,2T(N-1)⋮ϕe,NHaL,HT(N-1)︸Υ[N]



(22)




where [image: there is no content] is the n-th column of [image: there is no content] and [image: there is no content] is the h-th row of [image: there is no content]. The significance of Equation (22) is that one may reconstruct the joint sparse indicating vector [image: there is no content] from the joint measurement vector [image: there is no content] directly without reconstructing the raw data [image: there is no content] at individual sensor nodes. [image: there is no content] is a joint sparse vector with no more than R non-zero blocks, and there are at most Q non-zero entries in each of the R non-zero blocks.



With these relations, we may now formulate the joint sparse representation-based DoA estimation problem (group sparse reconstruction [33]) in a multiple measurements vector (MMV) formulation [26,34,35]:


minrL∑ℓ=1L|s(ℓ)|subjectto||y-ΥrL||2≤γ



(23)




where [image: there is no content] and γ is a noise threshold. To solve this optimization problem, a second-order cone programming (SOCP) [36] approach has been proposed. The joint sparse representation of the wideband array signal in Equation (23) helps to improve the DoA estimation performance of wideband signals, as long as the same DoA of a signal is shared by different frequencies [37]. Note that the group sparsity-based DoA estimation for wideband signals is advantageous as compared to the traditional wideband DoA estimation methods, because it achieves near-coherent DoA estimation performance without the requirement of coherent signal projection through, e.g., the well-known focusing technique [38].



However, the computation cost is rather expensive. In [39], an MMV-Proxmethod has been proposed. We adopt this method for the underlying problem. In particular, we solve Equation (23) by a two-step process:

	
Estimate the frequency domain support [image: there is no content] of array signals by reconstructing the spectral sparse indicative vector [image: there is no content] from the joint measurements [image: there is no content] and prune the joint reconstruction matrix Υ by selecting [image: there is no content] with non-zero frequency bins;



	
reconstruct the DoA indicative vector [image: there is no content] directly from the joint measurements [image: there is no content] using the pruned joint reconstruction matrix.








In summary, the first step is to estimate the non-zero block [image: there is no content] and to simplify the joint sparse matrix by selecting [image: there is no content] with non-zero [image: there is no content]. The second step is to reconstruct the DoA using the pruned joint sparse representation matrix [image: there is no content]. These steps are summarized in the listing of Algorithm 1.



The computational complexity of Equation (23) in the SOCP framework using an interior point implementation is [image: there is no content] [39]. If we decouple the original problem into two sub-problems (Steps 2, 3 and 4 in the above algorithm), its computational complexity can be reduced to [image: there is no content].





	Algorithm 1 Decoupled joint sparse reconstruction.



	Input: Received joint random measurement vector [image: there is no content];



	Equivalent random measurement matrix [image: there is no content];



	Output: DoA indicating vector [image: there is no content];



	1. Estimate the noise level by random sampling in source free scenario, [image: there is no content];



	2. Estimate the common support [image: there is no content] by solving:



	 [image: there is no content]



	3. Construct the pruned joint reconstruction matrix [image: there is no content];



	[image: there is no content];



	4. Solve the pruned reconstruction problem:



	 [image: there is no content]







4. Performance Analysis


In this section, the performance of the proposed CSJSR-DoA approach is investigated. First, the relevant coherence, its upper bound and the angular separation problem are studied. Second, the Cram[image: there is no content]r–Rao bound of the proposed CSJSR-DoA approach will be discussed.



4.1. Sparse Reconstruction Analysis and Angle Separation


The existence of solution to Equation (23) depends on the property of the reconstruction dictionary Υ. Usually, the mutual coherence and the restricted isometry property (RIP) of a sparse representation matrix are used as the criteria that indicate the reconstruction performance. Consider that the verification of the RIP property requires combinational computational complexity [40]; it is preferable to use the property of coherence that is easily computable to provide more concrete recovery guarantees. In this paper, we try to analyze the coherence of the CSJSR-DoA approach.



In the CS theory, the coherence of a matrix is the worst-case linear dependence of any pair of its column vectors. Similarly, in the block sparse signal case, in which a signal is composed by several blocks and only a small number of these blocks is non-zero, the block-coherence [41] has been proposed.



Recall from Equation (21):


[image: there is no content]



(24)




where Θ is a block diagonal joint sparse sampling matrix, [image: there is no content] is a full rank, unitary permutation matrix and [image: there is no content] is a block diagonal steering matrix. To study the coherence of Υ, we need to study the block-coherence of Υ.



Theorem 1. 

Assume that H sensor nodes form a sensor array, and the received data in the fusion center are [image: there is no content]. Then, the block-coherence of the joint sparse representation matrix Υ satisfies:


[image: there is no content]



(25)









Proof. 

See Appendix A. ☐





The block-coherence [image: there is no content] guarantees stable reconstruction of the block sparse signal [image: there is no content] with a high probability. However, each block [image: there is no content] indicates the DoA of sources. Thus, the coherence of each sub-matrix [image: there is no content] should be considered. In this paper, we derive the coherence of [image: there is no content]. This result will provide a lower bound of the source separation (in turns of DoA angle) issue to ensure a reliable DoA estimation. However, the coherence of [image: there is no content] depends on array geometry, and it is difficult to obtain an analytical bound.



In this paper, we consider the typical uniform linear array geometry and find an interesting result of the coherence bound. The derived result is similar to the array pattern [42] analysis and is validated for both narrowband and broadband acoustic sources. For broadband sources, the highest dominant frequency may be used.



Theorem 2. 

Assume that H sensor nodes form a uniformly-spaced linear array with [image: there is no content] being the spacing between adjacent sensors where λ is the wavelength of the acoustic signal. If the difference of the incident angles of any pair of sources satisfies:


[image: there is no content]



(26)




then the coherence of [image: there is no content] is bounded by:


[image: there is no content]



(27)









Proof. 

See Appendix B. ☐






4.2. Cram[image: there is no content]r–Rao Bound of CSJSR-DoA


In this subsection, we derive the Cram[image: there is no content]r–Rao bound (CRB) of the proposed CSJSR-DoA method and study its impact on the DoA estimation accuracy due to factors such as the number of measurements, the number of sensors and the noise level [image: there is no content], which is defined in Equation (13).



Recall that the CRB is defined as the inverse of the Fisher information matrix (FIM) [43],


[image: there is no content]



(28)




where Λ is the unknown parameter set. In this paper, we only derive the CRB of a single source case. Thus, the unknown parameter is [image: there is no content], where [image: there is no content] and [image: there is no content] are the sparse frequency bins and their corresponding source spectrum, respectively.



In the case of Gaussian white noise, the FIM is:


[image: there is no content]



(29)




where [image: there is no content]. For simplification, we assume that all H sensors have the same [image: there is no content]. Recall Equations (4), (6) and (17); the measurement vector of the CSJSR-DoA approach in a single source case is:


[image: there is no content]



(30)




where [image: there is no content] is the [image: there is no content]-th column of [image: there is no content]. After some calculations, the CRB of the CSJSR-DoA approach is given by:


[image: there is no content]



(31)




where [image: there is no content], [image: there is no content].



Proof. 

See Appendix C. ☐







5. Performance Evaluation


In this section, extensive simulations are carried out to: (1) study the performance of the CSJSR-DoA approach; and (2) compare the performance of the CSJSR-DoA approach against COBE and CSA-DoA, using the L1-SVD [26] algorithm as the baseline. In addition, we also developed a hardware prototype platform and collected data from outdoor experiments to validate the practical applicability of the CSJSR-DoA approach.



5.1. Simulation Settings


We synthesized acoustic signals based on Equation (1). The synthesized signals contain four dominant frequency entries at 300 Hz, 500 Hz, 600 Hz and 800 Hz. These correspond to wavelengths of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] m, respectively, assuming the sound speed at 343 m/s. The received acoustic signal also contains additive Gaussian white noise with zero mean. The variances are set so that the resulting SNR ranges from [image: there is no content] dB to 10 dB in 5-dB increments. Such an acoustic signal resembles the dominant entries’ distribution of some practical acoustic sources, such as truck engine sounds. The sampling rate is 2 ksamples/s. At this rate, a frame of 125 ms is selected. The sampling rate is chosen so that it satisfies the Nyquist sampling rate and avoids the frequency aliasing issue.



We assume a single uniform linear array consisting of six ([image: there is no content]) acoustic sensor nodes deployed in a sensor field. The spacing between adjacent sensors is 0.2 m, which is smaller than half of the wavelength ([image: there is no content] m) of the 800-Hz entry. All acoustic sources are located at the broad side of this linear array, so that the incident angles (directions of arrivals) are constrained within a [image: there is no content] to [image: there is no content] range. We divide this angle range into ([image: there is no content]) partitions, so that each partition equals [image: there is no content].



Consider that data packets transmitted from the sensor array to the FC may suffer from data packet loss. We will simulate data packet loss rates, denoted by [image: there is no content], at 0, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], respectively. To mitigate burst data transmission loss, the acoustic data stream will be interleaved while being assembled into the data packet for transmission. However, other than packet headers, there will be no additional channel coding bits appended. The data loss rate is computed as the percentage of packets that are lost during transmission through wireless channels versus the total number of packets that are sent from the sensor array.



With the CSJSR-DoA approach, both random subsampling and wireless channel packet loss will reduce the amount of received acoustic samples compared to what was originally sampled at the sensor array. In particular, at each sensor node, the acoustic data samples will be randomly subsampled according to Equations (14) and (15). The ratio [image: there is no content] in these equations can be regarded, in the context of CS, as the ratio of the number of measurements versus the total number of data samples. With channel data packet loss taken into account, we instead define [image: there is no content] to be the ratio of the number of acoustic samples successfully received at the fusion center versus the total number of samples acquired by the H acoustic sensors. Ignoring the overhead of data packet header, we have:


[image: there is no content]



(32)







In this section, the DoA performance will be reported against different values of [image: there is no content]. In practice, if [image: there is no content] can be estimated in real time, we may adjust M to achieve the desired DoA accuracy.



Four algorithms are implemented: L1-SVD, CSJSR-DoA, CSA-DoA and COBE. The L1-SVD algorithm [26] is applied to the entire set of acoustic samples without random subsampling and is used as a baseline for both simulation and experiment. The COBE algorithm [13] requires a specific reference node to be sampled at the Nyquist rate without any subsampling in order to provide a reference source signal. To have fair comparisons, we performed trial runs to empirically obtain the best parameters for the CSA-DoA and COBE algorithms. All four algorithms are implemented using MATLAB Version 7.9.0. The optimization is performed using the Sedumi 1.2.1 toolbox [44].




5.2. CSJSR-DoA Performance Evaluation


In this simulation, two ([image: there is no content]) stationary acoustic sources are placed in the far field from the sensor array at [image: there is no content]. The noise levels of the acoustic signal correspond to SNR = [image: there is no content] dB, [image: there is no content] dB, 0 dB, 5 dB and 10 dB, and it is assumed that [image: there is no content]. Five hundred independent trials are performed. Consider that sparse reconstruction is a probability event; a DoA estimate is considered a success detection if a sparse indicative vector can be reconstructed successfully. In other words, some trials fail to give a solution to the sparse DoA indicative vector. Based on the results of detected trials, the number of impinging signals, Q, and the corresponding DoAs can be estimated. Similar to some spatial spectrum search-based approaches, the spatial spectrum will be calculated using [image: there is no content], and some conventional peak-finding approaches [45,46] are used to find [image: there is no content] peaks of the obtained spatial spectrum. However, the estimated [image: there is no content] directions can be divided into three categories: [image: there is no content], [image: there is no content] and [image: there is no content]. In this case, a proper performance criterion is hard to choose. Following a similar work [22], which takes into account both the errors in estimating the signal number [image: there is no content] and the corresponding DoAs, the root mean square errors (RMSE) of the n-th detected trial will also be reported using the formula:


[image: there is no content]



(33)






[image: there is no content]



(34)




where [image: there is no content] is the number of detected trials, [image: there is no content]. Here, [image: there is no content] is a penalty term of the maximum admissible DoA error (i.e., [image: there is no content] for a liner array), and [image: there is no content] is the least error of additional false DoA.



The averaged detection rate and the RMSE are summarized in Figure 4. It may be noted that when the SNR is greater or equal to 0 dB, [image: there is no content] yields very satisfactory DoA performance. To put it into context, [image: there is no content] roughly equals transmitting 500 samples per second without data loss. The corresponding data volume of Nyquist rate sampling is 1600.


Figure 4. Performance comparison of the CSJSR-DoA approach under different data volumes: (left) detection rate (right) RMSE.
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It is also interesting to examine how the RMSE obtained using simulation is compared against the theoretical Cram[image: there is no content]r–Rao bound. In Figure 5, it can be seen that for [image: there is no content] dB, the RMSE is very close to the theoretically-computed CRB.


Figure 5. Comparison between the CSJSR-DoA result and the Cram[image: there is no content]r–Rao bound (CRB): (a) CRB comparison with [image: there is no content]; (b) CRB comparison with [image: there is no content]; (c) CRB comparison with [image: there is no content]; (d) CRB comparison with [image: there is no content].



[image: Sensors 16 00686 g005 1024]






Next, we want to investigate the impact of varying the data packet loss rate for different values of random subsampling ratio [image: there is no content]. The noise level of the acoustic signal is set at SNR = 0 dB. Two sets of plots are provided in Figure 6. On the top, the averaged probability of successful detection and the RMSE are plotted against [image: there is no content]. The performance degradation due to data packet loss can be seen clearly. On the bottom, the averaged probability of successful detection and the RMSE are plotted against [image: there is no content], which, according to Equation (32), already takes into account the impact of [image: there is no content]. Hence, the different curves on the bottom panel are merged into an identical one. This is because the random data loss is equivalent to the random subsampling of the raw data.


Figure 6. Comparison of different lossy transmissions: (a) Detection rate versus [image: there is no content]; (b) RMSE versus [image: there is no content]; (c) Detection rate versus [image: there is no content]; (d) RMSE versus [image: there is no content] .
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Our next goal is to investigate the DoA resolution of the proposed CSJSR-DoA approach when two acoustic sources become closer in terms of DoAs. Under the same simulation configuration, we fix one source at [image: there is no content] and vary the incident angle of the second source from [image: there is no content] to [image: there is no content] in [image: there is no content] increments. We perform 300 independent trials for each setting. The SNR=5dB, and the peaks of the [image: there is no content] sparse vector indicate the DoAs of two sources.



We report the averaged angle estimation error versus target DoA separation angles in Figure 7. Based on the discussion on Theorem 2, the steering vectors of two nearby sources are strongly correlated or have larger coherence. Therefore, the reconstruction of a correct sparse DoA indicative vector does not perform well. In simulations, the probability (false DoA probability) that only one source is found when two DoAs exist and the RMSE of each DoA estimation versus target DoA separation angles are shown in Figure 8. Note that when the separation angles are small, the averaged estimation errors, the RMSEs and the probability of false DoA estimation are rather large. However, when the targets are well separated ([image: there is no content]), the DoAs of both targets are accurately estimated (the averaged estimation error and the false DoA probability are close to zero, and the RMSEs decrease to a constant). This validates the theoretical angle separation result of [image: there is no content].


Figure 7. Comparison of DoA estimation error under different angle separations.
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Figure 8. Angle separation comparison: (a) RMSE versus angle (b) false probability versus angle.
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Finally, we use simulation to compare the proposed CSJSR-DoA approach against two other CS-based DoA methods: COBE and CSA-DoA. The simulation conditions are identical to those used in Figure 4. While these three methods differ in how the measurements are made, the definition of [image: there is no content] would still be applicable to all of them; namely, the number of samples received at the FC versus the total amount of raw data samples at the sensor array. Specifically, the analog projection of the CSA-DoA approach is emulated by projecting the digitized signal. The results are summarized in Figure 9. It shows that the CSJSR-DoA method has favorable performance over others in a number of situations. Additional comparison of these methods using data collected from a prototype WSAN platform will be discussed next.


Figure 9. Performance comparison among CS-based methods under the same SNR ratio:(a) Detection rate with SNR = 10 dB; (b) RMSE with SNR = 10 dB; (c) Detection rate with SNR = 5 dB;(d) RMSE with SNR = 5 dB; (e) Detection rate with SNR = 0 dB; (f) RMSE with SNR = 0 dB.
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5.3. Prototype WSAN Platform and Field Experiment


To further validate the capability of the CSJSR-DoA approach, a WSAN [47] was developed. Each sensor node (shown in Figure 10a) is equipped with an omni-directional microphone, a 16-bit ADC and a wireless transceiver operating at a rate of 31.25 KBps using the ZigBee protocol [48]. Random sub-sampled acoustic data samples are transmitted to the FC through the wireless transceiver to the FC (laptop). To guarantee time synchronization within the sensor array, the RBS time synchronization scheme is used. Figure 10b shows the experiment configuration, in which a laptop equipped with a wireless receiver was used as the FC. The sensor array is shown in the background close to the upper right corner.


Figure 10. Wireless sensor array network. (a) Sensor node; (b) fusion center and array.
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In the first experiment, the task is to track the DoAs of a single moving acoustic source (digital acoustic signal played through a speaker). The distance between the source and the array varies from 20 m to 40 m, and the measured SNR in the array was about 6 dB. Each sensor node took samples during a period of 125 ms at a 2 Ksampling rate and transmitted them to the FC using the IEEE 802.15.4 protocol. In the FC, the DoA estimate was updated every second. The measured data loss ratio [image: there is no content] was [image: there is no content], and the corresponding [image: there is no content] of the received data in the FC was [image: there is no content]. The result is shown in Figure 11. The red line is the ground truth, and the green circles are CSJSR-DoA estimates. The averaged probability of success detection is [image: there is no content], and the corresponding RMSE is [image: there is no content]. This experiment provides an example of the practical use of the CSJSR-DoA approach.


Figure 11. Experiment result of the CSJSR-DoA approach.
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In the second experiment, two stationary acoustic sources are used. They are placed at distances of [image: there is no content] m and [image: there is no content] m with (ground truth) DoA angles at [image: there is no content] and [image: there is no content] respectively. Six sensors were incorporated into the array with an inter-sensor spacing equal to 0.2 m. Using data collected in this experiment, the performance of the CSJSR-DoA approach is compared against COBE, CSA-DoA and the baseline algorithm L1-SVD. The results are shown in Figure 12 and Table 2. The data compression ratio of all of these algorithms is fixed at [image: there is no content]. To facilitate the comparison, the corresponding [image: there is no content] sparse DoA angle vector [image: there is no content] is normalized and expressed in units of dB. From Figure 12, it is shown that the CSJSR-DoA approach yields sharper DoA estimates compared to the other three methods.


Figure 12. Prototype system experiment of the CSJSR-DoA approach.
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Table 2. Result of the prototype system experiment. CSA, compressive sensing array; COBE, compressive bearing estimation.









	
	L1-SVD
	CSJSR-DoA
	CSA-DoA
	COBE





	DoA (∘)
	[[image: there is no content],29]
	[[image: there is no content],27.5]
	[[image: there is no content],30]
	[[image: there is no content],25]











6. Conclusions


In this paper, a compressive sensing joint sparse representation approach (CSJSR-DoA) is presented for DoA estimation on a WSAN platform. By exploiting both frequency domain and spatial domain sparsity, the CSJSR-DoA approach provides a direct DoA angle estimation at the FC, while requiring almost no computation at power-constrained remote sensor nodes. We provided performance analysis in terms of DoA angle resolution and the Cram[image: there is no content]r–Rao bound of the estimates. We further conducted extensive simulation and built a prototype experimental WSAN platform to investigate the impacts of various parameters on the DoA performance. We also compared the performance of the proposed CSJSR-DoA approach against two other compressive sensing DoA estimation methods and showed that the CSJSR-DoA approach provides superior performance in both simulation runs and real-world experiments.
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Appendix A.


Let [image: there is no content] be a concatenation of column block [image: there is no content] of size [image: there is no content]. Then, the block coherence is defined as:


[image: there is no content]



(A1)




where [image: there is no content] is the spectral norm of matrix [image: there is no content]. For simplification, we assume all of the H sensors have the same measurement matrix ([image: there is no content]); therefore:


Υ[l]HΥ[r]=1MHAL(l)⊗ϕe,lHAL(r)⊗ϕe,r=ϕe,lHϕe,rMHAL(l)HAL(r)



(A2)







Note the structure of [image: there is no content]; the product [image: there is no content] is equivalent to selecting some rows from the discrete Fourier transform (DFT) matrix Ψ. Hence, their product [image: there is no content] is a partial Fourier transform matrix (submatrix of a full DFT matrix). For the underlying random non-uniform sampling, the selection of these M rows is determined by [image: there is no content]. Applying the Welch Bound inequality [49], when [image: there is no content] is randomly selected from [image: there is no content],


[image: there is no content]



(A3)







According to the Gershgorin circle theorem, [image: there is no content] is bound by:


μB=maxl,r≠l1Lρ(Υ[l]HΥ[r])≤maxl,r≠l1LH(N-M)(N-1)MλmaxAL(l)HAL(r)=N-M(N-1)M



(A4)








Appendix B.


Assume that a uniform linear array consists of H sensors and that the distance between adjacent sensors is d. The orientationof a linear array is set to be orthogonal to the y-axis, and the array centroid is [image: there is no content]. The positions of the h-th sensor satisfies [image: there is no content], [image: there is no content] and [image: there is no content]. In this case, the corresponding steering vector is given by:


aℓ(k)=[e-jωku1sin(θℓ)c,e-jωku2sin(θℓ)c,⋯,e-juHωksin(θℓ)c]T=χ[1,e-jωkdsin(θℓ)c,⋯,e-juHωk(H-1)dsin(θℓ)c]T



(B1)




where [image: there is no content] is a constant. Recall Equation (A2); the block sub-matrix is given by:


[image: there is no content]



(B2)







The sparse representation matrix in Equation (8) that compactly expresses the spectrum of the H received signals is:


[image: there is no content]



(B3)




when [image: there is no content] ([image: there is no content]) [37,50]; there are at least two different angles [image: there is no content] and [image: there is no content] that satisfy:


[image: there is no content]



(B4)




in which [image: there is no content]. This implies that there will be multiple identical columns in [image: there is no content], and hence, the coherence of [image: there is no content] will be one. However, in CS theory, smaller coherence means better reconstruction performance. To confirm the uniqueness of [image: there is no content] (not the same columns in [image: there is no content]) and, hence, a stable reconstruction of a sparse indicating vector, a small coherence is desirable.



On the condition that [image: there is no content], the coherence of [image: there is no content] is given by:


[image: there is no content]



(B5)




where [image: there is no content] is determined by the redundant array manifold matrix, [image: there is no content], [image: there is no content].



Note that [image: there is no content], that is when the incident angles of two sources are close enough, the coherence may approach [image: there is no content], and hence, their DoAs become unresolvable. If the angle difference between two sources is larger than a certain value, a small coherence value can be guaranteed. Based on such an observation, an upper bound of [image: there is no content] can be established as [image: there is no content]. In Figure B1, the coherence [image: there is no content] and its upper bound [image: there is no content] are plotted against [image: there is no content]. It is observed that [image: there is no content] decreases sharply when [image: there is no content] is smaller than the first side lobe ([image: there is no content]). It is not difficult to verify that when:


[image: there is no content]



(B6)




[image: there is no content]. This means a small coherence can be guaranteed when the angle difference of the two sources is larger than a certain threshold.


Figure B1. Mutual coherence of the array manifold matrix and its upper bound.
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Appendix C.


Recall from Equation (29) that the details of the FIM matrix are:


F(Λ)=2σ2Re(∂yH∂θ∂y∂θ)(∂yH∂θ∂y∂rT)(∂yH∂θ∂y∂fT)(∂yH∂r∂y∂θ)(∂yH∂r∂y∂rT)(∂yH∂r∂y∂fT)(∂yH∂f∂y∂θ)(∂yH∂f∂y∂rT)(∂yH∂f∂y∂fT)



(C1)







Additionally, each term of the FIM is:


[image: there is no content]



(C2)




where b(ki)=-j2πfki[u1cos(θ)-v1sin(θ),u2cos(θ)-v2sin(θ),⋯,uHcos(θ)-vHsin(θ)], [image: there is no content], vki=-j2π(u-1)/N. We assume the coherence of [image: there is no content] is very small and can be neglected ([image: there is no content]). Based on this approximation, each component of the FIM is given by:


∂yH∂θ∂y∂θ=Mα||e||22∂yH∂r∂y∂rT=MJI∂yH∂f∂y∂fT=εdiag(r0(k1)2,⋯,r0(kR)2)∂yH∂θ∂y∂rT=0∂yH∂θ∂y∂fT=0∂yH∂r∂y∂fT=ηdiag(r0(k1),⋯,r0(kR))



(C3)




where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. Applying the well-known matrix inverse lemma, the CRB of CSJSR-DoA is:


[image: there is no content]



(C4)
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